3–5 Sep 2014
UP FAMNIT, Koper, Slovenia
Europe/Ljubljana timezone

Finite CI-groups and Schur rings

Not scheduled
Velika predavalnica (UP FAMNIT, Koper, Slovenia)

Velika predavalnica

UP FAMNIT, Koper, Slovenia

Glagoljaška 8, Koper, Slovenia

Speaker

Dr István Kovács (University of Primorska)

Description

For a finite group G and a subset S of G such that 1 is not in S the Cayley graph Cay(G,S) has vertex set G and arcs in the form (x,sx) where x runs over G and s runs over S. A Cayley graph Cay(G,S) is called a CI-graph if for every subset T with Cay(G,T) being isomorphic to Cay(G,S), T=f(S) for some automorphism f of G. The group G is called a DCI-group if every Cayley graph of G is a CI-graph, and it is called a CI-group if every undirected Cayley graph of G is a CI-graph (note that, Cay(G,S) is undirected when the set S is closed under taking inverse elements). Although there is a restrictive list of potentional CI-groups (Li-Lu-Pálfy, 2007), only a few classes of groups have been proved to be indeed CI; in several cases the proof was obtained by studying the Schur rings over the given group. In my talk I review the Schur ring method and also present some recent results based on a joint work with Yan-Quan Feng (Beijing Jiaotong University, China).

Primary author

Dr István Kovács (University of Primorska)

Presentation materials

There are no materials yet.