3–5 Sep 2014
UP FAMNIT, Koper, Slovenia
Europe/Ljubljana timezone

Revisiting Goldschmidt's Amalgams

Not scheduled
Velika predavalnica (UP FAMNIT, Koper, Slovenia)

Velika predavalnica

UP FAMNIT, Koper, Slovenia

Glagoljaška 8, Koper, Slovenia

Speaker

Prof. Alexander Ivanov (Imperial College London)

Description

Let $\Gamma$ be a finite cubic graph, let $G$ be an edge-transitive automorphism group of $\Gamma$, let $\{x,y\}$ be an edge of $\Gamma$, and let ${\cal A}=\{G(x),G(y)\}$ be the amalgam formed by the corresponding vertex stabilizers. In a groundbreaking paper of 1980 D.M.Goldschmidt proved that $|G(x)|=|G(y)|$ divides $2^7 \cdot 3$ and that there are exactly fifteen possibilities for the isomorphism type of ${\cal A}$. I am planning to discuss the structure of the Godlschmidt amalgams with a particular emphasis on the largest one, embedded into the automorphism group ${\rm Aut}\,(M_{12})$ of the sporadic Mathieu group $M_{12}$.

Primary author

Prof. Alexander Ivanov (Imperial College London)

Presentation materials

There are no materials yet.