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Abstract

We present the class of semi-admissible subsets of an open Riemann surface on which
Carleman approximation by non-critical holomorphic functions is possible. Using this
result, we can characterize closed sets with empty interior on which one can approximate
continuous functions by non-critical holomorphic ones. We also show how to use this
result to construct a non-critical entire function with arbitrary asymptotic values.

The classical Carleman approximation theorem states that for any complex valued con-
tinuous function f : R → C and any continuous positive valued function ε : R → (0, ∞),
there exists an entire function F : C → C such that |F (x) − f(x)| < ε(x) holds for every
x ∈ R. The distinguishing feature of Carleman approximation is that ε is a function, thus
the difference between the original function f and the approximating function F can be con-
trolled pointwise. In particular, the difference can be made arbitrarily small as we go off to
infinity along the real line. Thus, this is a stronger result than just uniform approximation,
where ε would be a constant function.

This result was proven by T. Carleman in [3] and was later generalized to other subsets of
the complex plane and even to subsets of open Riemann surfaces. What exactly generalized
means in this context is made more precise by the next definition.

Definition 1. We say that a closed subset E of an open Riemann surface X is a set of
Carleman approximation, if for every continuous positive valued function ε : E → (0, ∞)
and every function f ∈ A(E) there exists a global holomorphic function F ∈ O(X) such
that |F (p) − f(p)| < ε(p) holds for every p ∈ E.

Contrast this with the weaker notion of uniform approximation. As already mentioned,
in this case, the difference between the original and approximating function is bounded by
a constant.

Definition 2. We say that a closed subset E of an open Riemann surface X is a set of
uniform approximation, if for every function f ∈ A(E) and ε > 0 there exists a global
holomorphic function F ∈ O(X) such that |F (p) − f(p)| < ε holds for every p ∈ E.

Let us clear up some notation. For an open set Ω ⊆ X we denote by O(Ω) the class of
holomorphic functions on Ω. For a closed set E ⊆ X let C(E) denote the class of continuous
functions on E and A(E) the class of functions which are continuous on E and holomorphic
in its interior, that is A(E) = C(E) ∩ O(E̊).

The question thus becomes which closed subsets of the open Riemann surface X are
sets of Carleman approximation. A complete characterization of such sets was given by
A. Boivin in [2]. In what follows X∗ represents the one point compactification of the open
Riemann surface X. In the case when X = C, this is just the Riemann sphere, which we
will denote by Ĉ.

Theorem 1. A closed set E ⊆ X in an open Riemann surface X is a set of Carleman
approximation if and only if it satisfies the following three properties:
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(i) The set X∗ \ E is connected.

(ii) The set X∗ \ E is locally connected (at ∞).

(iii) For each compact set K ⊆ X there exists a compact set K ⊆ Q ⊆ X such that no
component of the interior int(E) of E meets both K and X \ Q.

Let us investigate these three conditions more precisely. Condition (i) has to do with
the notion of holes. Recall, that for a closed set E ⊆ X a hole is a relatively compact
connected component of X \ E. We denote the union of all the holes of the set E by h(E).

Consider for example the unit circle S1 in the complex plane. Its complement has two
connected components, D = {z ∈ C | |z| < 1} and {z ∈ C | |z| > 1}, but only the first is
relatively compact. Thus h(S1) = D.

It is an easy exercise in topology to show that a closed set E has no holes if and only if
the set X∗ \ E is connected. Having no holes is quite important in complex approximation
theory as it is a necessary condition to achieve even uniform approximation on compact
sets. For compact sets, Mergelyan’s theorem tells us that it is also a sufficient condition.

Now let’s investigate condition (ii). Here we come upon the following notion.

Definition 3. A closed set E ⊆ X has the bounded exhaustion hull property or BEH
property, if the set h(E ∪ K) is relatively compact for every compact set K ⊆ X.

Let’s look at some examples. The horizontal strip E = {z ∈ C | |Im(z)| ≤ 1} ⊆ C has
the BEH property, since for any compact K ⊆ C the holes of E ∪ K are contained in some
bounded region. It’s also easy to see that every compact set has the BEH property. For a
non-example consider E to be the closure of the graph of the function f(x) = 1

x sin
(

1
x

)
on

(0, ∞) as a subset of C. Taking K to be a closed disc around the origin, we see that the
holes of E ∪ K stretch out to infinity, so the set h(E ∪ K) is not relatively compact.

A slightly more involved exercise in topology is to show that a set E has the BEH
property if and only if X∗ \ E is locally connected at infinity. It turns out that the BEH
property is a necessary condition for uniform approximation on general closed sets, as
it ensures that the set behaves nicely near infinity. Thus, if we want to have uniform
approximation on a closed set, the set must be without holes and have the BEH property.
In the case when X = C, such sets are called Arakelyan sets and the famous Arakelyan
approximation theorem states that these two necessary conditions are also sufficient.

Finally let’s consider condition (iii). The statement of this condition is a bit more
cumbersome, so lets again look at some examples. Taking E = {z ∈ C | |Im(z)| ≤ 1} to be
a strip and K = D, shows that a strip does not satisfy this condition, since the interior of
the strip certainly hits both K and the complement of any compact Q containing K.

On the other hand, the set E =
⋃

m∈Z

{
z ∈ C | |z − m| ≤ 1

3

}
, which is a union of closed

disjoint discs, does satisfy condition (iii). For a given compact set K ⊆ C let Q be the
union of K and all the discs of E that K intersects. An interior component of E is just the
interior of one of the discs and is thus clearly contained in K or in C \ Q.

Condition (iii) comes into play when we want to go beyond uniform approximation and
want ε to be a function. In his paper [5], P. Gauthier showed the following.

Theorem 2. A closed set E ⊊ X that does not satisfy condition (iii) is a set of uniqueness
i.e. there exist a continuous function λ : X → (0, ∞) such that if a global holomorphic
function F ∈ O(X) satisfies

|F (p)| < λ(p)

for every p ∈ E then F ≡ 0.
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The idea is that a set of uniqueness gives rise to a positive valued continuous function
λ which on the set E goes to zero so fast, that the only holomorphic function on E which
is in modulus smaller than λ is the constant 0 function. Using the function λ, one can then
show that a set of uniqueness can’t also be a set of Carleman approximation. This shows
that all three conditions from Boivin’s theorem are indeed necessary.

Motivated by the work of F. Forstnerič in [4], we consider the problem of Carleman
approximation by non-critical functions on open Riemann surfaces, namely under what
assumptions can one require that the global approximating function has no critical points.
Recall that p ∈ X is a critical point of the holomorphic function F ∈ O(X), if the differential
of F vanishes at p and F is non-critical if it has no critical points. In the case where X = C,
the function F is non-critical if its derivative is nowhere vanishing.

To solve this problem, we introduce the following class of subsets of an open Riemann
surface X.

Definition 4. We say that a closed set E ⊆ X is semi-admissible, if there exists a locally
finite pairwise disjoint family of compact sets {Hλ}λ∈Λ and a closed set S with empty
interior, such that E = S ∪ H, where H =

⋃
λ∈Λ Hλ.

To summarize, semi-admissible sets are made up of two parts; a closed set with empty
interior and a union of compact sets which are nicely separated. This encodes the most
important property of semi-admissible sets, namely, that there is some room between the
parts of the set with non-empty interior. The name comes from the fact that semi-admissible
sets are a generalization of admissible sets, which are a standard notion in the theory of
complex approximation. It also turns out that semi-admissible sets always satisfy condition
(iii) of Boivin’s characterization, which quickly follows from the fact that the compact sets
Hλ are locally finite and pairwise disjoint. There do, however, exist sets which satisfy
condition (iii), but are not semi-admissible, consider Figure 1.

E

Figure 1: This set is not semi-admissible, but it does satisfy condition (iii).

We will also be focusing on a particular class of functions, which is defined as follows.

Definition 5. Let E ⊆ X be a semi-admissible set of the form E = H ∪ S. Then Ã(E) is
the class of continuous functions on E which are holomorphic on some open neighborhood
of the set H.

The reason we consider functions in Ã(E) instead of those in A(E) is that they give
us better control over the critical points near the boundary, since they are defined on a
neighborhood of the compact sets making up E.

A function f ∈ Ã(E) is called non-critical if it has no critical points, where it is
holomorphic. We are now able to state the main theorem.

Main Theorem. Let E ⊆ X be a semi-admissible set such that X∗ \ E is connected and
locally connected. Let f ∈ Ã(E) be non-critical and let ε : E → (0, ∞) be a continuous
positive valued function. Then there exists a global non-critical holomorphic function F ∈
O(X) such that we have |F (p) − f(p)| < ε(p) for each p ∈ E.
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Since a closed set with empty interior is always semi-admissible, this is just the case
where E = S, the following corollary is an immediate consequence of the main theorem.

Corollary. Let E ⊆ X be a closed set with empty interior, such that X∗ \ E is connected
and locally connected. Let f ∈ C(E) be a continuous complex valued function on E and let
ε : E → (0, ∞) be a continuous positive valued function. Then there exists a global non-
critical holomorphic function F ∈ O(X) such that we have |F (p) − f(p)| < ε(p) for each
p ∈ E.

Note that, as we have seen above, X∗ \ E being connected and locally connected is
a necessary condition to achieve even uniform approximation. Thus, closed sets E with
empty interior on which Carleman approximation by non-critical functions is possible are
precisely those where X∗ \ E is connected and locally connected.

Let us now sketch the proof of the main theorem. A precise proof can be found in [6].

Sketch of proof. First we construct a exhaustion {Kn}n∈N0
of X by compact sets without

holes such that for each n ∈ N0 and λ ∈ Λ we have

(i) h(E ∪ Kn) = ∅

(ii) If Hλ ∩ Kn ̸= ∅, then Hλ ⊆ Kn.

This can be achieved, since the family of compacts {Hλ}λ∈Λ is locally finite and pairwise
disjoint. Here we also use the fact that X∗ \ E is connected and locally connected. For
n ∈ N0, we define En = E ∪ Kn and note that these sets are semi-admissible and without
holes. For a given sequence of positive values {ε̃n}n∈N0

we will inductively construct a
sequence of functions {fn}n∈N0

such that

(1) fn ∈ Ã(En) and fn in non-critical,

(2) ∥fn − fn−1∥En−1∩Kn+1
< ε̃n−1,

(3) fn = fn−1 on E \ Kn+1.

By choosing the values {ε̃n}n∈N0
sufficiently small, the functions {fn}n∈N0

will converge
uniformly on compacts to a globally defined non-critical holomorphic function F which has
the desired approximation property.

The main part of the proof lies in the induction step. So suppose we have already
constructed fn−1 ∈ Ã(En−1). We first use Mergelyan’s theorem to approximate the function
fn−1 on En−1 ∩Kn+1 and obtain a globally defined function h. Since fn−1 is non-critical on
a neighborhood of the compacts making up En−1, we can, by approximating well enough,
assume that any critical point of h which lies on En−1 ∩ Kn+1 lies on a part of the set with
empty interior. By using flow maps of holomorphic vector fields, we can slightly perturb
the function h to move all its critical points off of the set En−1 ∩ Kn+1 whilst not changing
the function too much. The result is a global function h̃ which is non-critical on an open
neighborhood of the set En−1 ∩ Kn+1. We then use a version of Runge’s approximation
theorem for non-critical holomorphic functions proven by F. Forstnerič in [4] to obtain
a global non-critical holomorphic function g which approximates h̃ on En−1 ∩ Kn+1. To
summarize, we have the following sequence of approximations

fn−1 ∼ h ∼ h̃ ∼ g

and we end up with a global non-critical holomorphic function g which approximates the
function fn−1 on En−1 ∩ Kn+1.
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Finally, we define a smooth bump function χ : X → [0, 1] which is 1 on a neighborhood
of Kn and whose support is contained in the interior of Kn+1. We define the function fn

by setting
fn = χg + (1 − χ)fn−1.

The function fn is continuous on En and holomorphic on a neighborhood of the compact
sets making up En, since by our choice of χ the function fn there agrees with either g or
fn−1. This proves fn ∈ Ã(En) and all the other properties follow by construction.

As another application of the main theorem, let’s construct a non-critical entire function
with arbitrary asymptotic values.

Recall that v ∈ Ĉ in an asymptotic value of the entire function F ∈ O(C), if there exists
an unbounded curve γ : [0, 1) → C such that limt→1 F (γ(t)) = v. For a concrete example,
consider the complex exponential z 7→ ez. If one takes γ to be the parametrization of the
negative part of the real line, we get limt→1 eγ(t) = 0, so 0 is an asymptotic value of z 7→ ez.

Using the main theorem gives us the following proposition.

Proposition 1. Let {vm}m∈Z be a sequence of complex numbers. Then there exists a
non-critical entire function F ∈ O(C) such that vm is an asymptotic value of F for each
m ∈ Z.

Proof. The proof is pretty straightforward, we just need to apply the main theorem in the
right setting. For m ∈ Z let lm = {x + im | x ≥ 1}. Define E =

⋃
m∈Z lm and note this

set is semi-admissible, has no hole and it enjoys the BEH property. Next, we define the
continuous function f : E → C to be the constant function vm on the line lm. Finally, we
take ε(z) = 1

Re(z) and note it is a well defined positive valued continuous function on E.
Applying the main theorem yields a non-critical entire function F ∈ O(C) such that for
any m ∈ Z we have |F (z) − vm| < ε(z) = 1

Re(z) on lm. By taking the limit z → ∞ along
lm, this inequality implies that vm is indeed an asymptotic value of F .

By choosing {vm}m∈Z to be a dense set in C, we even have the following corollary.

Corollary. There exist a non-critical entire function F ∈ O(C) such that its asymptotic
values are dense in C.

The existence of non-critical entire functions with arbitrary asymptotic values already
follows from the work of L. Boc Thaler in [1]. The benefit of the approach presented here
is that we can prescribe the behavior of such a function much more explicitly.

References
[1] Luka Boc Thaler. “Entire functions with prescribed singular values”. In: International

Journal of Mathematics 31.10 (2020).
[2] André Boivin. “Carlemann Approximation on Riemann Surfaces”. In: Mathematische

Annalen 275 (1986), pp. 57–70.
[3] Torsten Carleman. “Sur un théorème de Weierstrass”. In: Ark. Mat. Astr. Fys. 20.4

(1927), pp. 1–5.
[4] Franc Forstnerič. “Noncritical holomorphic functions on Stein manifolds”. In: Acta

Mathematica 191 (Sept. 2003), pp. 143–189.
[5] Paul M. Gauthier. “Tangential approximation by entire functions and functions holo-

morphic in a disc”. In: Izv. Akad. Nauk Armjan. SSR Ser. Mat. 4 (1969), pp. 319–
326.

5



[6] Beno Učakar. Carleman approximation on Riemann surfaces without critical points.
2025. arXiv: 2508.05765 [math.CV].

6

https://arxiv.org/abs/2508.05765

