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Abstract :

We establish uniform upper bounds on the diameter of compact Kähler
manifolds endowed with Kähler metrics whose volume form satisfies a
Kolodziej integrability condition of Orlicz type.

Our results extend some previous estimates due to Fu-Guo-Song (2020),
Yang Li (2021) and Guo-Phong-Song-Sturm (2022).

This is a joint work with Vincent Guedj and Henri Guenancia.
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INTRODUCTION AND MOTIVATIONS

Geometric motivation

Let (M, g) be a Riemannian manifold of dimension n.

The length of a smooth curve γ : [0, 1] 7−→ M is defined by

`g (γ) :=

∫ 1

0
‖γ̇(t)‖g(γ(t))dt,

where ‖ξ‖g(x) :=
√
g(x)(ξ, ξ), x = γ(t) ∈ M and ξ = γ̇(t) ∈ TxM.

The distance between two points x , y ∈ M, is defined by

dg (x , y) := inf{`g (γ); γ ∈ C 1([0, 1],M), γ(0) = x , γ(1) = y},

where C 1([0, 1],M) be the set of smooth curves of M.
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INTRODUCTION AND MOTIVATIONS

Fact : dg is a distance on M compatible with its topology.

The diameter of M is defined by

diam(M, g) := sup{dg (x , y); x ∈ X , y ∈ Y } ∈ [0,+∞].

The diameter diam(M, g) is finite if M is compact, but one may ask how
does it vary when the metric g varies ?

Bonnet-Myers theorem (1941) : Let (Mn, g) be a complete Riemannian
manifold such that Ric(g) ≥ (n − 1)K , for some positive constant K > 0,
then

diam(M, g) ≤ π√
K
·

In particular M is compact by Hopf-Rinow theorem.
A uniform upper bound on the diameter of a sequence of Riemannian
manifolds together with a uniform lower bound on the Ricci curvature
allows the application of the Gromov compactness theorem.
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

Kähler metrics

Our goal today : Prove a uniform estimate of the diameter of a compact
Kähler manifold

in terms of geometric quantities associated to its metric
as its associated volume form or its Monge-Ampère potential.

Basic definitions.

Let (X , h) be a Hermitian manifold. Then

g := <h defines a Riemannian metric on the complex manifold (X , J)
compatible with the complex structure J.

ω := −=h induces a real smooth positive (1, 1)-form ω = ωh on X
such that ω(·, J·) = g(·, ·).

Conclusion : h(·, ·) = ω(·, J·)− iω(·, ·).

h←→ ω := ωh : the fundamental form of the metric h.
Observation : Hermitian metrics always exist on a complex manifold.
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

Definition

A Hermitian metric h on X is a Kähler metric if its fundamental form
ω = ωh is d-closed i.e. dω = 0. We call ω a Kähler form (or metric) on X
and (X , ω) a Kähler manifold.

Fact : ω is a Kähler form iff locally ω =loc i∂∂̄ρ, where ρ is a (local)
strictly plurisubharmonic function (or ∃ normal local complex coordinates).

In a local chart (U, z) of X , we have

h|U =
∑

1≤j ,k≤n
hj k̄dzj ⊗ dz̄k ←→ ω|U =

i

2

∑
1≤j ,k≤n

hj k̄dzj ∧ dz̄k .

The Riemannian volume form is given by

dVg =
ωn

n!
=: dVω.
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

The Calabi conjecture

Set d = ∂ + ∂̄ and dc := (
√
−1/4π)(∂̄ − ∂) so that ddc = (i/2π)∂∂̄.

Local expression of the volume form associated to a Kähler metric ω:

ω =loc (i/2)
∑

hj k̄dzj ∧ dz̄k =⇒ dVω = ωn/n! =loc cn det(hj k̄) dVeucl .

The Ricci curvature form of a Kähler metric ω is defined by

Ric(ω) = Ric(ωn) :=loc −ddc log(det(hj k̄)) =loc −ddc logωn,

This expression is independent on the local complex coordinates and
defines a (global) real smooth d-closed (1, 1)-form Ric(ω) on X .
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

The Calabi conjecture

Set d = ∂ + ∂̄ and dc := (
√
−1/4π)(∂̄ − ∂) so that ddc = (i/2π)∂∂̄.

Local expression of the volume form associated to a Kähler metric ω:

ω =loc (i/2)
∑

hj k̄dzj ∧ dz̄k =⇒ dVω = ωn/n! =loc cn det(hj k̄) dVeucl .

The Ricci curvature form of a Kähler metric ω is defined by

Ric(ω) = Ric(ωn) :=loc −ddc log(det(hj k̄)) =loc −ddc logωn,

This expression is independent on the local complex coordinates and
defines a (global) real smooth d-closed (1, 1)-form Ric(ω) on X .

Ahmed Zeriahi (IMT) DIAMETER ESTIMATES Portorož Conference 7 / 27
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

Moreover if ω̃ is another Kähler form on X then

Ric(ω)− Ric(ω̃) = ddc log(ω̃n/ωn),

where the RHS is a global real smooth d-exact (1, 1)- form on X .

Therefore [Ric(ω)] ∈ H1,1(X ,R) ⊂ H2
dR(X ,C) is independent of the

Kähler form ω.

Fact : [Ric(ω)] = c1(X ) = −c1(KX ) : first Chern class of X (topological
invariant); KX :=

∧n T ∗(X ) is the canonical bundle.

A fundamental problem in Kähler geometry is the converse problem.

Calabi conjecture (1954-1957): Let η be a real smooth d-closed
(1, 1)-form η ∈ c1(X ). Then there exists a Kähler metric ω on X such
that Ric(ω) = η (i.e. one can prescribe the Ricci curvature).
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

E. Calabi (1957) observed that the equation Ric(ω) = η reduces to a
complex Monge-Ampère equation on X and proposed a strategy to solve
it.

Calabi’s strategy : Fix a Kähler class Ω ∈ H1,1(X ,R) and a Kähler
metric ω0 ∈ Ω.
Let η ∈ c1(X ). By the ddc -lemma, there ∃ !h ∈ C∞(X ) such that
Ric(ω0) = η + ddch on X and

∫
X ehωn

0 =
∫
X ω

n
0 .

Goal : Find a Kähler metric ω ∈ Ω = [ω0] satisfying Ric(ω) = η (?).
By the ddc -lemma there exists ϕ ∈ C∞(X ) such that ω = ω0 + ϕ.
Then Ric(ω) = η iff ϕ ∈ C∞(X ) with ω0 + ddcϕ > 0 is a solution to the
complex Monge-Ampère equation

(ω0 + ddcϕ)n = ehωn
0 . (1)

S.T. Yau (1978) proved the following fundamental theorem, solving the
Calabi conjecture.
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THE CALABI CONJECTURE and CALABI-YAU THEOREM

Theorem [Yau78]

Let ω0 be a fixed Kähler metric on X and f > 0 be a positive smooth
density on X such that

∫
X f ωn

0 =
∫
X ω

n
0 .

Then ∃ ! ϕ ∈ C∞(X ) such that ω := ω0 + ddcϕ > 0 and
(ω0 + ddcϕ)n = f ωn

0 with supX ϕ = 0.

We will call ϕ = ϕω the Monge-Ampère potential of the volume form
ωn = f ωn

0 .
An important consequence of the Calabi conjecture is the following.

Corollary

Let X be a compact Kähler manifold such that c1(X ) = 0 (Calabi-Yau
manifold). Then any Kähler class Ω on X contains a unique Ricci-flat
Kähler metric i.e. ω ∈ Ω and Ric(ω) = 0.
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UNIFORM A PRIORI ESTIMATES

Kolodziej’s uniform estimates

S. Kolodziej (1998) gave a new proof of Yau’s C 0 a priori estimate using
Pluripotential Theory.

Moreover he proved the following theorem.

Theorem [Kolodziej08]

Let (X , ωX ) be a compact Kähler manifold of dimension n. Let
0 ≤ f ∈ L1(X ) be a density such that

∫
X f ωn

X =
∫
X ω

n
X . Assume that

f ∈ Lp(X ) with p > 1 and ‖f ‖Lp(X ) ≤ A < +∞. Then there exists a
unique weak continuous weak solution ϕ ∈ PSH(X , ωX ) ∩ C 0(X ) to the
(degenerate) complex Monge-Ampère equation

(ωX + ddcϕ)n = f ωn
X , max

X
ϕ = 0.

Moreover ‖ϕ‖L∞(X ) ≤ C (p, n,A, ωX ).

Here the Monge-Ampère measure (ωX + ddcϕ)n is defined in the sense of
Bedford-Taylor (1976).
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UNIFORM A PRIORI ESTIMATES

Actually, Koldziej proved the same result under a more general condition,
we will call condition (K ) (see below).
Since then, precise estimates on the modulus of continuity of the solution
where obtained by different authors under different conditions.

Here we are interested in a priori estimate of the modulus of continuity of
the solution in terms of the growth of the density.
Let (X , ωX ) be a compact Kähler manifold of dimension n ≥ 1 and let
ω ∈ [ωX ] be another Kähler metric.

Let fω := ωn/ωn
X . Let ϕ = ϕω ∈ C∞(X ) be the Monge-Ampère potential

of the volume form ωn i.e. ω = ωX + ddcϕ and

(ωX + ddcϕ)n = f ωn
X , max

X
ϕ = 0.

Let mϕ be the modulus of continuity of ϕ in the metric space (X , dωX
).

Then we have
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UNIFORM A PRIORI ESTIMATES

If ‖fω‖Lp(X ) ≤ A with p > 1, then ∀α ∈]0, 2/(nq + 1)[,

mϕ(r) ≤ C rα,

where c = C (α, p,A, ωX ) > 0 ([Kolodziej [Kol08],[DDGKPZ14]).

If Np(fω) :=
∫
X fω| log fω)|pωn

X ≤ A with p > n then

mϕ(r) ≤ C | log r |n−p,

where C = C (p,A, ωX ) > 0 (Guo-Phong-Tong-Wang [GPTW22]).

If Ip(fω) :=
∫
X fω| log fω|n[log(log(f + 3)]pωn

X ≤ A, with p > n, then

(K ) mϕ(r) ≤ C [log(− log r)]1−p/n,

where C = C (p,A, ωX ) > 0 (Guedj-Guenancia-Z. [GGZ23]).
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A UNIFORM UPPER BOUND ON THE DIAMETER

Main results

Ou first main result is as follows.

Theorem A ([GGZ23])

Let (X , ωX ) be a compact Kähler manifold of dimension n. Let K ⊂ K(X )
be a compact subset of the Kähler cone. Then for any Kähler metric ω
such that [ω] ∈ K and the density fω := ωn/ωn

X of its volume form satisfies
the integrability condition (K ) with p > 2n i.e.

Ip(fω) :=

∫
X
fω(| log fω|n (log log(fω + 3))p ωn

X ≤ A < +∞,

we have diam(X , ω) ≤ C1 = C1(A, p, n,K, ωX ). More precisely, for any
0 < γ < p/2− n, there exists a constant C2 = C2(A, p, γ,K, ωX ) > 0 such
that for any (x , y) ∈ X 2 with dωX

(x , y) ≤ 1,

dω(x , y) ≤ C2 [log(2 + | log dωX
(x , y))|]−γ .
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A UNIFORM UPPER BOUND ON THE DIAMETER

Previous results :

Uniform estimates on the diameter of (X , ω) were obtained by :

(A) Fu-Guo-Song (’20) assuming that :
(i) ‖fω‖Lp(X ) ≤ A with p > 1;
(ii) Ric(ω) ≥ −Bω for some constant B > 0.

(B) Yang Li (’21) assuming the condition (i);

(C) Guo-Phong-Song-Sturm (’22) assuming the following conditions :
(i)′ Np(fω) :=

∫
X fω| log fω|p ≤ A, with p > n;

(ii)′ ωn ≥ γωn
X where γ ≥ 0 is a smooth function such that

dimH(γ−1(0)) < 2n − 1 (removed very recently by V.Guedj-Tat Dat
Tô24, GPSS24, Duc-Viet Vu24).

(B) and (C ) allow degeneration of the Kähler class [ω].

(C ) gives remarkable estimates on the Riemannian Green function
and a non-collapsing estimates of the volumes of balls of (X , ω),
without using any lower bound on the Ricci curvature.
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A UNIFORM UPPER BOUND ON THE DIAMETER

More results

We improve the diameter estimates of (A).

Theorem B ([GGZ23])

Assume that K ⊂ KX ⊂ H1,1(X ,R) is a compact subset of the Kähler
cone and fix constants A,B,C > 0. Then for any Kähler class [ω] ∈ K
such that

(1) ‖ϕω‖L∞(X ) ≤ C ;

(2) Ric (ω) ≥ −Aω − BωX ,

we have diam(X , ω) ≤ D, where D = D(A,B,C ,K) > 0.

Remarks :

Condition (i) (resp. (i ′)) implies (1) by Kolodziej’s a priori estimates.

Condition (2) does not imply (1).

There are examples where (2) is satisfied and the diameters are
uniformly bounded while the potentials are not.
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A UNIFORM UPPER BOUND ON THE DIAMETER

We also extend the result of Y. Li by proving

Proposition C ([GGZ23])

Assume that
∫ 1

0

√
mϕ(t)

t dt < +∞. Then ∃ C = C (X , ωX ) > 0 such that

dω(x , y) ≤ C m1(dωX
(x , y)), ∀(x , y) ∈ X 2,

where m1(r) :=
∫ r

0

√
mϕ(t)

t dt.

Remarks.

If fω ∈ Lp with p > 1, the Dini type condition is satisfied.

If Np(fω) < +∞, the Dini type condition is satisfied only if p > 3n.

If Ip(fω) <∞, the Dini type condition is never satisfied.

So Theorem A does not follow from Proposition C.
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A UNIFORM UPPER BOUND ON THE DIAMETER

Sketch of the proof of Theorem A :

We assume for simplicity that X = Pn, ωX = ωFS is the Fubini-Study
metric and ω = ωFS + ddcϕ > 0, where ϕ = ϕω is the Monge-Ampère
potential i.e. (ωFS + ddcϕ)n = fωω

n
X .

We are assuming that fω satisfies the condition Ip(fω) < +∞ with
exponent p > 2n. We will use the estimate on the modulus of continuity
of ϕ. Indeed by Lemma C, we have for 0 < r << 1,

mϕ(r) ≤ C

[log(− log r)]1+δ
, (2)

where δ := p/n − 2 > 0.

Goal : Fix x0 ∈ X and x ∈ X and estimate the distance function
ρ(x) := dω(x , x0), using the condition (2).
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A UNIFORM UPPER BOUND ON THE DIAMETER

Step 1: Use the pluricomplex Green function

Let y 7−→ gx(y) be the pluricomplex Green function with logarithmic pole
at x on the complex projective space Pn.

It satisfies the following properties :

gx is smooth in Pn \ {x} and ωFS + ddc
y gx ≥ 0;

0 ≤ −gx(y) = − log dFS(x , y) + O(1), for y ∼ x ;

(ωFS + ddc
y gx)n = δxω

n
FS in the sense of currents on Pn.

Recall that ρ := dω(·, x0) and x ∈ X is fixed. Then

ρ(x) =

∫
X
ρ(y)(ωFS + ddc

y gx)n, 0 = ρ(x0) =

∫
X
ρ(y)(ωFS + ddc

y gx0)n·
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A UNIFORM UPPER BOUND ON THE DIAMETER

We then write

ρ(x) =

∫
X
ρ(y)[(ωFS + ddc

y gx)n − ωn
FS ]−

∫
X
ρ(y)[(ωFS + ddc

y gx0)n − ωn
FS ].

It’s enough to estimate the following integral (x is fixed):

I :=

∫
X
ρ(y)[(ωFS + ddc

y gx)n − ωn
FS ].

Set ωgx := ωFS + ddcgx and observe that

(ωFS + ddcgx)n − ωn
FS = ddcgx ∧

n−1∑
k=0

ωk
gx ∧ ω

n−k−1
FS .
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A UNIFORM UPPER BOUND ON THE DIAMETER

Hence I =
∑n−1

k=0 Ik , where for 0 ≤ k ≤ n − 1

Ik :=

∫
X
ρddcgx ∧ ωk

gx ∧ ω
n−k−1
FS

=

∫
X
dgx ∧ dcρ ∧ ωk

gx ∧ ω
n−k−1
FS (Stokes formula).

The most singular term is when k = n − 1 i.e.

In−1 =

∫
X
dgx ∧ dcρ ∧ ωn−1

gx .
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A UNIFORM UPPER BOUND ON THE DIAMETER

Step 2: Introduce a positive weight and use Cauchy-Schwarz inequality
Then

|In−1(x)|2 ≤
(∫

X
χ′′(gx)dgx ∧ dcgx ∧ ωn−1

gx

)
(3)

×
(∫

X
χ′′(gx)−1dρ ∧ dcρ ∧ ωn−1

gx

)
, (4)

where χ : R− −→ R is a smooth convex increasing function such that
χ′(−∞) = 0 and χ′(0) ≤ 1 to be chosen later.

Observe then that χ(gx) is ωFS -psh in X and

ωFS + ddcχ(gx) = χ′′(gx)dgx ∧ dcgx + χ′(gx)ωgx + (1− χ′(gx))ωFS

≥ χ′′(gx)dgx ∧ dcgx ≥ 0.

Then the first term in the RHS of the inequality (3) can be estimated by∫
X

[ωFS + ddcχ(gx)] ∧ ωk
gx ∧ ω

n−k−1
FS =

∫
X
ωn
FS = 1.
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A UNIFORM UPPER BOUND ON THE DIAMETER

It remains to estimate the second term defined by

Jn−1(x) :=

∫
X
ψxdρ ∧ dcρ ∧ ωn−1

gx , ψx := χ′′(gx)−1.

Step 3 : Use Yang Li observation
Since ρ = dω(·, x0) is Lipschitz w.r.t. dω, then ‖∇ρ‖ω ≤ 1 a.e. and then
dρ ∧ dcρ ≤ ω (by Y.Li [Li21]). Recall that ω := ωFS + ddcϕ.

Then

Jn1(x) ≤ J ′n−1(x) :=

∫
X
ψx ω ∧ ωn−1

gx ,

and

J ′n−1(x) =

∫
X
ψx ωFS ∧ ωn−1

gx +

∫
X
ψx dd

cϕ ∧ ωn−1
gx .

Again, it’s enough to treat the second term which can be written as

J ′′n−1(x) :=

∫
X
ψx dd

cϕ ∧ ωn−1
gx =

∫
X
ϕ ddcψx ∧ ωn−1

gx .
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A UNIFORM UPPER BOUND ON THE DIAMETER

Now recall that ψx := χ′′(gx)−1 and set h(t) := χ′′(t)−1 so that
ψx = h(gx) and

ddcψx = h′(gx)ddcgx + h′′(gx)dgx ∧ dcgx . (5)

Hence

J ′′n−1(x) =

∫
X
ϕh′(gx)ddcgx ∧ ωn−1

gx +

∫
X
ϕh′′(gx)dgx ∧ dcgx ∧ ωn−1

gx

=

∫
X
ϕh′(gx)ωn

gx −
∫
X
ϕh′(gx)ωFS ∧ ωn−1

gx

+

∫
X
ϕh′′(gx)dgx ∧ dcgx ∧ ωn−1

gx =: K1 + K2 + K3.

Step 4 : Choose of the weight function and use the estimate on mϕ

Set χ(t) := t[log(B − t)]−γ for t < 0, where γ > 0 is small enough and
B > 1 large enough so that χ is increasing convex on R− and χ′(0) ≤ 1.
Then a straightforward computation show that as s → +∞,

h(−s) ∼ s(log s)1+γ , h′(−s) ∼ (log s)1+γ , h′′(−s) ∼ (log s)γ

s
·
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A UNIFORM UPPER BOUND ON THE DIAMETER

We can assume from the beginning that ϕ(x) = 0. Then we have for any
y ∈ X close to x , −gx(y) ∼ log dFS(x , y) and

|ϕ(y)| = |ϕ(y)− ϕ(x)| ≤ C

[log(−gx(y))]1+δ
.

Therefore |h′(gx)ϕ| ≤ C
[log(−gx )]γ−δ

≤ M <∞, if γ < δ. Hence the first

and third term in the expression of J ′′(x) are estimated by

K1 + K2 ≤ M

(∫
X
ωn
gx +

∫
X
ωFS ∧ ωn−1

gx

)
≤ 2M.

It remains to estimate the third term

K3 :=

∫
X
ϕh′′(gx)dgx ∧ dcgx ∧ ωn−1

gx .
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A UNIFORM UPPER BOUND ON THE DIAMETER

Step 5 : Use estimates on the Green function
A simple computation shows that

ωgx ≤ e−2gxωFS , and dgx ∧ dcgx ≤ e−2gxωFS .

From the previous estimates we have |ϕh′′(gx)| ≤ C
(−gx ) log(−gx )]1+δ−γ .

Hence

|K3| ≤
∫
X

ωn
FS

e2ngx log(−gx)]1+δ−γ .

In local coordinates coordinates z = (z1, · · · , zn) centered at x , the last

integral is dominated by
∫
|z|<r0

|dz|
|z|2n(− log |z|) log(− log |z|)]1+δ−γ , which is

convergent since δ − γ > 0 (use polar coordinates in Cn).
We have established a uniform upper bound of the diameter of (X , ω).
More refined estimates allow to prove the precise estimate of the distance
dω in terms of the distance dωX

.
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dω in terms of the distance dωX

.
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Thank you for your attention
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