Deformation of Bergman Spaces

Dror Varolin

Complex Analysis, Geometry and Dynamics III

$$
\begin{gathered}
\text { in } \\
\text { Portorož } \\
2024
\end{gathered}
$$

Deformation of Bergman Spaces

Dror Varolin

Complex Analysis, Geometry and Dynamics III

CAGeD 悱

in
Portorož
2024

First example of deformation of Bergman spaces:

Fix Y_{o} Stein mfld, $X_{o} \subset \subset Y_{o}$ strictly $\psi \mathrm{cvx}$ domain, $E_{o} \rightarrow Y_{o}$ holo v.b.

- Set $X=X_{o} \times B$ and $E=p_{1}^{*} E_{o} \rightarrow X$ for some cplx mfld B.
- Assume metric \mathfrak{h} for E smooth up vertical boundary $\partial X_{o} \times B$.

To $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p_{2}} B$ we associate

$$
\mathscr{H}_{t}:=\left\{f \in H^{0}\left(X_{o}, \mathcal{O}\left(K_{X_{o}} \times E_{o}\right)\right) ; \int_{X}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\}
$$

First example of deformation of Bergman spaces:

Fix Y_{o} Stein mfld, $X_{o} \subset \subset Y_{o}$ strictly $\psi \mathrm{cvx}$ domain, $E_{o} \rightarrow Y_{o}$ holo v.b.

- Set $X=X_{o} \times B$ and $E=p_{1}^{*} E_{o} \rightarrow X$ for some cplx mfld B.
- Assume metric \mathfrak{h} for E smooth up vertical boundary $\partial X_{o} \times B$.

To $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p_{2}} B$ we associate

$$
\mathscr{H}_{t}:=\left\{f \in H^{0}\left(X_{o}, \mathcal{O}\left(K_{X_{o}} \times E_{o}\right)\right) ; \int_{X}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\}
$$

Note: $\mathscr{H}_{t} \subset H^{0}\left(X_{o}, \mathcal{O}\left(E_{o}\right)\right)$ is independent of t.
Thus each $f \in \mathscr{H}_{o}$ defines 'constant' holo section of $\mathscr{H} \rightarrow B$.
$\Longrightarrow \mathscr{H} \rightarrow B$ is a trivial vector bundle.
But the L^{2} metric is not 'constant' in t.
$\mathscr{H} \rightarrow B$ is a holomorphic vector bundle of infinite rank Choose Hilbert basis $\left\{\phi_{1}, \phi_{2}, \ldots\right\} \subset \mathscr{H}_{o}$ for some $o \in B$.

- Sections $\mathfrak{f} \in \Gamma(B, \mathscr{H})$ correspond to

$$
f(x, t):=\sum_{j} c_{j}(t) \phi_{j}(x) \quad\left(\text { such that } \int_{X_{o}}\left|\sum c_{j}(t) \phi_{j}\right|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right)
$$

- \mathfrak{f} is smooth (resp. holo) iff each $c_{j} \in \mathscr{C}^{\infty}(B)($ resp. $\mathcal{O}(B))$.

For a smooth section \mathfrak{f}, the standard operators

$$
\begin{aligned}
\bar{\partial}_{\frac{\partial}{\partial \bar{t}^{i}}}^{\mathscr{H}} \mathfrak{f} & \longleftrightarrow \frac{\partial f}{\partial \bar{t}^{i}}=\sum_{j} \frac{\partial c_{j}(t)}{\partial \bar{t}^{i}} \phi_{j}(x) \\
\nabla_{\frac{\partial}{\partial t^{i}}}^{\mathscr{H}} \mathfrak{f} \longleftrightarrow & \mathscr{P}\left(\nabla_{\frac{\partial}{\partial t^{i}}}^{E} f\right)(\cdot, t) \\
& :=\sum_{i} P_{t}\left(\frac{\partial c_{j}(t)}{\partial \bar{t}^{i}} \phi_{j}+c_{j}(t)\left(\nabla^{\left(E_{o}, \mathfrak{h}(\cdot, t)\right)} \phi_{j}\right)\right)
\end{aligned}
$$

are only densely defined.
e.g., Domains contain all \mathfrak{f} such that the corresponding section

$$
f \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)
$$

is smooth up to the vertical boundary $\partial X_{o} \times B$.

From $\nabla^{\mathscr{H}}$ we can compute the (densely defined) curvature $\Theta(\mathscr{H})$:

From $\nabla^{\mathscr{H}}$ we can compute the (densely defined) curvature $\Theta(\mathscr{H})$:

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{o}} \mathfrak{h}\left(\left(\Theta(\mathfrak{h})_{v \bar{w}} f, g\right)-\int_{X_{o}} \mathfrak{h}\left(P_{t}^{\perp} \nabla_{v} f, P_{t}^{\perp} \nabla_{w} g\right)\right.
$$

where $P_{t}: L^{2}\left(\mathfrak{h}(\cdot, t) \rightarrow \mathscr{H}_{t}\right.$ is the Bergman projection.

From $\nabla^{\mathscr{H}}$ we can compute the (densely defined) curvature $\Theta(\mathscr{H})$:

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{o}} \mathfrak{h}\left(\left(\Theta(\mathfrak{h})_{v \bar{w}} f, g\right)-\int_{X_{o}} \mathfrak{h}\left(P_{t}^{\perp} \nabla_{v} f, P_{t}^{\perp} \nabla_{w} g\right)\right.
$$

where $P_{t}: L^{2}\left(\mathfrak{h}(\cdot, t) \rightarrow \mathscr{H}_{t}\right.$ is the Bergman projection.
Theorem
Suppose that for each $t \in B$ the metric $\mathfrak{h}(\cdot, t)$ is Nakano-positive. If $\left(p^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B$ is k-positive then so is $\mathscr{H} \rightarrow B$.

From $\nabla^{\mathscr{H}}$ we can compute the (densely defined) curvature $\Theta(\mathscr{H})$:

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{o}} \mathfrak{h}\left(\left(\Theta(\mathfrak{h})_{v \bar{w}} f, g\right)-\int_{X_{o}} \mathfrak{h}\left(P_{t}^{\perp} \nabla_{v} f, P_{t}^{\perp} \nabla_{w} g\right)\right.
$$

where $P_{t}: L^{2}\left(\mathfrak{h}(\cdot, t) \rightarrow \mathscr{H}_{t}\right.$ is the Bergman projection.

Theorem

Suppose that for each $t \in B$ the metric $\mathfrak{h}(\cdot, t)$ is Nakano-positive. If $\left(p^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B$ is k-positive then so is $\mathscr{H} \rightarrow B$.

- If E_{o} is a line bundle, this result is due to Berndtsson. In that case there is only one notion of positivity.
- Proof in the case of higher rank follows same lines

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

- The curvature of the Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$

$$
\Theta(\mathfrak{h})=\nabla^{1,0} \bar{\partial}+\bar{\partial} \nabla^{1,0} \in \Gamma\left(X, \operatorname{Hom}(E, E) \otimes \Lambda_{X}^{1,1}\right) .
$$

is skew-Hermitian for \mathfrak{h}.

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

- The curvature of the Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$

$$
\Theta(\mathfrak{h})=\nabla^{1,0} \bar{\partial}+\bar{\partial} \nabla^{1,0} \in \Gamma\left(X, \operatorname{Hom}(E, E) \otimes \Lambda_{X}^{1,1}\right) .
$$

is skew-Hermitian for \mathfrak{h}.

- $\Theta(\mathfrak{h})$ uniquely defines a Hermitian form on $T_{X}^{1,0} \otimes E \rightarrow X$

$$
\{\xi \otimes v, \eta \otimes w\}_{\mathfrak{h}}:=\mathfrak{h}\left(\sqrt{-1} \Theta(\mathfrak{h})_{\xi \bar{\eta}} v, w\right)
$$

on rank-1 tensors; then extend bilinearily.

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

- The curvature of the Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$

$$
\Theta(\mathfrak{h})=\nabla^{1,0} \bar{\partial}+\bar{\partial} \nabla^{1,0} \in \Gamma\left(X, \operatorname{Hom}(E, E) \otimes \Lambda_{X}^{1,1}\right) .
$$

is skew-Hermitian for \mathfrak{h}.

- $\Theta(\mathfrak{h})$ uniquely defines a Hermitian form on $T_{X}^{1,0} \otimes E \rightarrow X$

$$
\{\xi \otimes v, \eta \otimes w\}_{\mathfrak{h}}:=\mathfrak{h}\left(\sqrt{-1} \Theta(\mathfrak{h})_{\xi \bar{\eta}} v, w\right)
$$

on rank-1 tensors; then extend bilinearily. (Recall: for $T \in V \otimes W, \operatorname{Rank}(T):=\operatorname{Rank}\left(L_{T}: W^{*} \rightarrow V\right)$.)

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

- The curvature of the Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$

$$
\Theta(\mathfrak{h})=\nabla^{1,0} \bar{\partial}+\bar{\partial} \nabla^{1,0} \in \Gamma\left(X, \operatorname{Hom}(E, E) \otimes \Lambda_{X}^{1,1}\right) .
$$

is skew-Hermitian for \mathfrak{h}.

- $\Theta(\mathfrak{h})$ uniquely defines a Hermitian form on $T_{X}^{1,0} \otimes E \rightarrow X$

$$
\{\xi \otimes v, \eta \otimes w\}_{\mathfrak{h}}:=\mathfrak{h}\left(\sqrt{-1} \Theta(\mathfrak{h})_{\xi \bar{\eta}} v, w\right)
$$

on rank-1 tensors; then extend bilinearily. (Recall: for $T \in V \otimes W, \operatorname{Rank}(T):=\operatorname{Rank}\left(L_{T}: W^{*} \rightarrow V\right)$.)

Definition

(E, \mathfrak{h}) is k-positive if $\{\cdot, \cdot\}_{\mathfrak{h}}$ is positive on all tensors of rank $\leq k$.

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

- The curvature of the Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$

$$
\Theta(\mathfrak{h})=\nabla^{1,0} \bar{\partial}+\bar{\partial} \nabla^{1,0} \in \Gamma\left(X, \operatorname{Hom}(E, E) \otimes \Lambda_{X}^{1,1}\right) .
$$

is skew-Hermitian for \mathfrak{h}.

- $\Theta(\mathfrak{h})$ uniquely defines a Hermitian form on $T_{X}^{1,0} \otimes E \rightarrow X$

$$
\{\xi \otimes v, \eta \otimes w\}_{\mathfrak{h}}:=\mathfrak{h}\left(\sqrt{-1} \Theta(\mathfrak{h})_{\xi \bar{\eta}} v, w\right)
$$

on rank-1 tensors; then extend bilinearily. (Recall: for $T \in V \otimes W, \operatorname{Rank}(T):=\operatorname{Rank}\left(L_{T}: W^{*} \rightarrow V\right)$.)

Definition

(E, \mathfrak{h}) is k-positive if $\{\cdot, \cdot\}_{\mathfrak{h}}$ is positive on all tensors of rank $\leq k$. 1-positive also called Griffiths-positive

Quick review of positivity

Let $(E, \mathfrak{h}) \rightarrow X$ be a holo Hermitian v.b.

- The curvature of the Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$

$$
\Theta(\mathfrak{h})=\nabla^{1,0} \bar{\partial}+\bar{\partial} \nabla^{1,0} \in \Gamma\left(X, \operatorname{Hom}(E, E) \otimes \Lambda_{X}^{1,1}\right) .
$$

is skew-Hermitian for \mathfrak{h}.

- $\Theta(\mathfrak{h})$ uniquely defines a Hermitian form on $T_{X}^{1,0} \otimes E \rightarrow X$

$$
\{\xi \otimes v, \eta \otimes w\}_{\mathfrak{h}}:=\mathfrak{h}\left(\sqrt{-1} \Theta(\mathfrak{h})_{\xi \bar{\eta}} v, w\right)
$$

on rank-1 tensors; then extend bilinearily. (Recall: for $T \in V \otimes W, \operatorname{Rank}(T):=\operatorname{Rank}\left(L_{T}: W^{*} \rightarrow V\right)$.)

Definition

(E, \mathfrak{h}) is k-positive if $\{\cdot, \cdot\}_{\mathfrak{h}}$ is positive on all tensors of rank $\leq k$. 1-positive also called Griffiths-positive
k-positive $\forall k$ also called Nakano-positive

The L^{2} bundle

Same trivial family $\left(p_{1}^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B \xrightarrow{p_{2}} B$ with nontrivial metric defines $\mathscr{L} \rightarrow B$ where

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right) \text { msrable } ; \int_{X}|f|_{\mathfrak{h},, t)}^{2}<+\infty\right\}, t \in B .
$$

The L^{2} bundle

Same trivial family $\left(p_{1}^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B \xrightarrow{p_{2}} B$ with nontrivial metric defines $\mathscr{L} \rightarrow B$ where

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right) \text { msrable } ; \int_{X}|f|_{\mathfrak{h}(, t)}^{2}<+\infty\right\}, t \in B .
$$

- Again $\mathscr{L}_{t} \subset \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right)$ is independent of t. Hence $\mathscr{L} \rightarrow B$ is a trivial vector bundle, with a non-trivial metric.

The L^{2} bundle

Same trivial family $\left(p_{1}^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B \xrightarrow{p_{2}} B$ with nontrivial metric defines $\mathscr{L} \rightarrow B$ where

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right) \text { msrable } ; \int_{X}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\}, t \in B .
$$

- Again $\mathscr{L}_{t} \subset \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right)$ is independent of t. Hence $\mathscr{L} \rightarrow B$ is a trivial vector bundle, with a non-trivial metric.
- Fix Hilbert basis $\left\{\psi_{1}, \psi_{2}, \ldots\right\} \subset \mathscr{L}_{o}$ for some $o \in B$.

The L^{2} bundle

Same trivial family $\left(p_{1}^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B \xrightarrow{p_{2}} B$ with nontrivial metric defines $\mathscr{L} \rightarrow B$ where

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right) \text { msrable } ; \int_{X}|f|_{\mathfrak{h}(, t)}^{2}<+\infty\right\}, t \in B .
$$

- Again $\mathscr{L}_{t} \subset \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right)$ is independent of t. Hence $\mathscr{L} \rightarrow B$ is a trivial vector bundle, with a non-trivial metric.
- Fix Hilbert basis $\left\{\psi_{1}, \psi_{2}, \ldots\right\} \subset \mathscr{L}_{o}$ for some $o \in B$.
\star Sections: $f(\cdot, t)=\sum_{j} a_{j}(t) \psi_{j}$ such that $\left\{a_{j}(t)\right\} \in \ell^{2}$ for all t.

The L^{2} bundle

Same trivial family $\left(p_{1}^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B \xrightarrow{p_{2}} B$ with nontrivial metric defines $\mathscr{L} \rightarrow B$ where

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right) \text { msrable } ; \int_{X}|f|_{\mathfrak{h}(, t)}^{2}<+\infty\right\}, t \in B .
$$

- Again $\mathscr{L}_{t} \subset \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right)$ is independent of t. Hence $\mathscr{L} \rightarrow B$ is a trivial vector bundle, with a non-trivial metric.
- Fix Hilbert basis $\left\{\psi_{1}, \psi_{2}, \ldots\right\} \subset \mathscr{L}_{o}$ for some $o \in B$.
* Sections: $f(\cdot, t)=\sum_{j} a_{j}(t) \psi_{j}$ such that $\left\{a_{j}(t)\right\} \in \ell^{2}$ for all t.
$\star f$ is smooth if the a_{j} are smooth.

The L^{2} bundle

Same trivial family $\left(p_{1}^{*} E_{o}, \mathfrak{h}\right) \rightarrow X_{o} \times B \xrightarrow{p_{2}} B$ with nontrivial metric defines $\mathscr{L} \rightarrow B$ where

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right) \text { msrable } ; \int_{X}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\}, t \in B .
$$

- Again $\mathscr{L}_{t} \subset \Gamma\left(X_{o}, K_{X_{o}} \times E_{o}\right)$ is independent of t. Hence $\mathscr{L} \rightarrow B$ is a trivial vector bundle, with a non-trivial metric.
- Fix Hilbert basis $\left\{\psi_{1}, \psi_{2}, \ldots\right\} \subset \mathscr{L}_{o}$ for some $o \in B$.
\star Sections: $f(\cdot, t)=\sum_{j} a_{j}(t) \psi_{j}$ such that $\left\{a_{j}(t)\right\} \in \ell^{2}$ for all t.
$\star f$ is smooth if the a_{j} are smooth.
\star As with $\mathscr{H} \rightarrow B$, derivatives might not be square-integrable.

Thus again we get densely defined operators

$$
\frac{\partial \mathfrak{f}}{\partial \bar{t}^{i}} \longleftrightarrow \frac{\partial f(x, t)}{\partial \bar{t}^{i}} \quad \text { and } \quad \nabla_{\frac{\partial}{\partial t^{i}}}^{\mathscr{L}} \mathfrak{f} \longleftrightarrow \nabla_{\frac{\partial}{\partial t^{i}}}^{E} f .
$$

Formula for the curvature: for $v, w \in T_{B, t}^{1,0} \subset T_{X}^{1,0}=T_{X_{o}}^{1,0} \oplus T_{B}^{1,0}$

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}(t), \mathfrak{f}(t)\right)=\int_{X}\left\langle\Theta(\mathfrak{h}(\cdot, t))_{v \bar{w}} f, f\right\rangle_{\mathfrak{h}(\cdot, t)} .
$$

Note:

- \mathscr{H}_{t} is a subspace of \mathscr{L}_{t} for all t,
- $\left.\bar{\partial}^{\mathscr{L}}\right|_{\operatorname{Domain}(\bar{\partial} \mathscr{H})}=\bar{\partial}^{\mathscr{H}}$

Thus $\mathscr{H} \subset \mathscr{L}$ is a vector subbundle.

Note:

- \mathscr{H}_{t} is a subspace of \mathscr{L}_{t} for all t,
- $\left.\bar{\partial}^{\mathscr{L}}\right|_{\operatorname{Domain}(\bar{\partial} \mathscr{H})}=\bar{\partial}^{\mathscr{H}}$

Thus $\mathscr{H} \subset \mathscr{L}$ is a vector subbundle. By Gauss-Griffiths Formula
(1) $(\Theta(\mathscr{L}) f, f)=(\Theta(\mathscr{H}) f, f)+(\mathbf{I} f, \mathbf{I} f) \quad$ for all $f \in \Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{H})\right)$, where II : $\mathscr{H} \rightarrow \mathscr{H}^{\perp}$ is the second fundamental form:

Note:

- \mathscr{H}_{t} is a subspace of \mathscr{L}_{t} for all t,
- $\left.\bar{\partial}^{\mathscr{L}}\right|_{\operatorname{Domain}(\bar{\partial} \mathscr{H})}=\bar{\partial}^{\mathscr{H}}$

Thus $\mathscr{H} \subset \mathscr{L}$ is a vector subbundle.
By Gauss-Griffiths Formula
(1) $(\Theta(\mathscr{L}) f, f)=(\Theta(\mathscr{H}) f, f)+(\mathbf{I} f, \mathbf{I} f) \quad$ for all $f \in \Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{H})\right)$,
where II: $\mathscr{H} \rightarrow \mathscr{H}^{\perp}$ is the second fundamental form:

$$
\mathbf{I I} f:=\nabla^{\mathscr{L}} f-\nabla^{\mathscr{H}} f=\nabla^{\mathscr{L}} f-P \nabla^{\mathscr{L}} f=P^{\perp} \nabla^{\mathscr{L}} f .
$$

Here $P: \mathscr{L} \rightarrow \mathscr{H}$ is the fiberwise \perp, i.e., Bergman, projection.

Note:

- \mathscr{H}_{t} is a subspace of \mathscr{L}_{t} for all t,
- $\left.\bar{\partial}^{\mathscr{L}}\right|_{\operatorname{Domain}(\bar{\partial} \mathscr{H})}=\bar{\partial}^{\mathscr{H}}$

Thus $\mathscr{H} \subset \mathscr{L}$ is a vector subbundle.
By Gauss-Griffiths Formula
(1) $(\Theta(\mathscr{L}) f, f)=(\Theta(\mathscr{H}) f, f)+(\mathbf{I} f, \mathbf{I I} f) \quad$ for all $f \in \Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{H})\right)$, where II: $\mathscr{H} \rightarrow \mathscr{H}^{\perp}$ is the second fundamental form:

$$
\mathbf{I I} f:=\nabla^{\mathscr{L}} f-\nabla^{\mathscr{H}} f=\nabla^{\mathscr{L}} f-P \nabla^{\mathscr{L}} f=P^{\perp} \nabla^{\mathscr{L}} f .
$$

Here $P: \mathscr{L} \rightarrow \mathscr{H}$ is the fiberwise \perp, i.e., Bergman, projection.
Remark
Formula (1) agrees with our previous curvature formula

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{o}} \mathfrak{h}\left(\left(\Theta(\mathfrak{h})_{v \bar{w}} f, g\right)-\int_{X_{o}} \mathfrak{h}\left(P_{t}^{\perp} \nabla_{v} f, P_{t}^{\perp} \nabla_{w} g\right) .\right.
$$

Proper deformation of Bergman spaces

Take $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ smooth proper (i.e., p is proper submersion).

Proper deformation of Bergman spaces

Take $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ smooth proper (i.e., p is proper submersion). The spaces

$$
\mathscr{H}_{t}=H^{0}\left(X_{t}, \mathcal{O}_{X_{t}}\left(\left.K_{X_{t}} \otimes E\right|_{X_{t}}\right)\right)
$$

are finite-dimensional $\forall t \in B$.

Proper deformation of Bergman spaces

Take $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ smooth proper (i.e., p is proper submersion). The spaces

$$
\mathscr{H}_{t}=H^{0}\left(X_{t}, \mathcal{O}_{X_{t}}\left(\left.K_{X_{t}} \otimes E\right|_{X_{t}}\right)\right)
$$

are finite-dimensional $\forall t \in B$. They admit inner products

$$
(f, g)_{t}:=\sqrt{-1}^{n^{2}} \int_{X_{t}}\langle f \wedge \bar{g}, \mathfrak{h}\rangle
$$

Proper deformation of Bergman spaces

Take $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ smooth proper (i.e., p is proper submersion).
The spaces

$$
\mathscr{H}_{t}=H^{0}\left(X_{t}, \mathcal{O}_{X_{t}}\left(\left.K_{X_{t}} \otimes E\right|_{X_{t}}\right)\right)
$$

are finite-dimensional $\forall t \in B$. They admit inner products

$$
(f, g)_{t}:=\sqrt{-1}^{n^{2}} \int_{X_{t}}\langle f \wedge \bar{g}, \mathfrak{h}\rangle
$$

We get a Hilbert field (in the language of Lempert-Szőke)

$$
\coprod_{t \in B} \mathscr{H}_{t}=: \mathscr{H} \rightarrow B
$$

Proper deformation of Bergman spaces

Take $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ smooth proper (i.e., p is proper submersion).
The spaces

$$
\mathscr{H}_{t}=H^{0}\left(X_{t}, \mathcal{O}_{X_{t}}\left(\left.K_{X_{t}} \otimes E\right|_{X_{t}}\right)\right)
$$

are finite-dimensional $\forall t \in B$. They admit inner products

$$
(f, g)_{t}:=\sqrt{-1}^{n^{2}} \int_{X_{t}}\langle f \wedge \bar{g}, \mathfrak{h}\rangle
$$

We get a Hilbert field (in the language of Lempert-Szőke)

$$
\coprod_{t \in B} \mathscr{H}_{t}=: \mathscr{H} \rightarrow B
$$

Sections: $\Gamma(B, \mathscr{H}) \ni \mathfrak{f} \longleftrightarrow f \in \Gamma\left(X, K_{X / B} \otimes E\right)$

Proper deformation of Bergman spaces

Take $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ smooth proper (i.e., p is proper submersion). The spaces

$$
\mathscr{H}_{t}=H^{0}\left(X_{t}, \mathcal{O}_{X_{t}}\left(\left.K_{X_{t}} \otimes E\right|_{X_{t}}\right)\right)
$$

are finite-dimensional $\forall t \in B$. They admit inner products

$$
(f, g)_{t}:=\sqrt{-1}^{n^{2}} \int_{X_{t}}\langle f \wedge \bar{g}, \mathfrak{h}\rangle
$$

We get a Hilbert field (in the language of Lempert-Szőke)

$$
\coprod_{t \in B} \mathscr{H}_{t}=: \mathscr{H} \rightarrow B
$$

Sections: $\Gamma(B, \mathscr{H}) \ni \mathfrak{f} \longleftrightarrow f \in \Gamma\left(X, K_{X / B} \otimes E\right)$
Definition (Holomorphic sections)
$\mathfrak{f} \in \Gamma\left(B, \mathcal{O}_{B}(\mathscr{H})\right) \stackrel{\text { defn }}{\Longleftrightarrow} f \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X / B} \otimes E\right)\right)$

Theorem (Kodaira-Spencer) $\mathscr{H} \rightarrow B$ is a holo v.b. $\Longleftrightarrow B \ni t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is constant.

Theorem (Kodaira-Spencer)

$\mathscr{H} \rightarrow B$ is a holo v.b. $\Longleftrightarrow B \ni t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is constant.
Example: Let $B=\mathbb{H}:=\{\operatorname{Im} t>0\}, X:=\frac{\mathbb{C} \times \mathbb{H}}{\sim}$ and $E(s)=L_{D(s)}$, $s \in \mathbb{C} \backslash \mathbb{R}$, where

$$
D(s)=\{0\} \times \mathbb{H}-\{s\} \times \mathbb{H} \quad \text { and }(z, t) \sim(\zeta, \tau) \Longleftrightarrow t=\tau \& \quad z-\zeta \in \mathbb{Z} \oplus t \mathbb{Z}
$$

Theorem (Kodaira-Spencer)

$\mathscr{H} \rightarrow B$ is a holo v.b. $\Longleftrightarrow B \ni t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is constant.
Example: Let $B=\mathbb{H}:=\{\operatorname{Im} t>0\}, X:=\frac{\mathbb{C} \times \mathbb{H}}{\sim}$ and $E(s)=L_{D(s)}$, $s \in \mathbb{C} \backslash \mathbb{R}$, where
$D(s)=\{0\} \times \mathbb{H}-\{s\} \times \mathbb{H} \quad$ and $(z, t) \sim(\zeta, \tau) \Longleftrightarrow t=\tau \& z-\zeta \in \mathbb{Z} \oplus t \mathbb{Z}$
Then for each $t \in \mathbb{H}$

- X_{t} is the torus $\mathbb{C} /(\mathbb{Z} \oplus t \mathbb{Z})$,

Theorem (Kodaira-Spencer)

$\mathscr{H} \rightarrow B$ is a holo v.b. $\Longleftrightarrow B \ni t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is constant.
Example: Let $B=\mathbb{H}:=\{\operatorname{Im} t>0\}, X:=\frac{\mathbb{C} \times \mathbb{H}}{\sim}$ and $E(s)=L_{D(s)}$, $s \in \mathbb{C} \backslash \mathbb{R}$, where
$D(s)=\{0\} \times \mathbb{H}-\{s\} \times \mathbb{H} \quad$ and $(z, t) \sim(\zeta, \tau) \Longleftrightarrow t=\tau \& z-\zeta \in \mathbb{Z} \oplus t \mathbb{Z}$
Then for each $t \in \mathbb{H}$

- X_{t} is the torus $\mathbb{C} /(\mathbb{Z} \oplus t \mathbb{Z})$,
- $\left.D(s)\right|_{X_{t}}=\left\{\begin{array}{cc}{[0]-[s],} & s \notin \mathbb{Z} \oplus t \mathbb{Z} \\ \mathcal{O}, & s \in \mathbb{Z} \oplus t \mathbb{Z}\end{array}\right.$

Theorem (Kodaira-Spencer)

$\mathscr{H} \rightarrow B$ is a holo v.b. $\Longleftrightarrow B \ni t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is constant.
Example: Let $B=\mathbb{H}:=\{\operatorname{Im} t>0\}, X:=\frac{\mathbb{C} \times \mathbb{H}}{\sim}$ and $E(s)=L_{D(s)}$, $s \in \mathbb{C} \backslash \mathbb{R}$, where
$D(s)=\{0\} \times \mathbb{H}-\{s\} \times \mathbb{H} \quad$ and $(z, t) \sim(\zeta, \tau) \Longleftrightarrow t=\tau \& \quad z-\zeta \in \mathbb{Z} \oplus t \mathbb{Z}$
Then for each $t \in \mathbb{H}$

- X_{t} is the torus $\mathbb{C} /(\mathbb{Z} \oplus t \mathbb{Z})$,
- $\left.D(s)\right|_{X_{t}}=\left\{\begin{array}{cc}{[0]-[s],} & s \notin \mathbb{Z} \oplus t \mathbb{Z} \\ \mathcal{O}, & s \in \mathbb{Z} \oplus t \mathbb{Z}\end{array}\right.$
- $\operatorname{dim}_{\mathbb{C}} H^{0}\left(X_{t}, \mathcal{O}\left(\left.K_{X_{t}} \otimes E(s)\right|_{X_{t}}\right)= \begin{cases}0, & s \notin \mathbb{Z} \oplus t \mathbb{Z} \\ 1, & s \in \mathbb{Z} \oplus t \mathbb{Z}\end{cases}\right.$

Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper, and assume X is Kähler.
Proposition (Berndtsson)
If $(E, \mathfrak{h}) \rightarrow X$ is Nakano non-negative then $\mathscr{H} \rightarrow B$ is a holo v.b.

Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper, and assume X is Kähler.
Proposition (Berndtsson)
If $(E, \mathfrak{h}) \rightarrow X$ is Nakano non-negative then $\mathscr{H} \rightarrow B$ is a holo v.b.

Proof.
By Kodaira-Spencer we must show $t \mapsto \operatorname{dim} \mathscr{H}_{t}$ constant (i.e., cts).

Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper, and assume X is Kähler.
Proposition (Berndtsson)
If $(E, \mathfrak{h}) \rightarrow X$ is Nakano non-negative then $\mathscr{H} \rightarrow B$ is a holo v.b.

Proof.
By Kodaira-Spencer we must show $t \mapsto \operatorname{dim} \mathscr{H}_{t}$ constant (i.e., cts). By Montel's Theorem $t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is upper semi-continuous.

Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper, and assume X is Kähler.
Proposition (Berndtsson)
If $(E, \mathfrak{h}) \rightarrow X$ is Nakano non-negative then $\mathscr{H} \rightarrow B$ is a holo v.b.

Proof.
By Kodaira-Spencer we must show $t \mapsto \operatorname{dim} \mathscr{H}_{t}$ constant (i.e., cts).
By Montel's Theorem $t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is upper semi-continuous.
The L^{2} extension theorem of Ohsawa-Takegoshi \Rightarrow
if \mathfrak{h} is Nakano semi-positive then there is cts linear extension operator

$$
\mathscr{E}_{t}: \mathscr{H}_{t} \rightarrow H^{0}\left(X, \mathcal{O}\left(K_{X} \otimes E\right)\right)
$$

Thus $t \mapsto \operatorname{dim} \mathscr{H}_{t}$ is lower semi-continuous.

We can define a $\bar{\partial}$-operator for \mathscr{H} :

We can define a $\bar{\partial}$-operator for \mathscr{H} :
If $\Gamma(B, \mathscr{H}) \ni \mathfrak{f} \leftrightarrow f \in \Gamma\left(X, K_{X / B} \otimes E\right)$ is regular enough then

$$
\left.\bar{\partial}_{\bar{v}}^{\mathscr{U}} \mathfrak{f} \leftrightarrow \bar{\xi}_{v}\right\lrcorner \bar{\partial} f \quad \text { for all } v \in T_{B, t}^{1,0}
$$

where

$$
\xi_{v} \in \Gamma\left(X_{t}, T_{X_{t}}^{1,0}\right) \text { is a lift of } v \text {, i.e., } d p\left(\xi_{v}\right)=v .
$$

We can define a $\bar{\partial}$-operator for \mathscr{H} :
If $\Gamma(B, \mathscr{H}) \ni \mathfrak{f} \leftrightarrow f \in \Gamma\left(X, K_{X / B} \otimes E\right)$ is regular enough then

$$
\left.\bar{\partial}_{\bar{v}}^{\mathscr{H}} \mathfrak{f} \leftrightarrow \bar{\xi}_{v}\right\lrcorner \bar{\partial} f \quad \text { for all } v \in T_{B, t}^{1,0},
$$

where

$$
\xi_{v} \in \Gamma\left(X_{t}, T_{X_{t}}^{1,0}\right) \text { is a lift of } v, \text { i.e., } d p\left(\xi_{v}\right)=v
$$

Well-defined: If ξ_{v}^{\prime} is another lift of v then $\eta:=\xi_{v}-\xi_{v}^{\prime}$ is vertical, so

$$
\left.\left.\left.\bar{\xi}_{v}\right\lrcorner \bar{\partial} f-\bar{\xi}_{v}^{\prime}\right\lrcorner \bar{\partial} f=\bar{\eta}\right\lrcorner \bar{\partial} f=0
$$

because f is holomorphic along fibers.

We can define a $\bar{\partial}$-operator for \mathscr{H} :
If $\Gamma(B, \mathscr{H}) \ni \mathfrak{f} \leftrightarrow f \in \Gamma\left(X, K_{X / B} \otimes E\right)$ is regular enough then

$$
\left.\bar{\partial}_{\bar{v}}^{\mathscr{U}} \mathfrak{f} \leftrightarrow \bar{\xi}_{v}\right\lrcorner \bar{\partial} f \quad \text { for all } v \in T_{B, t}^{1,0}
$$

where

$$
\xi_{v} \in \Gamma\left(X_{t}, T_{X_{t}}^{1,0}\right) \text { is a lift of } v, \text { i.e., } d p\left(\xi_{v}\right)=v
$$

Well-defined: If ξ_{v}^{\prime} is another lift of v then $\eta:=\xi_{v}-\xi_{v}^{\prime}$ is vertical, so

$$
\left.\left.\left.\bar{\xi}_{v}\right\lrcorner \bar{\partial} f-\bar{\xi}_{v}^{\prime}\right\lrcorner \bar{\partial} f=\bar{\eta}\right\lrcorner \bar{\partial} f=0
$$

because f is holomorphic along fibers.
Remark
Note: $\bar{\partial}^{\mathscr{H}}$ is well-defined even if $\mathscr{H} \rightarrow B$ is not a v.b.

Now try to compute Chern connection:

Now try to compute Chern connection:
For sections $\mathfrak{f}, \mathfrak{g}: B \rightarrow \mathscr{H}$ such that $f, g \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)$

$$
\frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\frac{\partial}{\partial t^{j}} \int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle
$$

Now try to compute Chern connection:
For sections $\mathfrak{f}, \mathfrak{g}: B \rightarrow \mathscr{H}$ such that $f, g \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\frac{\partial}{\partial t^{j}} \int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \\
= & \int_{X_{t}} L_{\xi_{j}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \quad\left(\text { where } d p\left(\xi_{j}\right)=\frac{\partial}{\partial t^{j}}\right)
\end{aligned}
$$

Now try to compute Chern connection:
For sections $\mathfrak{f}, \mathfrak{g}: B \rightarrow \mathscr{H}$ such that $f, g \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\frac{\partial}{\partial t^{j}} \int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \\
= & \int_{X_{t}} L_{\xi_{j}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \quad\left(\text { where } d p\left(\xi_{j}\right)=\frac{\partial}{\partial t^{j}}\right) \\
= & \int_{X_{t}}\left\langle L_{\xi_{j}}^{1,0} f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{\left.\bar{\xi}_{j}\right\lrcorner \bar{\partial} g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle
\end{aligned}
$$

Now try to compute Chern connection:
For sections $\mathfrak{f}, \mathfrak{g}: B \rightarrow \mathscr{H}$ such that $f, g \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\frac{\partial}{\partial t^{j}} \int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{\left.g(\cdot, t), \mathfrak{h}^{t}\right\rangle}\right. \\
= & \int_{X_{t}} L_{\xi_{j}}\left\langle f(\cdot, t) \wedge \overline{\left.g(\cdot, t), \mathfrak{h}^{t}\right\rangle \quad\left(\text { where } d p\left(\xi_{j}\right)=\frac{\partial}{\partial t^{j}}\right)}\right. \\
= & \int_{X_{t}}\left\langle L_{\xi_{j}}^{1,0} f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{\left.\left.\bar{\xi}_{j}\right\lrcorner \bar{\partial} g(\cdot, t), \mathfrak{h}^{t}\right\rangle}\right. \\
= & \int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{\left.\bar{\xi}_{j}\right\lrcorner \bar{\partial} g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle
\end{aligned}
$$

Now try to compute Chern connection:
For sections $\mathfrak{f}, \mathfrak{g}: B \rightarrow \mathscr{H}$ such that $f, g \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\frac{\partial}{\partial t^{j}} \int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \\
= & \int_{X_{t}} L_{\xi_{j}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \quad\left(\text { where } d p\left(\xi_{j}\right)=\frac{\partial}{\partial t^{j}}\right) \\
= & \int_{X_{t}}\left\langle L_{\xi_{j}}^{1,0} f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{\left.\bar{\xi}_{j}\right\lrcorner \bar{\partial} g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \\
= & \left.\int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\langle f(\cdot, t) \wedge \overline{\bar{\xi}}\lrcorner \bar{\partial} g(\cdot, t), \mathfrak{h}^{t}\right\rangle \\
= & \int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\left(\mathfrak{f}, \bar{\partial}_{j}^{\mathscr{H}} \mathfrak{g}\right)
\end{aligned}
$$

Now try to compute Chern connection:
For sections $\mathfrak{f}, \mathfrak{g}: B \rightarrow \mathscr{H}$ such that $f, g \in H^{0}\left(X, \mathscr{C}_{X}^{\infty}\left(K_{X / B} \otimes E\right)\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\frac{\partial}{\partial t^{j}} \int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \\
= & \int_{X_{t}} L_{\xi_{j}}\left\langle f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \quad\left(\text { where } d p\left(\xi_{j}\right)=\frac{\partial}{\partial t^{j}}\right) \\
= & \int_{X_{t}}\left\langle L_{\xi_{j}}^{1,0} f(\cdot, t) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\left\langle f(\cdot, t) \wedge \overline{\left.\bar{\xi}_{j}\right\lrcorner \bar{\partial} g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle \\
= & \left.\int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\int_{X_{t}}\langle f(\cdot, t) \wedge \overline{\bar{\xi}}\lrcorner \bar{\partial} g(\cdot, t), \mathfrak{h}^{t}\right\rangle \\
= & \int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle+\left(\mathfrak{f}, \bar{\partial}_{j}^{\mathscr{H}} \mathfrak{g}\right)
\end{aligned}
$$

On the other hand,

$$
\frac{\partial}{\partial t^{j}}(\mathfrak{f}, \mathfrak{g})=\left(\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f}, \mathfrak{g}\right)+\left(\mathfrak{f}, \bar{\partial}_{j}^{\mathscr{C}} \mathfrak{g}\right) .
$$

Therefore we have

$$
\left(\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle .
$$

Therefore we have

$$
\left(\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle
$$

To extract the formula

$$
\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f} \longleftrightarrow P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right)
$$

we need to know that
(2) $\quad \operatorname{eval}_{t}\left(H^{0}\left(B, \mathscr{C}^{\infty}(\mathscr{H})\right)\right) \subset \mathscr{H}_{t} \quad$ is dense for every $t \in B$.

Therefore we have

$$
\left(\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle
$$

To extract the formula

$$
\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f} \longleftrightarrow P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right)
$$

we need to know that
(2) $\quad \operatorname{eval}_{t}\left(H^{0}\left(B, \mathscr{C}^{\infty}(\mathscr{H})\right)\right) \subset \mathscr{H}_{t} \quad$ is dense for every $t \in B$.

Proposition

(2) holds iff $\mathscr{H} \rightarrow B$ is a holo v.b.

Therefore we have

$$
\left(\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f}, \mathfrak{g}\right)=\int_{X_{t}}\left\langle P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right) \wedge \overline{g(\cdot, t)}, \mathfrak{h}^{t}\right\rangle
$$

To extract the formula

$$
\nabla_{j}^{\mathscr{H} 1,0} \mathfrak{f} \longleftrightarrow P_{t}\left(L_{\xi_{j}}^{1,0} f(\cdot, t)\right)
$$

we need to know that
(2) $\quad \operatorname{eval}_{t}\left(H^{0}\left(B, \mathscr{C}^{\infty}(\mathscr{H})\right)\right) \subset \mathscr{H}_{t} \quad$ is dense for every $t \in B$.

Proposition

(2) holds iff $\mathscr{H} \rightarrow B$ is a holo v.b.

Proof.
As in previous proof:
Montel $\Rightarrow t \mapsto \operatorname{dim} \mathscr{H}_{t}$ u.s.c.
(2) $\Rightarrow t \mapsto \operatorname{dim} \mathscr{H}_{t}$ l.s.c.

In the case in which $\mathscr{H} \rightarrow B$ is locally trivial

- Berndtsson computed the curvature of $\mathscr{H} \rightarrow B$ when $\operatorname{Rank}(E)=1$

In the case in which $\mathscr{H} \rightarrow B$ is locally trivial

- Berndtsson computed the curvature of $\mathscr{H} \rightarrow B$ when $\operatorname{Rank}(E)=1$
- Liu and Yang did the higher rank curvature;

Same proof, but they also obtained a number of other formulas from integration by parts.

In the case in which $\mathscr{H} \rightarrow B$ is locally trivial

- Berndtsson computed the curvature of $\mathscr{H} \rightarrow B$ when $\operatorname{Rank}(E)=1$
- Liu and Yang did the higher rank curvature; Same proof, but they also obtained a number of other formulas from integration by parts.

Theorem (Berndtsson)
If $X \xrightarrow{p} B$ is a Kähler family and $\operatorname{Rank}(E)=1$ and $\Theta(\mathfrak{h})$ is non-negative (resp. positive) then \mathscr{H} is Nakano non-negative (resp. positive).

In the case in which $\mathscr{H} \rightarrow B$ is locally trivial

- Berndtsson computed the curvature of $\mathscr{H} \rightarrow B$ when $\operatorname{Rank}(E)=1$
- Liu and Yang did the higher rank curvature; Same proof, but they also obtained a number of other formulas from integration by parts.

Theorem (Berndtsson)
If $X \xrightarrow{p} B$ is a Kähler family and $\operatorname{Rank}(E)=1$ and $\Theta(\mathfrak{h})$ is
non-negative (resp. positive) then \mathscr{H} is Nakano non-negative (resp. positive).

Remark

Theorem not an immediate consequence of the curvature formula.

In the case in which $\mathscr{H} \rightarrow B$ is locally trivial

- Berndtsson computed the curvature of $\mathscr{H} \rightarrow B$ when $\operatorname{Rank}(E)=1$
- Liu and Yang did the higher rank curvature; Same proof, but they also obtained a number of other formulas from integration by parts.

Theorem (Berndtsson)
If $X \xrightarrow{p} B$ is a Kähler family and $\operatorname{Rank}(E)=1$ and $\Theta(\mathfrak{h})$ is
non-negative (resp. positive) then \mathscr{H} is Nakano non-negative (resp. positive).

Remark

Theorem not an immediate consequence of the curvature formula. Requires Hodge-Lefschetz Theory of Kähler manifolds

In the case in which $\mathscr{H} \rightarrow B$ is locally trivial

- Berndtsson computed the curvature of $\mathscr{H} \rightarrow B$ when $\operatorname{Rank}(E)=1$
- Liu and Yang did the higher rank curvature; Same proof, but they also obtained a number of other formulas from integration by parts.

Theorem (Berndtsson)
If $X \xrightarrow{p} B$ is a Kähler family and $\operatorname{Rank}(E)=1$ and $\Theta(\mathfrak{h})$ is
non-negative (resp. positive) then \mathscr{H} is Nakano non-negative (resp. positive).

Remark

Theorem not an immediate consequence of the curvature formula. Requires Hodge-Lefschetz Theory of Kähler manifolds

Question

Can we extend such results to the non-locally trivial case?

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper.

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. Define

$$
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(, t)}^{2}<+\infty\right\}
$$

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. Define

$$
\begin{aligned}
\mathscr{L}_{t}: & =\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(,, t)}^{2}<+\infty\right\} \\
& \Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{aligned}
$$

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. \quad Define

$$
\begin{aligned}
\mathscr{L}_{t}: & =\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{l}(,, t)}^{2}<+\infty\right\} \\
& \Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{aligned}
$$

To define $\bar{\partial}_{v}^{\mathscr{L}}$: unlike $\bar{\partial}_{v}^{\mathscr{H}}$, we must choose a lift of v to X.

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. \quad Define

$$
\begin{gathered}
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\} \\
\Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{gathered}
$$

To define $\bar{\partial}_{v}^{\mathscr{L}}$: unlike $\bar{\partial}_{v}^{\mathscr{H}}$, we must choose a lift of v to X.
Pick $\theta \subset T_{X}$ horizontal distribution, i.e., $T_{X, x} \supset \theta_{x} \xrightarrow{d p_{x} \cong} T_{B, p(x)}$.

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. Define

$$
\begin{gathered}
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\} \\
\Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{gathered}
$$

To define $\bar{\partial}_{v}^{\mathscr{L}}$: unlike $\bar{\partial}_{v}^{\mathscr{H}}$, we must choose a lift of v to X. Pick $\theta \subset T_{X}$ horizontal distribution, i.e., $T_{X, x} \supset \theta_{x} \xrightarrow{d p_{x} \cong} T_{B, p(x)}$. Because p is a holomorphic submersion, we get an isomorphism

$$
T_{B, t}^{1,0} \ni v \stackrel{\cong}{\longleftrightarrow} \xi_{v}^{\theta} \in H^{0}\left(X_{t}, \mathscr{C}^{\infty}\left(\left.T_{X}^{1,0}\right|_{X_{t}}\right)\right) \text { s.t. } 2 \operatorname{Re} \xi_{v}^{\theta}(x) \in \theta_{x} .
$$

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. Define

$$
\begin{gathered}
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\} \\
\Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{gathered}
$$

To define $\bar{\partial}_{v}^{\mathscr{L}}$: unlike $\bar{\partial}_{v}^{\mathscr{H}}$, we must choose a lift of v to X. Pick $\theta \subset T_{X}$ horizontal distribution, i.e., $T_{X, x} \supset \theta_{x} \xrightarrow{d p_{x} \cong} T_{B, p(x)}$. Because p is a holomorphic submersion, we get an isomorphism

$$
\begin{gathered}
T_{B, t}^{1,0} \ni v \stackrel{\cong}{\longleftrightarrow} \xi_{v}^{\theta} \in H^{0}\left(X_{t}, \mathscr{C}^{\infty}\left(\left.T_{X}^{1,0}\right|_{X_{t}}\right)\right) \text { s.t. } 2 \operatorname{Re} \xi_{v}^{\theta}(x) \in \theta_{x} . \\
\left.\bar{v}\lrcorner \bar{\partial}^{\mathscr{L}} \mathfrak{f} \stackrel{\text { defn }}{\longleftrightarrow} \bar{\xi}_{v}^{\theta}\right\lrcorner \bar{\partial} f
\end{gathered}
$$

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. Define

$$
\begin{gathered}
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\} \\
\Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{gathered}
$$

To define $\bar{\partial}_{v}^{\mathscr{L}}$: unlike $\bar{\partial}_{v}^{\mathscr{H}}$, we must choose a lift of v to X. Pick $\theta \subset T_{X}$ horizontal distribution, i.e., $T_{X, x} \supset \theta_{x} \xrightarrow{d p_{x} \cong} T_{B, p(x)}$. Because p is a holomorphic submersion, we get an isomorphism

$$
\begin{gathered}
T_{B, t}^{1,0} \ni v \stackrel{\cong}{\longleftrightarrow} \xi_{v}^{\theta} \in H^{0}\left(X_{t}, \mathscr{C}^{\infty}\left(\left.T_{X}^{1,0}\right|_{X_{t}}\right)\right) \text { s.t. } 2 \operatorname{Re} \xi_{v}^{\theta}(x) \in \theta_{x} . \\
\left.\bar{v}\lrcorner \bar{\partial}^{\mathscr{L}} \mathfrak{f} \stackrel{\operatorname{defn}}{\longleftrightarrow} \bar{\xi}_{v}^{\theta}\right\lrcorner \bar{\partial} f
\end{gathered}
$$

Fact: $\bar{\partial}^{\mathscr{L}} \bar{\partial}^{\mathscr{L}}=0 \Longleftrightarrow\left[\theta^{1,0}, \theta^{1,0}\right] \subset \theta^{1,0}$

The proper L^{2} Hilbert field

Fix $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ proper. Define

$$
\begin{gathered}
\mathscr{L}_{t}:=\left\{f \in \Gamma\left(X_{t}, K_{X_{t}} \otimes E\right) \text { msrable } ; \int_{X_{t}}|f|_{\mathfrak{h}(\cdot, t)}^{2}<+\infty\right\} \\
\Gamma\left(B, \mathscr{C}^{\infty}(\mathscr{L})\right) \ni \mathfrak{f} \longleftrightarrow f \in H^{0}\left(X, \mathscr{C}^{\infty}\left(K_{X / B} \otimes E\right)\right)
\end{gathered}
$$

To define $\bar{\partial}_{v}^{\mathscr{L}}$: unlike $\bar{\partial}_{v}^{\mathscr{H}}$, we must choose a lift of v to X.
Pick $\theta \subset T_{X}$ horizontal distribution, i.e., $T_{X, x} \supset \theta_{x} \xrightarrow{d p_{x} \cong} T_{B, p(x)}$. Because p is a holomorphic submersion, we get an isomorphism

$$
\begin{gathered}
T_{B, t}^{1,0} \ni v \stackrel{\cong}{\longleftrightarrow} \xi_{v}^{\theta} \in H^{0}\left(X_{t}, \mathscr{C}^{\infty}\left(\left.T_{X}^{1,0}\right|_{X_{t}}\right)\right) \text { s.t. } 2 \operatorname{Re} \xi_{v}^{\theta}(x) \in \theta_{x} . \\
\left.\bar{v}\lrcorner \bar{\partial}^{\mathscr{L}} \mathfrak{f} \stackrel{\text { defn }}{\longleftrightarrow} \bar{\xi}_{v}^{\theta}\right\lrcorner \bar{\partial} f
\end{gathered}
$$

Fact: $\bar{\partial}^{\mathscr{L}} \bar{\partial}^{\mathscr{L}}=0 \Longleftrightarrow\left[\theta^{1,0}, \theta^{1,0}\right] \subset \theta^{1,0}$
For most $\theta,\left(\mathscr{L}, \bar{\partial}^{\mathscr{L}}\right) \rightarrow B$ is not a holo vector bundle (of infinite rank).

BLS Fields

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of smooth sections s.t.

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. $\operatorname{eval}_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. eval $_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. eval $_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$
such that for each $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ there exists $C=C(\mathfrak{f}, t)$ such that
(3) $\quad\left|\partial_{v}(\mathfrak{f}, \mathfrak{g})-\left(\mathfrak{f}, \bar{\partial}_{\bar{v}} \mathfrak{g}\right)\right|^{2} \leq C|v|^{2}(\mathfrak{g}, \mathfrak{g}) \quad$ for all $\mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}, v \in T_{B, t}^{1,0}$.

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. $\operatorname{eval}_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$
such that for each $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ there exists $C=C(\mathfrak{f}, t)$ such that
(3) $\quad\left|\partial_{v}(\mathfrak{f}, \mathfrak{g})-\left(\mathfrak{f}, \bar{\partial}_{\bar{v}} \mathfrak{g}\right)\right|^{2} \leq C|v|^{2}(\mathfrak{g}, \mathfrak{g}) \quad$ for all $\mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}, v \in T_{B, t}^{1,0}$.

Berndtsson

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. $\operatorname{eval}_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$
such that for each $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ there exists $C=C(\mathfrak{f}, t)$ such that
(3) $\quad\left|\partial_{v}(\mathfrak{f}, \mathfrak{g})-\left(\mathfrak{f}, \bar{\partial}_{\bar{v}} \mathfrak{g}\right)\right|^{2} \leq C|v|^{2}(\mathfrak{g}, \mathfrak{g}) \quad$ for all $\mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}, v \in T_{B, t}^{1,0}$.

Berndtsson Lempert

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. $\operatorname{eval}_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$
such that for each $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ there exists $C=C(\mathfrak{f}, t)$ such that
(3) $\quad\left|\partial_{v}(\mathfrak{f}, \mathfrak{g})-\left(\mathfrak{f}, \bar{\partial}_{\bar{v}} \mathfrak{g}\right)\right|^{2} \leq C|v|^{2}(\mathfrak{g}, \mathfrak{g}) \quad$ for all $\mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}, v \in T_{B, t}^{1,0}$.

Berndtsson Lempert Szőke

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. eval $_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$
such that for each $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ there exists $C=C(\mathfrak{f}, t)$ such that
(3) $\quad\left|\partial_{v}(\mathfrak{f}, \mathfrak{g})-\left(\mathfrak{f}, \bar{\partial}_{\bar{v}} \mathfrak{g}\right)\right|^{2} \leq C|v|^{2}(\mathfrak{g}, \mathfrak{g}) \quad$ for all $\mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}, v \in T_{B, t}^{1,0}$.

Berndtsson Lempert Szőke
The inequality (3) defines $\nabla_{v}^{1,0} \mathfrak{f}$ by Riesz Rep. Thm.

BLS Fields

Definition

A $B L S$ field is a Hilbert field $\mathfrak{H} \rightarrow B$ with

1. (Lempert-Szőke) a sheaf $\mathscr{C}^{\infty}(\mathfrak{H}) \rightarrow B$ of s mooth sections s.t.
a. $(\mathfrak{f}, \mathfrak{f}) \in \mathscr{C}_{B}^{\infty}(U)$ for all $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathfrak{H})\right)$, and
b. eval $_{t}\left(\mathscr{C}^{\infty}(\mathfrak{H})_{t}\right) \subset \mathfrak{H}_{t}$ is dense for every $t \in B$
2. a (Berndtsson) $\bar{\partial}$ operator defined on $\mathscr{C}^{\infty}(\mathfrak{H})$
such that for each $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ there exists $C=C(\mathfrak{f}, t)$ such that
(3) $\quad\left|\partial_{v}(\mathfrak{f}, \mathfrak{g})-\left(\mathfrak{f}, \bar{\partial}_{\bar{v}} \mathfrak{g}\right)\right|^{2} \leq C|v|^{2}(\mathfrak{g}, \mathfrak{g}) \quad$ for all $\mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}, v \in T_{B, t}^{1,0}$.

Berndtsson Lempert Szőke
The inequality (3) defines $\nabla_{v}^{1,0} \mathfrak{f}$ by Riesz Rep. Thm.
Thus we have a Chern connection $\nabla=\nabla^{1,0}+\bar{\partial}$ (and its curvature).

Definition

If $\mathfrak{L} \rightarrow B$ is BLS then a Hilbert subfield $\mathfrak{H} \subset \mathfrak{L}$ is a $B L S$ subfield if

Definition

If $\mathfrak{L} \rightarrow B$ is BLS then a Hilbert subfield $\mathfrak{H} \subset \mathfrak{L}$ is a $B L S$ subfield if
a. \mathfrak{H}_{t} is a closed subspace of \mathfrak{L}_{t} for every $t \in B$,

Definition

If $\mathfrak{L} \rightarrow B$ is BLS then a Hilbert subfield $\mathfrak{H} \subset \mathfrak{L}$ is a $B L S$ subfield if
a. \mathfrak{H}_{t} is a closed subspace of \mathfrak{L}_{t} for every $t \in B$,
b. $\mathscr{C}^{\infty}(\mathfrak{H})=\left\{\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{L})\right) ; \mathfrak{f}(t) \in \mathfrak{H}_{t}$ for all $\left.t \in \operatorname{Domain}(\mathfrak{f})\right\}$,

Definition

If $\mathfrak{L} \rightarrow B$ is BLS then a Hilbert subfield $\mathfrak{H} \subset \mathfrak{L}$ is a $B L S$ subfield if
a. \mathfrak{H}_{t} is a closed subspace of \mathfrak{L}_{t} for every $t \in B$,
b. $\mathscr{C}^{\infty}(\mathfrak{H})=\left\{\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{L})\right) ; \mathfrak{f}(t) \in \mathfrak{H}_{t}$ for all $\left.t \in \operatorname{Domain}(\mathfrak{f})\right\}$,
c. $\left.\bar{\partial}^{\mathfrak{L}}\right|_{\mathscr{C} \infty(\mathfrak{H})}=\bar{\partial}^{\mathfrak{H}}$, and

Definition

If $\mathfrak{L} \rightarrow B$ is BLS then a Hilbert subfield $\mathfrak{H} \subset \mathfrak{L}$ is a $B L S$ subfield if
a. \mathfrak{H}_{t} is a closed subspace of \mathfrak{L}_{t} for every $t \in B$,
b. $\mathscr{C}^{\infty}(\mathfrak{H})=\left\{\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{L})\right) ; \mathfrak{f}(t) \in \mathfrak{H}_{t}$ for all $\left.t \in \operatorname{Domain}(\mathfrak{f})\right\}$,
c. $\left.\bar{\partial}^{\mathfrak{L}}\right|_{\mathscr{C} \infty(\mathfrak{H})}=\bar{\partial}^{\mathfrak{H}}$, and
d. The orthogonal projection $P: \mathfrak{L} \rightarrow \mathfrak{H}$ is smooth (maps smooth sections to smooth sections)

Definition

If $\mathfrak{L} \rightarrow B$ is BLS then a Hilbert subfield $\mathfrak{H} \subset \mathfrak{L}$ is a $B L S$ subfield if
a. \mathfrak{H}_{t} is a closed subspace of \mathfrak{L}_{t} for every $t \in B$,
b. $\mathscr{C}^{\infty}(\mathfrak{H})=\left\{\mathfrak{f} \in \mathscr{C}^{\infty}(\mathfrak{L})\right) ; \mathfrak{f}(t) \in \mathfrak{H}_{t}$ for all $\left.t \in \operatorname{Domain}(\mathfrak{f})\right\}$,
c. $\left.\bar{\partial}^{\mathfrak{L}}\right|_{\mathscr{C} \infty(\mathfrak{H})}=\bar{\partial}^{\mathfrak{H}}$, and
d. The orthogonal projection $P: \mathfrak{L} \rightarrow \mathfrak{H}$ is smooth (maps smooth sections to smooth sections)

Proposition

If \mathfrak{L} is a $B L S$ field and $\mathfrak{H} \subset \mathfrak{L}$ is a BLS subfield then
a. $\nabla^{\mathfrak{H}}=P \nabla^{\mathfrak{L}}$, and
b. Gauss-Griffiths Formula: for all $\mathfrak{f}, \mathfrak{g} \in \mathscr{C}^{\infty}(\mathfrak{H})_{t}$ and all $v, w \in T_{B, t}^{1,0}$

$$
\left(\Theta(\mathfrak{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)=\left(\Theta(\mathfrak{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)+\left(\mathbf{\Pi}_{v} \mathfrak{f}, \Pi_{w} \mathfrak{g}\right)
$$

where $\mathbf{I I f}=\nabla^{\mathfrak{L}} \mathfrak{f}-\nabla^{\mathfrak{H}} \mathfrak{f}=P^{\perp} \nabla^{1,0} \mathfrak{f}$ is the second fundamental form.

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle?

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle? (After all, this is our objective.)

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle? (After all, this is our objective.)
Then \mathscr{H} is not BLS:

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle? (After all, this is our objective.)
Then \mathscr{H} is not BLS:

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle? (After all, this is our objective.)
Then \mathscr{H} is not BLS:
There is some $t \in B$ and $f \in \mathscr{H}_{t}$ that is not interpolated by $\mathscr{C}^{\infty}(\mathscr{H})_{t}$.

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle? (After all, this is our objective.)
Then \mathscr{H} is not BLS:
There is some $t \in B$ and $f \in \mathscr{H}_{t}$ that is not interpolated by $\mathscr{C}^{\infty}(\mathscr{H})_{t}$.
Proposition
For every $f \in \mathscr{H}_{t}$ and every Horizontal lift θ there exists $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathscr{L})_{t}$ such that

$$
\mathfrak{f}(t)=f \quad \text { and } \quad \bar{\partial} \mathfrak{f}=0 \text { to second order at } t .
$$

Returning to the proper family $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$.

- If $\mathscr{H} \rightarrow B$ is a holomorphic vector bundle then the Gauss-Griffiths Formula gives a formula for the curvature of \mathscr{H}.
- The formula is not immediately the same as Berndtsson's formula, but becomes so after integration-by-parts.
What if \mathscr{H} is not a vector bundle? (After all, this is our objective.)
Then \mathscr{H} is not BLS:
There is some $t \in B$ and $f \in \mathscr{H}_{t}$ that is not interpolated by $\mathscr{C}^{\infty}(\mathscr{H})_{t}$.

Proposition

For every $f \in \mathscr{H}_{t}$ and every Horizontal lift θ there exists $\mathfrak{f} \in \mathscr{C}^{\infty}(\mathscr{L})_{t}$ such that

$$
\mathfrak{f}(t)=f \quad \text { and } \quad \bar{\partial} \mathfrak{f}=0 \text { to second order at } t .
$$

One can generalize this proposition by defining iBLS structure.

One can generalize this proposition by defining iBLS structure. This notion is too technical for the lecture. But ...

One can generalize this proposition by defining iBLS structure. This notion is too technical for the lecture. But ... The point is that one can define

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{\Pi}_{w} \mathfrak{g}\right) .
$$

One can generalize this proposition by defining iBLS structure. This notion is too technical for the lecture. But ... The point is that one can define

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{I}_{v} \mathfrak{f}, \mathbf{I}_{w} \mathfrak{g}\right) .
$$

If the Gauss-Griffiths formula was known to be true, this would be the curvature of \mathscr{H}.

One can generalize this proposition by defining iBLS structure. This notion is too technical for the lecture. But ... The point is that one can define

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{I}_{w} \mathfrak{g}\right) .
$$

If the Gauss-Griffiths formula was known to be true, this would be the curvature of \mathscr{H}. Therefore we define

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right):=\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{\Pi}_{w} \mathfrak{g}\right) .
$$

One can generalize this proposition by defining iBLS structure. This notion is too technical for the lecture. But ... The point is that one can define

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{I}_{w} \mathfrak{g}\right) .
$$

If the Gauss-Griffiths formula was known to be true, this would be the curvature of \mathscr{H}. Therefore we define

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right):=\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{\Pi}_{w} \mathfrak{g}\right) .
$$

One difficulty is that the right hand side seems to depend on the choice of horizontal distribution θ, but the left hand side should not!

One can generalize this proposition by defining iBLS structure. This notion is too technical for the lecture. But ... The point is that one can define

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{\Pi}_{w} \mathfrak{g}\right) .
$$

If the Gauss-Griffiths formula was known to be true, this would be the curvature of \mathscr{H}. Therefore we define

$$
\left(\Theta(\mathscr{H})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right):=\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{I}_{v} \mathfrak{f}, \mathbf{I}_{w} \mathfrak{g}\right) .
$$

One difficulty is that the right hand side seems to depend on the choice of horizontal distribution θ, but the left hand side should not!

Theorem

The quantity

$$
\left(\Theta(\mathscr{L})_{v \bar{w}} \mathfrak{f}, \mathfrak{g}\right)-\left(\mathbf{\Pi}_{v} \mathfrak{f}, \mathbf{\Pi}_{w} \mathfrak{g}\right)
$$

is independent of the horizontal distribution θ.

Generalization of Berndtsson's Theorem

Generalization of Berndtsson's Theorem

Theorem (-)
Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper.
If the metric \mathfrak{h} is k-positive then $\mathscr{H} \rightarrow B$ is k-positive.

Generalization of Berndtsson's Theorem

Theorem (-)

Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper.
If the metric \mathfrak{h} is k-positive then $\mathscr{H} \rightarrow B$ is k-positive.
Note: k-positivity of \mathfrak{h} is not known to imply local triviality of \mathscr{H} for $k<\min (\operatorname{dim} X, \operatorname{Rank}(E))$.

Generalization of Berndtsson's Theorem

Theorem (-)

Let $(E, \mathfrak{h}) \rightarrow X \xrightarrow{p} B$ be proper.
If the metric \mathfrak{h} is k-positive then $\mathscr{H} \rightarrow B$ is k-positive.
Note: k-positivity of \mathfrak{h} is not known to imply local triviality of \mathscr{H} for $k<\min (\operatorname{dim} X, \operatorname{Rank}(E))$.

Theorem (-)

There exists a projective manifold X, a Griffiths-positive holomorphic vector bundle $(E, \mathfrak{h}) \rightarrow X$ and a smooth complex hypersurface $Z \subset X$ such that the restriction map

$$
H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes E\right) \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}\left(\left(K_{X} \otimes E\right) \mid Z\right)\right)\right.
$$

is not surjective.

Since the curvature was defined in a rather odd way, it is reasonable to ask what one can do with it.

Since the curvature was defined in a rather odd way, it is reasonable to ask what one can do with it.

Theorem (-)
Suppose $\mathscr{H} \rightarrow B$ is Griffiths negative. Let $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathscr{L})\right)$ such that $\mathfrak{f}(t) \in \mathscr{H}_{t}$ for all $t \in U$. Then $\log (\mathfrak{f}, \mathfrak{f}) \in \operatorname{PSH}(U)$.

Since the curvature was defined in a rather odd way, it is reasonable to ask what one can do with it.

Theorem (-)
Suppose $\mathscr{H} \rightarrow B$ is Griffiths negative. Let $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathscr{L})\right)$ such that $\mathfrak{f}(t) \in \mathscr{H}_{t}$ for all $t \in U$. Then $\log (\mathfrak{f}, \mathfrak{f}) \in \operatorname{PSH}(U)$.

Theorem (-)

Suppose \mathscr{H} is k-positive. Let $t_{o} \in B$, let $U \subset B$ be a coordinate nbhd of t_{o}, and let $\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{k} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathscr{L})\right)$ satisfy

$$
\mathfrak{f}_{i}(t) \in \mathscr{H}_{t} \text { for all } t \in U \quad \text { and } \quad \nabla^{\mathscr{L}} \mathfrak{f}_{i}\left(t_{o}\right) \in \mathscr{H}_{t_{o}}^{\perp}, \quad 1 \leq i \leq k .
$$

Since the curvature was defined in a rather odd way, it is reasonable to ask what one can do with it.

Theorem (-)
Suppose $\mathscr{H} \rightarrow B$ is Griffiths negative. Let $\mathfrak{f} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathscr{L})\right)$ such that $\mathfrak{f}(t) \in \mathscr{H}_{t}$ for all $t \in U$. Then $\log (\mathfrak{f}, \mathfrak{f}) \in \operatorname{PSH}(U)$.

Theorem (-)

Suppose \mathscr{H} is k-positive. Let $t_{o} \in B$, let $U \subset B$ be a coordinate nbhd of t_{o}, and let $\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{k} \in \Gamma\left(U, \mathscr{C}^{\infty}(\mathscr{L})\right)$ satisfy

$$
\mathfrak{f}_{i}(t) \in \mathscr{H}_{t} \text { for all } t \in U \quad \text { and } \quad \nabla^{\mathscr{L}} \mathfrak{f}_{i}\left(t_{o}\right) \in \mathscr{H}_{t_{o}}^{\perp}, \quad 1 \leq i \leq k .
$$

Then the (n, n)-form

$$
-\sqrt{-1} \partial \bar{\partial} \sum_{i, j=1}^{k}\left(\mathfrak{f}_{i}, \mathfrak{f}_{j}\right) \Upsilon^{i \bar{j}}(z)
$$

is positive at t_{o}, where $\Upsilon^{i \bar{j}}(z):=\frac{d V(z)}{\sqrt{-1} d z^{i} \wedge d \bar{z}^{j}}$.

Thanks for your attention.

