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First example of deformation of Bergman spaces:

Fix Yo Stein mfld, Xo ⊂⊂ Yo strictly ψcvx domain, Eo → Yo holo v.b.
• Set X = Xo ×B and E = p∗1Eo → X for some cplx mfld B.
• Assume metric h for E smooth up vertical boundary ∂Xo ×B.

To (E, h)→ X
p2→ B we associate

Ht :=
{
f ∈ H0(Xo,O(KXo × Eo)) ;

∫
X
|f |2h(·,t) < +∞

}

Note: Ht ⊂ H0(Xo,O(Eo)) is independent of t.
Thus each f ∈Ho defines ‘constant’ holo section of H → B.
=⇒ H → B is a trivial vector bundle.
But the L2 metric is not ‘constant’ in t.
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H → B is a holomorphic vector bundle of infinite rank
Choose Hilbert basis {φ1, φ2, ...} ⊂Ho for some o ∈ B.
• Sections f ∈ Γ(B,H ) correspond to

f(x, t) :=
∑
j

cj(t)φj(x)
(
such that

∫
Xo

∣∣∣∑ cj(t)φj
∣∣∣2
h(·,t)

< +∞
)

• f is smooth (resp. holo) iff each cj ∈ C∞(B) (resp. O(B)).
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For a smooth section f, the standard operators

∂̄H
∂

∂t̄i
f ←→ ∂f

∂t̄i
=
∑
j

∂cj(t)
∂t̄i

φj(x)

∇H
∂

∂ti
f ←→ P

(
∇E∂

∂ti
f

)
(·, t)

:=
∑
i

Pt

(
∂cj(t)
∂t̄i

φj + cj(t)
(
∇(Eo,h(·,t))φj

))

are only densely defined.
e.g., Domains contain all f such that the corresponding section

f ∈ H0(X,C∞X (KX/B ⊗ E))

is smooth up to the vertical boundary ∂Xo ×B.
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From ∇H we can compute the (densely defined) curvature Θ(H ):

(Θ(H )vw̄f, g) =
∫
Xo

h((Θ(h)vw̄f, g)−
∫
Xo

h
(
P⊥t ∇vf, P⊥t ∇wg

)
where Pt : L2(h(·, t)→Ht is the Bergman projection.

Theorem
Suppose that for each t ∈ B the metric h(·, t) is Nakano-positive.
If (p∗Eo, h)→ Xo ×B is k-positive then so is H → B.

• If Eo is a line bundle, this result is due to Berndtsson.
In that case there is only one notion of positivity.
• Proof in the case of higher rank follows same lines
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Quick review of positivity
Let (E, h)→ X be a holo Hermitian v.b.

• The curvature of the Chern connection ∇ = ∇1,0 + ∂̄

Θ(h) = ∇1,0∂̄ + ∂̄∇1,0 ∈ Γ(X,Hom(E,E)⊗ Λ1,1
X ).

is skew-Hermitian for h.
• Θ(h) uniquely defines a Hermitian form on T 1,0

X ⊗ E → X

{ξ ⊗ v, η ⊗ w}h := h(
√
-1Θ(h)ξη̄v, w)

on rank-1 tensors; then extend bilinearily.
(Recall: for T ∈ V ⊗W , Rank(T ) := Rank(LT : W ∗ → V ).)

Definition
(E, h) is k-positive if {·, ·}h is positive on all tensors of rank ≤ k.
1-positive also called Griffiths-positive
k-positive ∀k also called Nakano-positive
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The L2 bundle

Same trivial family (p∗1Eo, h)→ Xo ×B
p2→ B with nontrivial metric

defines L → B where

Lt :=
{
f ∈ Γ(Xo,KXo × Eo) msrable ;

∫
X
|f |2h(·,t) < +∞

}
, t ∈ B.

• Again Lt ⊂ Γ(Xo,KXo × Eo) is independent of t.
Hence L → B is a trivial vector bundle, with a non-trivial metric.
• Fix Hilbert basis {ψ1, ψ2, ...} ⊂ Lo for some o ∈ B.

? Sections: f(·, t) =
∑
j

aj(t)ψj such that {aj(t)} ∈ `2 for all t.

? f is smooth if the aj are smooth.

? As with H → B, derivatives might not be square-integrable.
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Thus again we get densely defined operators

∂f

∂t̄i
←→ ∂f(x, t)

∂t̄i
and ∇L

∂

∂ti
f←→ ∇E∂

∂ti
f.

Formula for the curvature: for v, w ∈ T 1,0
B,t ⊂ T

1,0
X = T 1,0

Xo
⊕ T 1,0

B

(Θ(L )vw̄f(t), f(t)) =
∫
X
〈Θ(h(·, t))vw̄f, f〉h(·,t) .
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Note:
• Ht is a subspace of Lt for all t,
• ∂̄L |Domain(∂̄H ) = ∂̄H

Thus H ⊂ L is a vector subbundle.

By Gauss-Griffiths Formula

(1) (Θ(L )f, f) = (Θ(H )f, f)+(IIf, IIf) for all f ∈ Γ(B,C∞(H )),

where II : H →H ⊥ is the second fundamental form:

IIf := ∇L f −∇H f = ∇L f − P∇L f = P⊥∇L f.

Here P : L →H is the fiberwise ⊥, i.e., Bergman, projection.

Remark
Formula (1) agrees with our previous curvature formula

(Θ(H )vw̄f, g) =
∫
Xo

h((Θ(h)vw̄f, g)−
∫
Xo

h
(
P⊥t ∇vf, P⊥t ∇wg

)
.
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Proper deformation of Bergman spaces

Take (E, h)→ X
p→ B smooth proper (i.e., p is proper submersion).

The spaces
Ht = H0(Xt,OXt(KXt ⊗ E|Xt))

are finite-dimensional ∀t ∈ B. They admit inner products

(f, g)t :=
√
-1n

2 ∫
Xt

〈f ∧ ḡ, h〉

We get a Hilbert field (in the language of Lempert-Szőke)∐
t∈B

Ht =: H → B

Sections: Γ(B,H ) 3 f←→ f ∈ Γ(X,KX/B ⊗ E)

Definition (Holomorphic sections)

f ∈ Γ(B,OB(H )) defn⇐⇒ f ∈ H0(X,OX(KX/B ⊗ E))
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〈f ∧ ḡ, h〉

We get a Hilbert field (in the language of Lempert-Szőke)∐
t∈B

Ht =: H → B

Sections: Γ(B,H ) 3 f←→ f ∈ Γ(X,KX/B ⊗ E)

Definition (Holomorphic sections)

f ∈ Γ(B,OB(H )) defn⇐⇒ f ∈ H0(X,OX(KX/B ⊗ E))

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 10 / 25



Proper deformation of Bergman spaces

Take (E, h)→ X
p→ B smooth proper (i.e., p is proper submersion).

The spaces
Ht = H0(Xt,OXt(KXt ⊗ E|Xt))

are finite-dimensional ∀t ∈ B. They admit inner products

(f, g)t :=
√
-1n

2 ∫
Xt

〈f ∧ ḡ, h〉
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Theorem (Kodaira-Spencer)
H → B is a holo v.b. ⇐⇒ B 3 t 7→ dim Ht is constant.

Example: Let B = H := {Im t > 0}, X := C×H
∼ and E(s) = LD(s),

s ∈ C \ R, where

D(s) = {0}×H−{s}×H and (z, t) ∼ (ζ, τ) ⇐⇒ t = τ & z−ζ ∈ Z⊕tZ

Then for each t ∈ H
• Xt is the torus C/(Z⊕ tZ),

• D(s)|Xt =
{

[0]− [s], s 6∈ Z⊕ tZ
O , s ∈ Z⊕ tZ

• dimCH
0(Xt,O(KXt ⊗ E(s)|Xt) =

{
0, s 6∈ Z⊕ tZ
1, s ∈ Z⊕ tZ
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Let (E, h)→ X
p→ B be proper, and assume X is Kähler.

Proposition (Berndtsson)
If (E, h)→ X is Nakano non-negative then H → B is a holo v.b.

Proof.
By Kodaira-Spencer we must show t 7→ dim Ht constant (i.e., cts).
By Montel’s Theorem t 7→ dim Ht is upper semi-continuous.
The L2 extension theorem of Ohsawa-Takegoshi ⇒
if h is Nakano semi-positive then there is cts linear extension operator

Et : Ht → H0(X,O(KX ⊗ E)).

Thus t 7→ dim Ht is lower semi-continuous.
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We can define a ∂̄-operator for H :

If Γ(B,H ) 3 f↔ f ∈ Γ(X,KX/B ⊗ E) is regular enough then

∂̄H
v̄ f↔ ξ̄vy∂̄f for all v ∈ T 1,0

B,t,

where
ξv ∈ Γ(Xt, T

1,0
Xt

) is a lift of v, i.e., dp(ξv) = v.

Well-defined: If ξ′v is another lift of v then η := ξv − ξ′v is vertical, so

ξ̄vy∂̄f − ξ̄′vy∂̄f = η̄y∂̄f = 0

because f is holomorphic along fibers.

Remark
Note: ∂̄H is well-defined even if H → B is not a v.b.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 13 / 25



We can define a ∂̄-operator for H :
If Γ(B,H ) 3 f↔ f ∈ Γ(X,KX/B ⊗ E) is regular enough then

∂̄H
v̄ f↔ ξ̄vy∂̄f for all v ∈ T 1,0

B,t,

where
ξv ∈ Γ(Xt, T

1,0
Xt

) is a lift of v, i.e., dp(ξv) = v.

Well-defined: If ξ′v is another lift of v then η := ξv − ξ′v is vertical, so

ξ̄vy∂̄f − ξ̄′vy∂̄f = η̄y∂̄f = 0

because f is holomorphic along fibers.

Remark
Note: ∂̄H is well-defined even if H → B is not a v.b.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 13 / 25



We can define a ∂̄-operator for H :
If Γ(B,H ) 3 f↔ f ∈ Γ(X,KX/B ⊗ E) is regular enough then

∂̄H
v̄ f↔ ξ̄vy∂̄f for all v ∈ T 1,0

B,t,

where
ξv ∈ Γ(Xt, T

1,0
Xt

) is a lift of v, i.e., dp(ξv) = v.

Well-defined: If ξ′v is another lift of v then η := ξv − ξ′v is vertical, so

ξ̄vy∂̄f − ξ̄′vy∂̄f = η̄y∂̄f = 0

because f is holomorphic along fibers.

Remark
Note: ∂̄H is well-defined even if H → B is not a v.b.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 13 / 25



We can define a ∂̄-operator for H :
If Γ(B,H ) 3 f↔ f ∈ Γ(X,KX/B ⊗ E) is regular enough then

∂̄H
v̄ f↔ ξ̄vy∂̄f for all v ∈ T 1,0

B,t,

where
ξv ∈ Γ(Xt, T

1,0
Xt

) is a lift of v, i.e., dp(ξv) = v.

Well-defined: If ξ′v is another lift of v then η := ξv − ξ′v is vertical, so

ξ̄vy∂̄f − ξ̄′vy∂̄f = η̄y∂̄f = 0

because f is holomorphic along fibers.

Remark
Note: ∂̄H is well-defined even if H → B is not a v.b.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 13 / 25



Now try to compute Chern connection:

For sections f, g : B →H such that f, g ∈ H0(X,C∞X (KX/B ⊗ E))

∂

∂tj
(f, g) = ∂

∂tj

∫
Xt

〈
f(·, t) ∧ g(·, t), ht

〉
=

∫
Xt

Lξj

〈
f(·, t) ∧ g(·, t), ht

〉 (
where dp(ξj) = ∂

∂tj

)
=

∫
Xt

〈
L1,0
ξj
f(·, t) ∧ g(·, t), ht

〉
+
∫
Xt

〈
f(·, t) ∧ ξ̄jy∂̄g(·, t), ht

〉
=

∫
Xt

〈
Pt
(
L1,0
ξj
f(·, t)

)
∧ g(·, t), ht

〉
+
∫
Xt

〈
f(·, t) ∧ ξ̄jy∂̄g(·, t), ht

〉
=

∫
Xt

〈
Pt
(
L1,0
ξj
f(·, t)

)
∧ g(·, t), ht

〉
+
(
f, ∂̄H

j g
)

On the other hand,

∂

∂tj
(f, g) =

(
∇H 1,0
j f, g

)
+
(
f, ∂̄H

j g
)
.
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Therefore we have(
∇H 1,0
j f, g

)
=
∫
Xt

〈
Pt
(
L1,0
ξj
f(·, t)

)
∧ g(·, t), ht

〉
.

To extract the formula

∇H 1,0
j f←→ Pt

(
L1,0
ξj
f(·, t)

)
,

we need to know that

(2) evalt(H0(B,C∞(H ))) ⊂Ht is dense for every t ∈ B.

Proposition
(2) holds iff H → B is a holo v.b.

Proof.
As in previous proof:
Montel ⇒ t 7→ dim Ht u.s.c.
(2) ⇒ t 7→ dim Ht l.s.c.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 15 / 25



Therefore we have(
∇H 1,0
j f, g

)
=
∫
Xt

〈
Pt
(
L1,0
ξj
f(·, t)

)
∧ g(·, t), ht

〉
.

To extract the formula

∇H 1,0
j f←→ Pt

(
L1,0
ξj
f(·, t)

)
,

we need to know that

(2) evalt(H0(B,C∞(H ))) ⊂Ht is dense for every t ∈ B.

Proposition
(2) holds iff H → B is a holo v.b.

Proof.
As in previous proof:
Montel ⇒ t 7→ dim Ht u.s.c.
(2) ⇒ t 7→ dim Ht l.s.c.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 15 / 25



Therefore we have(
∇H 1,0
j f, g

)
=
∫
Xt

〈
Pt
(
L1,0
ξj
f(·, t)

)
∧ g(·, t), ht

〉
.

To extract the formula

∇H 1,0
j f←→ Pt

(
L1,0
ξj
f(·, t)

)
,

we need to know that

(2) evalt(H0(B,C∞(H ))) ⊂Ht is dense for every t ∈ B.

Proposition
(2) holds iff H → B is a holo v.b.

Proof.
As in previous proof:
Montel ⇒ t 7→ dim Ht u.s.c.
(2) ⇒ t 7→ dim Ht l.s.c.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 15 / 25



Therefore we have(
∇H 1,0
j f, g

)
=
∫
Xt

〈
Pt
(
L1,0
ξj
f(·, t)

)
∧ g(·, t), ht

〉
.

To extract the formula

∇H 1,0
j f←→ Pt

(
L1,0
ξj
f(·, t)

)
,

we need to know that

(2) evalt(H0(B,C∞(H ))) ⊂Ht is dense for every t ∈ B.

Proposition
(2) holds iff H → B is a holo v.b.

Proof.
As in previous proof:
Montel ⇒ t 7→ dim Ht u.s.c.
(2) ⇒ t 7→ dim Ht l.s.c.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 15 / 25



In the case in which H → B is locally trivial
• Berndtsson computed the curvature of H → B when Rank(E) = 1

• Liu and Yang did the higher rank curvature;
Same proof, but they also obtained a number of other formulas
from integration by parts.

Theorem (Berndtsson)

If X p→ B is a Kähler family and Rank(E) = 1 and Θ(h) is
non-negative (resp. positive) then H is Nakano non-negative (resp.
positive).

Remark
Theorem not an immediate consequence of the curvature formula.
Requires Hodge-Lefschetz Theory of Kähler manifolds

Question
Can we extend such results to the non-locally trivial case?
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The proper L2 Hilbert field

Fix (E, h)→ X
p→ B proper.

Define

Lt :=
{
f ∈ Γ(Xt,KXt ⊗ E) msrable ;

∫
Xt

|f |2h(·,t) < +∞
}

Γ(B,C∞(L )) 3 f←→f ∈ H0(X,C∞(KX/B ⊗ E))

To define ∂̄L
v : unlike ∂̄H

v , we must choose a lift of v to X.
Pick θ ⊂ TX horizontal distribution, i.e., TX,x ⊃ θx

dpx
∼=−→ TB,p(x).

Because p is a holomorphic submersion, we get an isomorphism

T 1,0
B,t 3 v

∼=←→ ξθv ∈ H0(Xt,C
∞(T 1,0

X |Xt)) s.t. 2Re ξθv(x) ∈ θx.

v̄y∂̄L f
defn←→ ξ̄θvy∂̄f

Fact: ∂̄L ∂̄L = 0 ⇐⇒ [θ1,0, θ1,0] ⊂ θ1,0

For most θ, (L , ∂̄L )→ B is not a holo vector bundle (of infinite rank).
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BLS Fields

Definition
A BLS field is a Hilbert field H→ B with
1. (Lempert-Szőke) a sheaf C∞(H)→ B of smooth sections s.t.

a. (f, f) ∈ C∞B (U) for all f ∈ Γ(U,C∞(H)), and
b. evalt(C∞(H)t) ⊂ Ht is dense for every t ∈ B

2. a (Berndtsson) ∂̄ operator defined on C∞(H)
such that for each f ∈ C∞(H)t there exists C = C(f, t) such that

(3)
∣∣∣∂v(f, g)− (f, ∂̄v̄g)

∣∣∣2 ≤ C|v|2(g, g) for all g ∈ C∞(H)t, v ∈ T 1,0
B,t.

Berndtsson Lempert Szőke

The inequality (3) defines ∇1,0
v f by Riesz Rep. Thm.

Thus we have a Chern connection ∇ = ∇1,0 + ∂̄ (and its curvature).
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Definition
If L→ B is BLS then a Hilbert subfield H ⊂ L is a BLS subfield if

a. Ht is a closed subspace of Lt for every t ∈ B,
b. C∞(H) = {f ∈ C∞(L)) ; f(t) ∈ Ht for all t ∈ Domain(f)},
c. ∂̄L|C ∞(H) = ∂̄H, and
d. The orthogonal projection P : L→ H is smooth (maps smooth

sections to smooth sections)

Proposition
If L is a BLS field and H ⊂ L is a BLS subfield then
a. ∇H = P∇L, and
b. Gauss-Griffiths Formula: for all f, g ∈ C∞(H)t and all v, w ∈ T 1,0

B,t

(Θ(L)vw̄f, g) = (Θ(H)vw̄f, g) + (IIvf, IIwg),

where IIf = ∇Lf−∇Hf = P⊥∇1,0f is the second fundamental form.
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Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,

but becomes so after integration-by-parts.
What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .

• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle?

(After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:

There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:

There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 20 / 25



Returning to the proper family (E, h)→ X
p→ B.

• If H → B is a holomorphic vector bundle then the Gauss-Griffiths
Formula gives a formula for the curvature of H .
• The formula is not immediately the same as Berndtsson’s formula,
but becomes so after integration-by-parts.

What if H is not a vector bundle? (After all, this is our objective.)

Then H is not BLS:
There is some t ∈ B and f ∈Ht that is not interpolated by C∞(H )t.

Proposition
For every f ∈Ht and every Horizontal lift θ there exists f ∈ C∞(L )t
such that

f(t) = f and ∂̄f = 0 to second order at t.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 21 / 25



One can generalize this proposition by defining iBLS structure.

This notion is too technical for the lecture. But ...
The point is that one can define

(Θ(L )vw̄f, g)− (IIvf, IIwg) .

If the Gauss-Griffiths formula was known to be true, this would be the
curvature of H . Therefore we define

(Θ(H )vw̄f, g) := (Θ(L )vw̄f, g)− (IIvf, IIwg) .

One difficulty is that the right hand side seems to depend on the choice
of horizontal distribution θ, but the left hand side should not!

Theorem
The quantity

(Θ(L )vw̄f, g)− (IIvf, IIwg)

is independent of the horizontal distribution θ.
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Generalization of Berndtsson’s Theorem

Theorem (—)

Let (E, h)→ X
p→ B be proper.

If the metric h is k-positive then H → B is k-positive.

Note: k-positivity of h is not known to imply local triviality of H for
k < min(dimX,Rank(E)).

Theorem (—)
There exists a projective manifold X, a Griffiths-positive holomorphic
vector bundle (E, h)→ X and a smooth complex hypersurface Z ⊂ X
such that the restriction map

H0(X,OX(KX ⊗ E)→ H0(Z,OZ((KX ⊗ E)|Z))

is not surjective.
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Since the curvature was defined in a rather odd way, it is reasonable to
ask what one can do with it.

Theorem (—)
Suppose H → B is Griffiths negative. Let f ∈ Γ(U,C∞(L )) such that
f(t) ∈Ht for all t ∈ U . Then log(f, f) ∈ PSH(U).

Theorem (—)
Suppose H is k-positive. Let to ∈ B, let U ⊂ B be a coordinate nbhd of
to, and let f1, ..., fk ∈ Γ(U,C∞(L )) satisfy

fi(t) ∈Ht for all t ∈ U and ∇L fi(to) ∈H ⊥
to , 1 ≤ i ≤ k.

Then the (n, n)-form

−
√
-1∂∂̄

k∑
i,j=1

(fi, fj) Υij̄(z)

is positive at to, where Υij̄(z) := dV (z)√
-1dzi ∧ dz̄j

.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 24 / 25



Since the curvature was defined in a rather odd way, it is reasonable to
ask what one can do with it.

Theorem (—)
Suppose H → B is Griffiths negative. Let f ∈ Γ(U,C∞(L )) such that
f(t) ∈Ht for all t ∈ U . Then log(f, f) ∈ PSH(U).

Theorem (—)
Suppose H is k-positive. Let to ∈ B, let U ⊂ B be a coordinate nbhd of
to, and let f1, ..., fk ∈ Γ(U,C∞(L )) satisfy

fi(t) ∈Ht for all t ∈ U and ∇L fi(to) ∈H ⊥
to , 1 ≤ i ≤ k.

Then the (n, n)-form

−
√
-1∂∂̄

k∑
i,j=1

(fi, fj) Υij̄(z)

is positive at to, where Υij̄(z) := dV (z)√
-1dzi ∧ dz̄j

.

Dror Varolin (Stony Brook) Deformation of Bergman Spaces June 12, 2024 24 / 25



Since the curvature was defined in a rather odd way, it is reasonable to
ask what one can do with it.

Theorem (—)
Suppose H → B is Griffiths negative. Let f ∈ Γ(U,C∞(L )) such that
f(t) ∈Ht for all t ∈ U . Then log(f, f) ∈ PSH(U).

Theorem (—)
Suppose H is k-positive. Let to ∈ B, let U ⊂ B be a coordinate nbhd of
to, and let f1, ..., fk ∈ Γ(U,C∞(L )) satisfy

fi(t) ∈Ht for all t ∈ U and ∇L fi(to) ∈H ⊥
to , 1 ≤ i ≤ k.

Then the (n, n)-form

−
√
-1∂∂̄

k∑
i,j=1

(fi, fj) Υij̄(z)

is positive at to, where Υij̄(z) := dV (z)√
-1dzi ∧ dz̄j

.
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Since the curvature was defined in a rather odd way, it is reasonable to
ask what one can do with it.

Theorem (—)
Suppose H → B is Griffiths negative. Let f ∈ Γ(U,C∞(L )) such that
f(t) ∈Ht for all t ∈ U . Then log(f, f) ∈ PSH(U).
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Suppose H is k-positive. Let to ∈ B, let U ⊂ B be a coordinate nbhd of
to, and let f1, ..., fk ∈ Γ(U,C∞(L )) satisfy

fi(t) ∈Ht for all t ∈ U and ∇L fi(to) ∈H ⊥
to , 1 ≤ i ≤ k.

Then the (n, n)-form

−
√
-1∂∂̄

k∑
i,j=1

(fi, fj) Υij̄(z)

is positive at to, where Υij̄(z) := dV (z)√
-1dzi ∧ dz̄j

.
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Thanks for your attention.
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