
ON THE KOBAYASHI METRICS IN RIEMANNIAN MANIFOLDS

HERVÉ GAUSSIER1 AND ALEXANDRE SUKHOV2

Abstract. We define the Kobayashi distance and the Kobayashi-Royden infinitesimal met-
ric on any smooth Riemannian manifold (M, g), using conformal harmonic immersions from
the unit disk in C into M . We also study their basic properties, following the approach
developped by H.L.Royden [12] for complex manifolds.

1. Introduction

The Kobayashi metric and the related notion of hyperbolicity of complex manifolds play
a fundamental role in the geometric Complex Analysis and in Algebraic Geometry. The
definition of the Kobayashi metric crucially uses holomorphic discs i.e., the holomorphic
maps from the unit disc D of C to a prescribed complex manifold. Of course, this definition
requires the presence of a complex (or, at least, almost complex) structure on a manifold. In
[4], M.Gromov proposed to extend the notion of Kobayashi metric to the case of arbitrary
Riemannian manifolds. He suggested to use conformal harmonic maps or, equivalently,
conformal maps whose images are minimal surfaces, from D to a Riemannian manifold
(M, g). Recently, F.Forstnerič - D.Kalaj [3] and B.Drinovec-Drnovšek - F.Forstnerič [2] used
this approach. They introduced the notion of Kobayashi metric and studied its important
properties in the case of Rn equipped with the standard Euclidean metric gst. The goal of the
present paper is to consider the case of arbitrary Riemannian manifolds as it was suggested
by M.Gromov. In particular, we extend to that general case some of the results of [2].

The paper is organized as follows. In Section 2 we recall some standard facts concerning
minimal sufaces, conformal and harmonic maps. Lemma 2.3, giving an existence of a (small)
minimal surface with prescribed center and tangent direction, is necessary for the definition
of the Kobayashi pseudodistance and of the Kobayashi-Royden pseudometric. Note that
our approach is based on important works of B.White [13, 14]. In Section 3, we introduce
the Kobayashi-Royden pseudometric on a Riemannian manifold. The main result here is
Theorem 3.3 establishing the upper semi-continuity of that pseudometric on the tangent
bundle. In Section 4, we introduce the notion of Kobayashi pseudodistance on a Riemannian
manifold. The main result of this paper is Theorem 4.1 which claims the coincidence of the
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Kobayashi pseudodistance with the integral form of the Kobayashi-Royden pseudometric.
In the complex case, this is a classical theorem of H.L.Royden [12]. In the last Section 5, we
discuss some basic properties of Riemannian manifolds which are hyperbolic in the sense of
Kobayashi i.e., the associated Kobayashi pseudodistance is a distance.

Finally, we note that many open questions, such as the sufficient conditions for complete
hyperbolicity, the existence of normal families of minimal surfaces, the asymptotic estimates
of the Kobayashi-Royden metric near the boundary, or the Gromov hyperbolicity of the
Kobayashi distance, stay open in the case of Riemannian manifolds. We will consider them
in forthcoming papers. The authors are grateful to F. Forstnerič bringing their attention to
the papers [2, 3].

2. Minimal immersions

We denote by D the unit disc in R2, by ds2 the standard Riemannian metric on R2 and
by dm the standard Lebesgue measure on R2. For every x ∈ R2 and every λ > 0, we set
D(x, λ) := {ζ ∈ C| |ζ| < λ}.

Let (M, g) be a Riemannian manifold. We assume that all structures are smooth of class
C∞. We denote by distg the distance induced by g, defined as the infimum of the length
of C1 paths joining two points. For every p ∈ M and every r > 0, let B(p, r) := {q ∈
M | distg(p, q) < r}.

A map u : D→M is called harmonic if it is a critical point of the energy integral

E(u) =

∫
D
|du|2dm.

A harmonic map satisfies the Euler-Lagrange equations

∆gu+B(u)(du, du) = 0.(1)

Here ∆g denotes the Laplace-Beltrami operator on (M, g). We do not develop the other
notation used here (see for example [6]), since we will not need it. We only note that
u 7→ ∆gu + B(u)(du, du) is a second order elliptic quasilinear PDE system. The initial
regularity of u may be prescribed in the Hölder or Sobolev spaces. It follows by the elliptic
regularity that u is a smooth C∞ map on D. Using the complex coordinates z = x + iy on
D and local coordinates on M near u(D), one can rewrite the equations (1) in the form

∂2ui

∂z∂z
+ Γijk(u(z))

∂uj

∂z

∂uk

∂z
= 0(2)

(see [6]). Here ∆ = 4
∂2

∂z∂z
is the standard Laplace operator and Γijk denote the Christoffel

symbols.
A smooth map u : D → M is called conformal if the pull-back u∗g is a metric conformal

to ds2 i.e., there exists a smooth function φ such that u∗g = eφds2 on D. Recall that any
Riemannian metric h on D admits conformal coordinates. This means that there exists a
smooth diffeomorphism Φ : D → D, depending on h, such that Φ∗h is conformal to ds2.
This is a classical fact of differential geometry, see [6]. Note that this result is true without
additional assumptions only for manifolds of dimension 2. If u : D → M is a smooth
immersion, we take h = u∗g, and the composition u ◦ Φ becomes a conformal mapping. Of



ON THE KOBAYASHI METRICS IN RIEMANNIAN MANIFOLDS 3

course, Φ depends on u and is not unique. Using the group of conformal automorphisms of
D, we can always achieve the conditions Φ(0) = 0 and Φ(1) = 1.

The condition for u to be conformal is equivalent to the conditions, satisfied for every
(x, y) ∈ D:

gu(x,y)(∂u/∂x, ∂u/∂x) = gu(x,y)(∂u/∂y, ∂u/∂y), gu(x,y)(∂u/∂x, ∂u/∂y) = 0(3)

(see [6]).
Recall that a surface in (M, g) is called minimal if its mean curvature (induced by g)

vanishes. A conformal immersion (i.e., its image) is minimal if and only if it is harmonic (see
[6]). The energy functional has very important compactness properties in suitable function
spaces. This makes it a usuful tool in order to study boundary values problems for minimal
surfaces, in particular, the Plateau problem. However, in some cases it is more convenient
to work with the area functional. Here we follow the approach of B. White [13].

Let u : D −→ M be a smooth immersion. We denote by gD := u∗(g) the Riemannian
metric on D, pullback of the metric g by u. Let GD be the matrix (GD)i,j = gD(∂/∂xi, ∂/∂xj),
for i, j ∈ {1, 2} (for convenience, in the matrix notations x1 = x, x2 = y). We also denote
ux := u? (∂/∂x) and uy := u? (∂/∂y). In particular, the scalar product of ∂/∂xi, ∂/∂xj
evaluated at (x, y) ∈ D is equal to gD(∂/∂xi, ∂/∂xj) = gu(x,y)(uxi , uxj). For convenience, we
just write gu(x,y)(uxi , uxj) =: gu(uxi , uxj). Then the area functional A(u) of the immersion u
is defined by

A(u) =

∫
D
(detGD)1/2dm.(4)

One may view A as a real map defined on the space of smooth immersions. A smooth
immersion u is called stationary if the differential DA of A vanishes at u i.e., DA(u) = 0.
As it is shown in [13], an immersion is stationary if and only if its image is a minimal surface.
Therefore, after a suitable reparametrization, a stationary immersion becomes a conformal
harmonic map.

In the rest of the paper, we refer conformal harmonic immersions from D to M as conformal
harmonic immersed discs. Similarly, we refer to stationary or minimal discs. Note that
we consider stationary discs with arbitrary parametrizations, not necessarily the conformal
harmonic ones. Note also that we sometimes identify an immersed disc with its image when
this does not lead to any confusion.

Since we work only locally, in suitable local coordinates on M we will consider u : D→ Rn

given as a graph :

∀(x, y) ∈ D, u(x, y) = (x, y, u3(x, y), . . . , un(x, y)),

where u3, . . . , un are smooth C∞ functions. Then

ux := (1, 0, u3
x, . . . , u

n
x)

and

uy := (1, 0, u3
y, . . . , u

n
y ).

Now we follow White’s approach in [13, 14]. Let h = (0, 0, h3, . . . , hn) : D → Rn be a
smooth map and let, for every t ∈ [0, 1] and every (x, y) ∈ D, ϕt(x, y) = (x, y, u3(x, y) +
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th3(x, y), . . . , un(x, y) + thn(x, y)). Then

ϕtx = (ϕt)?(∂/∂x) = (1, 0, u3
x + th3

x, . . . , u
n
x + thnx),

ϕty = (ϕt)?(∂/∂y) = (1, 0, u3
y + th3

y, . . . , u
n
y + thny ).

and

A(ϕt) =

∫
D

(
gϕt(ϕtx, ϕ

t
x)gϕt(ϕty, ϕ

t
y)− gϕt(ϕtx, ϕ

t
y)gϕt(ϕtx, ϕ

t
y)
)1/2

dxdy.

If we write hx = (0, 0, h3
x, . . . , h

n
x) and hy = (0, 0, h3

y, . . . , h
n
y ), then we have, for every

t ∈ [0, 1]:

ϕ0
x = ux,

d

dt |t=0
ϕtx = hx

and

ϕ0
y = uy,

d

dt |t=0
ϕty = hy.

Then u is a stationary immersion if and only if for every smooth map h we have

d

dt |t=0
A(ϕt) = 0.

The expression of d
dt |t=0

A(ϕt) is straightforward and depends linearly on h, hx and hy. By

integration by parts, we obtain a quasilinear operator, with respect to ux, uy, uxx and uyy,
that depends linearly on h. Using the Riesz representation theorem (see details in [13]), we
obtain the following

Lemma 2.1. With these notations, the stationary condition has the form

H(u) = 0(5)

where

H(u) = (H1(u), ..., Hn(u))(6)

with
Hj(u) = ψj(ux, uy, uxx, uxy, uyy) for j = 1, 2

and
Hj(u) = ujxx + ujyy + ψj(ux, uy, uxx, uxy, uyy) for j = 3, . . . , n.

Here, for j = 1, . . . , n, ψj is a smooth C∞ function, without constant or linear terms with
respect to ux, uy, uxx, uxy, uyy. Furthermore, the vector H(u) is orthogonal to u(D).

In particular, the operator H is a quasilinear elliptic operator whose linearization at u :
(x, y) ∈ D 7→ (x, y, 0, . . . , 0) ∈ Rn is

(
0, 0,∆u3, · · · ,∆un

)
(7)

where ∆ denotes the standard Laplace operator.

Since H(u) is orthogonal to u(D), the equation (5) is equivalent to the equations

Hj(u) = 0, j = 3, ..., n.(8)

In what follows we mean these equations when refering to (5).
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Example 2.2. Consider the special case where M = R3 and g is the standard metric.
Assume that the stationary map u : D → R3 is the graph of a function f : D → R i.e.,
u : (x, y) ∈ D 7→ (x, y, f(x, y)). Then the equation (8) takes the form

(1 + f 2
y )fxx + (1 + f 2

x)fyy − 2fxfyfxy = 0.(9)

Its linearization at u : (x, y) ∈ D 7→ (x, y, 0) ∈ R3 (i.e. the linearization of (9) at f = 0) is
the standard Laplace operator ∆.

We need the following classical regularity property of the Laplace operator. Consider the
logarithmic potential

K(z) = (2π)−1 log |z|.(10)

This is a fundamental solution of the Laplace equation. Consider the Poisson equation

∆u = f .(11)

Assume that f belongs to the Hölder class Cµ(D), where µ is a positive real non-integer
number. It is classical (see [10]) that the potential of f defined by

Uf(z) =

∫
D
K(z − w)f(w)dm(w)(12)

is a function of class C2+µ(D) and satisfies ∆U = f . Furthermore, the linear operator
U : f 7→ Uf , U : Cµ(D)→ C2+µ(D), is bounded.

We denote e1 := (1, 0) ∈ R2. The following result claims that locally there are many
conformal harmonic maps.

Lemma 2.3. (i) Let p ∈M and ξ ∈ TpM \{0}. Then there exists a conformal harmonic
immersion u : D → M such that u(0) = p and du(0) · e1 = αξ for some α > 0.
Furthermore, this immersion depends smoothly on p and ξ.

(ii) Let u : D→M be a conformal harmonic immersion. Suppose that u(D) is contained
in a ball B(p, r) of radius r > 0 small enough. Then there exists r1 < r and a smooth
(n − 2)-parameter foliation of B(p, r1) by conformal harmonic discs containing u as
a leaf. Moreover, given q close enough to p, and a vector ξ close enough to du(0) · e1,
one can choose the above foliation such that for some leaf ũ one has ũ(0) = q and
dũ(0) · e1 = ξ.

Proof. (i) We consider local coordinates (x1, . . . , xn) on M in which p = 0. We also assume
that these coordinates are normal for the Levi - Civita connexion of (M, g). Then in these
coordinates gij(0) = δij and the first order partial derivatives of gij vanish at 0. Consider the
metric gt(x1, . . . , xn) := g(tx1, . . . , txn) for t > 0. We notice that such a metric is isometric
to g. The metric ht = t−2gt is not isometric to gt, but the corresponding set of stationary
surfaces is the same as for gt ; this follows immediately from the expression for the area
functional and the definition of stationary immersions. Finally, note that the metric ht
converges to the standard metric gst of Rn in any Ck-norm on any compact subset of Rn, as
t→ 0.

We may assume that ξ = (1, 0, ..., 0) and we search for a suitable stationary immersion
of the unit disc of the form (x, y) 7→ (x, y, f(x, y)) i.e., as the graph of a vector function
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f : D → Rn−2. Consider the equation (8) for the metric ht. For t = 0, it becomes a vector
analog of (9). Its linearization at f = 0 is given by (7) which is a surjective operator from
C2,α(D,Rn−2) to C0,α(D,Rn−2), with any fixed α ∈ (0, 1). Indeed, this follows from the stated
above regularity property of the logarighmic potential. By the implicit function theorem the
equation (5) admits solutions for t > 0 small enough. Namely, for every sufficiently small t,
there exists a minimal surface, given by a smooth stationary immersion ut,p,ξ : D→ Rn, for
the Riemannian metric ht, such that ut,p,ξ : (x, y) ∈ D 7→ (x, y, ft,p,ξ(x, y)) depends smoothly
on (t, p, ξ) and is a small deformation of the map (x, y) 7→ (x, y, 0). In particular, ut,p,ξ(0) is
close to p and dut,p,ξ(0) · e1 is close to ξ. Now, if Up is a small neighborhood of p in Rn and
Vξ is a small neighborhood of ξ in the unit sphere (for the standard metric in Rn), the same
reasoning implies that for every sufficiently small t, the set {(ut,p′,ξ′(0), dut,p′,ξ′(0) · e1), p′ ∈
Up, ξ′ ∈ Vξ} fills an open neighborhood of (p, ξ) in Rn × Rn. Hence, for sufficiently small
t, there exists (p′, ξ′) ∈ Up × Vξ such that ut,p′,ξ′(0) = p and dut,p′,ξ′(0) · e1 = cξ for some
real number c close to one. Note that all solutions are C∞ smooth by the elliptic regularity.
Finally, being a solution of the equation (5), ut,p′,ξ′ : D → Rn is a stationary disc for gt
and therefore for g. Hence, this disc becomes a conformal harmonic immersion for g after
a suitable reparametrization. The smooth dependence on p and ξ follows from the implicit
function theorem. This proves Part (i) of Lemma 2.3 .

(ii) Choose local normal coordinates (x1, . . . , xn) as above. Also, set (x̃1, . . . , x̃n) =
(tx1, . . . , txn) for t > 0 small enough and again consider the metrics ht(x̃1, . . . , x̃n) =
t−2g(tx1, . . . , txn). We may assume that, in the coordinates (x1, . . . , xn), the conformal
harmonic immersion u : D → M has the form u(x, y) = L(x, y) + O(|(x, y)|2) where L is
a linear map from R2 to Rn, of rank 2. Then the disc ut : (x, y) ∈ D 7→ u(tx, ty) has the
expansion ut(x, y) = L(x, y) + O(t) in the coordinates (x̃1, . . . , x̃n). As t → 0, this family
of discs converges to a conformal linear disc. Note that after an isometric (with respect to
gst structure) linear transformation this disc is a graph of the zero map. Then the desired
result follows by the implicit function theorem as in part (i).

�

Note that there is another way to prove Lemma 2.3, based on deep results on the Plateau
problem. The following result is a very special case of the fundamental theorem of Morrey
[11]. Let φ : D → (M, g) be a smooth map. Suppose that a Riemannian manifold (M, g)
satisfies some standard metric assumptions (for example, M is compact). Then there exists
a conformal harmonic map u : D→M continuous up to the boundary of the unit disc, and
such that u|bD = φ|bD. In particular, the image of u is a minimal surface in M with the
boundary u(bD). Furthermore, it follows from the results of Hildebrandt [7] that u depends
continuously on the perturbation of φ. Choose local coordinates on M as above and consider
all conformal linear maps from D to this local chart. Then the theorem of Morrey can be
applied to the images of the unit circle by these maps. Since, in these local coordinates, the
metric g is a small perturbation of the standard one, minimal surfaces given by Morrey’s
theorem are small deformations of the linear discs. This implies Lemma 2.3.
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3. The Kobayashi-Royden pseudometric on a Riemannian manifold

Let (M, g) be a Riemannian manifold. For a point p ∈ M and a tangent vector ξ ∈ TpM
we set

FM(p, ξ) := inf
1

r
where r runs over all positive real numbers for which there exists a conformal harmonic
immersion u : D → M such that u(0) = p and du(0) · e1 = rξ. It follows by Lemma
2.3 that FM is well defined for every (p, ξ) in the tangent bundle TM . We call FM the
Kobayashi-Royden pseudometric for the Riemannian manifold (M, g).

We have the following obvious

Lemma 3.1. Let f : (M, g) → (N, h) be an isometric immersion between two Riemannian
manifolds i.e., f satisfies g = f ∗h. Then

FN(f(p), df(p)ξ) ≤ FM(p, ξ).

In particular, if M is a connected open subset of N , then

FN(p, ξ) ≤ FM(p, ξ).

For (p, ξ) ∈ TM , we denote |ξ|g :=
√
gp(ξ, ξ), when no confusion is possible.

Lemma 3.2. The function FM is non-negative, and for any real a one has

FM(p, aξ) = |a|FM(p, ξ).

If K is a compact subset of M then there is a constant CK > 0 such that for p ∈ K one has

FM(p, ξ) ≤ CK |ξ|g.
Proof. The first property is obvious. Let us prove the second one. For every point p ∈ M
and every sufficiently small open neighborhood U of p, Lemma 2.3 implies that there exists
ε > 0 with the following property: for every point q ∈ U , every unit vector ξ ∈ TqM and
every r ∈ (0, ε), there exists a conformal harmonic immersion u : D→M such that u(0) = q,
du(0) ·e1 = rξ. Then for CU = 1/ε we have F (q, ξ) ≤ CU |ξ|g for all vectors ξ (not nesessarily
unit). Covering K by a finite number of open neighborhoods, we conclude. �

The main regularity property is given by the following

Theorem 3.3. The function FM is upper semi-continuous on the tangent bundle TM .

The key result needed for the proof is the following

Proposition 3.4. Let u0 : D→M be a conformal harmonic immersion. Then there exists a
neighborhood U of (u0(0), du0(0) ·e1) in the tangent bundle TM such that for each (p, ξ) ∈ U
there exists a conformal harmonic immersion u : D→M satisfying u(0) = p, du(0) · e1 = ξ.

The upper semicontinuity of FM follows immediately from this proposition and the defi-
nition of FM . So the remainder of this section is devoted to the proof of Proposition 3.4.

Proof. Essentially, the proof is implicitely contained in the works [13, 14]. For the conve-
nience of the reader we include some details. For simplicity we consider the case whee M
coincides with Rn equipped with a Riemannian metric g. It is indicated in [13, 14] how the
theory of White can be extended to arbitrary ambient Riemannian manifolds.

The operator DH(u0) is called the Jacobi operator at u0. In order words, the Jacobi oper-
ator is the linearization of H at u0. This is a second order linear PDE operator. Furthermore,
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it is elliptic and self-adjoint. If a vector field h is tangent to the disc u0(D), then the value of
DH(u0) on h, i.e., DH(u0)·h, vanishes. Thus, for any h, the vector field DH(u0)·h is normal
to u0(D). Similarly to Section 2 (cf. the equations (5) and (8)), in what follows we identify
DH(u0) with its normal projection (with respect to u0(D)). A Jacobi field with respect to
u0 is a vector field in the kernel of DH(u0). It is established in [13] (Corollary at Section 6)
that a smooth Jacobi field at u0 is the initial velocity vector field of a one-parameter family
of stationary discs. In order to apply this result, we need to study the existence of Jacobi
fields.

The existence of the Jacobi fields in the direction transverse to u0(D) is established in [14].
Consider a sufficiently small r > 0 and the disc u0(rD). By Lemma 2.3 this disc generates
a one-parameter family of minimal discs in any direction tranverse to u0(D) at the origin.
Such a deformation is generated by a Jacobi field, obtained by taking the derivative with
respect to the parameter, defined in a neighborhood of the origin on u0(D): this provides
the existence of a Jacobi field with respect to u0 in a prescribed direction near the centre
u0(0). The existence of a global Jacobi field now follows from P.Lax’ Equivalence Theorem
of [9],stating, in our case, that a Jacobi field defined in a neighborhood of 0 in R2 can
be approximated by a Jacobi field defined on the whole disc D. The property of unique
continuation of solutions required by theorem of P.Lax follows in our case from the Calderon
uniqueness theorem, see [1], Theorem 11. Now Proposition 3.4 follows. �

4. The Kobayashi distance and coincidence theorem

Denote by PD the Poincaré metric, defined for z ∈ D and v ∈ C by

PD(z, v) =
|v|

1− |z|2

and by ρD the Poincaré distance on D. Recall that for every z, w ∈ D :

ρD(z, w) =
1

2
log

1 + d(z, w)

1− d(z, w)

where

d(z, w) =
|z − w|
|1− zw|

.

Let p and q be two points in the Riemannian manifold (M, g). A Kobayashi chain from
p to q is a finite sequence of points zk, wk in D and of conformal harmonic immersions
uk : D → M , k = 1, . . . ,m, such that u1(z1) = p, um(wm) = q and uk(wk) = uk+1(zk+1)
for k = 1, . . . ,m − 1. The existence of such chains follows from Lemma 2.3. Indeed, by
compactness any smooth path from p to q can be covered by sufficiently small balls such
that the centre of a given ball is contained in the preceding ball. By Lemma 2.3 each ball
is foliated by minimal discs through its centre, which provides a Kobayashi chain. The
Kobayashi pseudodistance from p to q is then defined by

dM(p, q) = inf
∑
k

ρD(zk, wk)(13)

where the infimum is taken over all Kobayashi chains from p to q.
On another hand, we consider the pseudodistance defined as the integrated form of FM :
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dM(p, q) = inf

∫ 1

0

FM(γ(t), γ̇(t))dt(14)

where the infimum is taken over all piecewise smooth paths γ from p to q. Notice that dM
is well defined by Theorem 3.3. The main result of this section is the following coincidence
theorem.

Theorem 4.1. We have dM = dM .

Proof. First we note that for every conformal harmonic disc u : D → M we have, for every
z ∈ D and every ξ ∈ C:

FM(u(z), du(z) · ξ) ≤ PD(z, ξ).(15)

Indeed, in the case where z = 0 and ξ = e1, this follows from the definition of FM . Then it
follows for any z ∈ D and any unit vector ξ, if we replace u with the conformal harmonic disc
u◦φ, where φ is a biholomorphic automorphism of D such that φ(0) = z, dφ(0) ·e1 = ξ. Then
the inequality (15) follows for any vector ξ since the two metrics are absolutely homogeneous.
As a consequence, for any conformal harmonic disc u : D→M we have for every z, w ∈ D:

dM(u(z), u(w)) ≤ ρD(z, w).(16)

Consider now a Kobayashi chain between p and q, as above. Then, by the triangle in-
equality and the inequality (16) we have:

dM(p, q) ≤
∑
k

dM(uk(zk), uk(wk)) ≤
∑

ρD(zk, wk).

Taking the infimum over all Kobayashi chains joining p to q, we obtain that dM(p, q) ≤
dM(p, q).

Let us prove now the converse inequality. Fix ε > 0 and consider a smooth path γ :
[0, 1]→M satisfying γ(0) = p, γ(1) = q and such that∫ 1

0

FM(γ(t), γ̇(t))dt < dM(p, q) + ε.

Since FM is an upper-semicontinuous function, there is a continuous function h : [0, 1]→ R
satisfying h(t) > FM(γ(t), γ̇(t)) for every t ∈ [0, 1] and such that∫ 1

0

h(t)dt < dM(p, q) + ε.

Therefore, for every sufficiently fine partition 0 = t0 < t1 < ... < tm = 1 of [0, 1] we have

m∑
i=1

h(ti−1)(ti − ti−1) < dM(p, q) + ε.

Lemma 4.2. There exist constants C > 0 and δ > 0 such that for every t ∈ [0, 1] and every
a, b ∈ B(γ(t), δ) we have:

dM(a, b) ≤ Cdistg(a, b)

where distg denotes the distance induced by the Riemannian metric g on M .



10 H. GAUSSIER AND A. SUKHOV

Proof. Fix t ∈ [0, 1]. Choose local normal coordinates centered at the point γ(t) so that this
point is the origin in these coordinates. By Lemma 2.3 there exists δ1 > 0 small enough such
that for any vector ξ ∈ Tγ(t)M \ {0}, the ball B(γ(t), δ1) contains an immersed minimal disc
centered at γ(t) and tangent to the direction of ξ. It is shown in the proof of Lemma 2.3 that
the family D of these discs is a small smooth perturbation of the family of linear conformal
discs which fill the ball B(γ(t), δ1). Hence, shrinking δ1 if necessary, we may assume that for
every point b ∈ B(γ(t), δ1) there exists a disc from the family D, centered at γ(t) and passing
through b. It also follows from the proof of Lemma 2.3 (which is based on an application of
the implicit function theorem) that the above family D of minimal discs smoothly depends
on a small perturbation of their common center γ(t).

Hence there exist 0 < δ < δ1/2 and, for each point a ∈ B(γ(t), δ), a family Da of minimal
discs centered at a such that the family Da still fills the ball B(γ(t), δ1/2). In other words
for any a, b in B(γ(t), δ) there exists a conformal harmonic immersion u : D→M through a
and b. The map u being an immersion, there exists C > 0, only depending on δ, such that

distg(a, b) = distg(u(z), u(w)) ≥ C|z − w|.
Moreover, by changing δ is necessary, there exists C ′ > 0, only depending on δ, such that
ρD(z, w) ≤ C ′|w − z|.

Now it follows from the definition of the Kobayashi distance that

dM(a, b) ≤ ρD(z, w) ≤ C|w − z| ≤ C|b− a|.
(Here, the constant C > 0 changes from inequality to inequality.)

All constants being uniform, this proves Lemma 4.2. �

Fix t ∈ [0, 1]. Since h(t) > FM(γ(t), γ̇(t)), there exists a conformal harmonic immersion
u : D → M and a real number r > 0 such that u(0) = γ(t), du(0) · e1 = rγ̇(t) and
h(t) > 1/r. Therefore, for every s real close enough to the origin we have the expansion, in
local coordinates in M :

u(s/r) = γ(t) + (s/r)du(0) · e1 +O(s2) = γ(t) + sγ̇(t) +O(s2).

Note also that ρD(0, z) = |z|+O(|z|2) for z ∈ D close enough to 0. Therefore, using Lemma
4.2 we obtain:

dM(γ(t), γ(t) + sγ̇(t)) ≤ dM(u(0), u(s/r)) + dM(u(s/r), γ(t) + sγ̇(t))

≤ ρD(0, s/r) + Cdistg(u(s/r), γ(t) + sγ̇(t))

≤ |s|/r +O(s2)

< |s|h(t) +O(s2).

Using again Lemma 4.2, we conclude that for t, t̃ ∈ [0, 1], close enough, one has

dM(γ(t), γ(t̃)) ≤ dM(γ(t), γ(t) + (t̃− t)γ̇(t)) + dM(γ(t) + (t̃− t)γ̇(t), γ(t̃))

≤ |t̃− t|h(t) +O(|t̃− t|2).

As a consequence, for any sufficiently fine partition we have

dM(p, q) ≤
m∑
i=1

dM(γ(ti−1), γ(ti)) ≤
m∑
i=1

(ti − ti−1)h(ti−1)(1 + ε) < (1 + ε)(dM(p, q) + ε).
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Since ε > 0 is arbitrary, the proof is concluded.
�

5. Hyperbolicity

The main purpose of this Section is to prove an analogue of [12], Theorem 2 p. 133, in the
context of Riemannian manifolds. In case (M, g) = (Rn, gst), this is proved in [2], Theorem
4.2. We follow the presentation of [12].

The notion of hyperbolicity we consider in Definition 5.1 (ii) comes from complex geometry
and refers to the Kobayashi-Royden pseudometric defined in Section 3. It is a local notion,
defined at every point, and is different from the classical concept of a hyperbolic complete
Riemannian manifold, that has constant sectional curvature equal to −1.

Definition 5.1. (i) A Riemannian manifold (M, g) is called Kobayashi hyperbolic if the
Kobayashi pseudodistance dM is a distance.

(ii) A Riemannian manifold (M, g) is called hyperbolic at a point x ∈ M if there is a
neighborhood U of x and a positive constant c such that FM(y, ξ) ≥ c|ξ|g for every
y ∈ U and every ξ ∈ TyM .

(iii) A Riemannian manifold (M, g) is called tight if the family of conformal harmonic
immersions from D to M is equicontinuous for the topology generated by distg.

(iv) A family F of mappings of a topological space X into a topological space Y is called
even if, given x ∈ X, y ∈ Y and a neighborhood U of y, there is a neighborhood V of
x and a neighborhood W of y such that for every f ∈ F , we have f|V ⊂ U whenever
f(x) ∈ W .

We have the following characterization of hyperbolicity of Riemannian manifolds

Theorem 5.2. Let (M, g) be a Riemannian manifold. Then the following statements are
equivalent:

(i) the family CH(D,M) of conformal harmonic immersions from D to M is equicontin-
uous with respect to the distance distg i.e., (M,distg) is tight,

(ii) the family CH(D,M) is an even family,
(iii) M is hyperbolic at every point,
(iv) dM is a distance i.e., M is Kobayashi hyperbolic,
(v) the Kobayashi metric dM induces the usual topology of M .

Proof. The implication (i)⇒ (ii) follows from [8] p. 237, where it is stated that equicontinu-
ity of a family of mappings of a topological space X into a topological space Y with respect
to any metric inducing the topology of Y implies that the family is an even family.

(ii)⇒ (iii). This is based on the following result, see [5], Theorem 4.8.1 p. 113 :

Theorem (Schwarz Lemma). Let (X, h) and (Y, g) be Riemannian manifolds. Let

B(x0, R0) ⊂ X, R0 < min
(
iX(x0), π

2κX

)
, where iX(x0) denotes the injectivity radius at

x0 and −ω2
X ≤ KX ≤ κ2

X are curvature bounds on B(x0, R0). Let B(y0, R
′) ⊂ Y , R′ <

min
(
iY (y0), π

2κY

)
, where iY (y0) denotes the injectivity radius at y0 and −ω2

Y ≤ KY ≤ κ2
Y

are curvature bounds on B(y0, R
′).
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If u : X → B(y0, R
′) is harmonic, then for all R ≤ R0:

(17) |∇u(x0)| ≤ c0 max
x∈B(x0,R)

distg(u(x), u(x0))

R

where c0 = c0(R0, ωX , κX , dimX,R′, ωY , κY , dimY ).

Let p be a point in M and let B(p,R′) such that R′ satisfies the condition of the above
Schwarz Lemma, with y0 = p. By assumption, the family CH(D,M) being even, there exist
0 < δ < 1 and 0 < δ′ < R′, such that for every conformal harmonic immersion u : D → M ,
we have u|D(0,δ) ⊂ B(p,R′), whenever u(0) ∈ B(p, δ′). It follows by the Schwarz Lemma that
there exists c0 > 0 such that for every conformal harmonic immersion u : D → M , with
u(0) ∈ B(p, δ′), we have

|∇u(0)| ≤ c0
R′

δ
.

Hence, for every y ∈ B(p, δ′) and for every v ∈ TyM , we have: FM(y, v) ≥ δ

c0R′
|v|g.

(iii) ⇒ (iv). By the assumption on FM and the definition of dM , dM is a distance. The
implication is then given by Theorem 4.1.

(iv) ⇒ (v). Let x ∈ M and let δ > 0 be such that B(x, δ) is geodesically convex i.e., for
every y, z ∈ B(x, δ), there exists γ0 : [0, 1] → M a piecewise C1 smooth path joining y to

z, with γ0([0, 1]) ⊂ B(x, δ) and lg(γ0) :=
∫ 1

0
|γ̇0(t)|gdt = distg(y, z). Applying Lemma 3.2 to

the compact set K := B(x, δ), there exists CK > 0, such that FM(y, v) ≤ CK |v|g, for every
y ∈ K and every v ∈ TyM . It follows now from Theorem 4.1:

(18) dM(y, z) = dM(y, z) ≤
∫ 1

0

FM(γ0(t), γ̇0(t))dt ≤ CK

∫ 1

0

|γ̇0(t)|gdt = CKdistg(y, z).

This means that the topology generated by dM is weaker than the topology generated by
distg.

Moreover, it follows from (18) that the map y 7→ dM(x, y) is continuous on B(x, δ) for the
topology generated by distg. In particular, for every 0 < α < δ, there exists y0 ∈ ∂B(x, α/2)
such that

dM(x, y0) = inf
y∈∂B(x,α/2)

d(x, y) > 0.

By the definition of dM , for every y ∈M \ B(x, α)

dM(x, y) = dM(x, y) ≥ dM(x, y0) = dM(x, y0).

This means that the set {y ∈M/dM(x, y) < dM(x, y0)} ⊂ B(x, α) i.e., the topology generated
by distg is weaker than the topology generated by dM .

(v)⇒ (i). It follows from (13) et (14) that every conformal harmonic immersion f : D→
M and for every ζ, ζ ′ ∈ D : dM(f(ζ), f(ζ ′)) ≤ ρD(ζ, ζ ′). Hence the family CH(D,M) is
equicontinuous. �

We conclude by noticing that, as in the complex setting and following [12], we can define
the notions of tautness and complete hyperbolicity for Riemannian manifolds :
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Definition 5.3. (i) A Riemannian manifold (M, g) is called taut if the family CH(D,M)
is a normal family i.e., every sequence in CH(D,M) admits a subsequence that ei-
ther converges to an element of CH(D,M) uniformly on compact subsets of D, or is
compactly divergent.

(ii) A Riemannian manifold (M, g) is called complete hyperbolic if it is Kobayashi hy-
perbolic and the metric space (M,dM) is complete.

Then the characterization of tautness and complete hyperbolicity contained in Section 4
of [12] still hold in our context. In particular we have the following

Proposition 5.4. Let (M, g) be a Riemannian manifold. Then we have:

(i) M is complete hyperbolic if and only if for every p ∈ M and every r > 0, the set
{q ∈M/ dM(p, q) ≤ r} is compact in M .

(ii) M complete hyperbolic ⇒ M taut ⇒ M Kobayashi hyperbolic.
(ii) Let π : M̃ → M be a covering map of M and denote by g̃ the unique Riemannian

metric on M̃ such that π is a Riemannian covering map. Then (M̃, g̃) is complete
hyperbolic if and only if (M, g) is complete hyperbolic.

We denote e1 := (1, 0) ∈ R2. The following result claims the existence of a conformal
harmonic map with prescribed 1-jet.

Lemma 5.5. Let p ∈ M and let E be a 2-dimensional subspace of TpM . Then there exists
a conformal harmonic immersion u : D→M with u(0) = p and such that the tangent space
Tpu(∆) conicides with E. Furthermore, this immersion depends smoothly on p and E.

Proof. We consider local coordinates (x1, . . . , xn) on M in which p = 0. We also assume
that these coordinates are normal for the Levi - Civita connexion of (M, g). Then in these
coordinates gij(0) = δij and the first order partial derivatives of gij vanish at 0. Consider the
metric gt(x1, . . . , xn) := g(tx1, . . . , txn) for t > 0. We notice that such a metric is isometric
to g. The metric ht = t−2gt is not isometric to gt, but the corresponding set of stationary
surfaces is the same as for gt ; this follows immediately from the expression for the area
functional and the definition of stationary immersions. Finally, note that the metric ht
converges to the standard metric gst of Rn in any Ck-norm on any compact subset of Rn, as
t→ 0.

We may assume that E is generated by the vectors (1, 0, ..., 0) and (0, 1, ..., 0). We search
for a suitable stationary immersion of the unit disc of the form (x, y) 7→ (x, y, f(x, y)) i.e.,
as the graph of a vector function f : D→ Rn−2. Consider the equation (8) for the metric ht.
Its linearization at f = 0 is given by (7) which is a surjective operator from C2,α(D,Rn−2) to
C0,α(D,Rn−2), with any fixed α ∈ (0, 1). Indeed, this follows from the stated above regularity
property of the Laplace operator in the Holder scale. By the implicit function theorem the
equation (5) admits solutions for t > 0 small enough. Namely, for every sufficiently small t,
there exists a minimal surface, given by a smooth stationary immersion u(t, p, E) : D→ Rn,
for the Riemannian metric ht, such that u(t, p, E) : (x, y) ∈ D 7→ (x, y, ft,p,E(x, y)) de-
pends smoothly on (t, p, E) and is a small deformation of the map (x, y) 7→ (x, y, 0). In
particular, u(t, p, E)(0) is close to p and du(t, p, E)(0)(T0D) is close to E. Now, if Up
is a small neighborhood of p in Rn and V is a small neighborhood of E in the Grass-
manian Gr(2, n) , the same reasoning implies that for every sufficiently small t, the set
(u(t, p, E)(0), du(t, p, E)(0)(T0D)) where p′ ∈ Up and E ∈ V , fills an open neighborhood of
(p, E) in Rn × Gr(2, n). Hence, for sufficiently small t, there exists (p, E) ∈ Up × V such
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that u(t, p, E)(0) = p and du(t, p, E)(0)(T0D) = E. Note that all solutions are C∞ smooth
by the elliptic regularity. Finally, being a solution of the equation (5), u(t, p, E) : D→ Rn is
a stationary disc for gt and therefore for g. Hence, this disc becomes a conformal harmonic
immersion for g after a suitable reparametrization. The smooth dependence on p and E
follows from the implicit function theorem. This proves Lemma 5.5 . �

5.1. MPSH functions. Let ρ be a function of class C2 on M .
In local coordinates at a point p ∈M , the Hessian of ρ is given by

(19) ∇2ρ =
n∑

i,j=1

(
∂2ρ

∂xi∂xj
−

n∑
k=1

Γkij
∂ρ

∂xk

)
dxi ⊗ dxj.

Following [2], we have the following

Definition 5.6. Let ρ : M → [−∞,+∞) be an upper semi-continuous function. We say
that ρ is minimal plurisubharmonic (MPSH) if for every conformal harmonic immersed disc
u : D→M , the composition ρ ◦ u is subharmonic on D.

In the case of C2 functions, we have the following characterization of minimal plurisub-
harmonicity

Lemma 5.7. Let ρ : M → R be a function of class C2. Then ρ is MPSH if and only if
∆(ρ ◦ u) ≥ 0 for every conformal harmonic immersed disc u : D→M .

Since a conformal harmonic disc has only a finite number of singular points on compact
subsets of D, then a function ρ : M → R of class C2 is MPSH if and only if ∆(ρ ◦ u) ≥ 0 for
every conformal harmonic disc u : D→M . Moreover, there are sufficiently many immersed
harmonic discs for the MPSH notion to be consistent, as showed by Lemma 5.5.

Lemma 5.8. Let ρ be a C2 function on M and u : D→ M be a conformal harmonic map.
Then ∆(ρ ◦ u)(0) depends only on the 1-jet of u at the origin.

Proof. We set ∂/∂x = (1, 0), ∂/∂y = (0, 1), p = u(0). Let (x1, . . . , xn) be normal coordinates
at p and let u = (u1, . . . , un). We recall that Γjk,l(p) = 0, where Γjk,l denote the Christoffel
symbols of u in the normal coordinates. Then :

∂2(ρ ◦ u)

∂x2
(0) = ∇2ρ(p)

(
n∑
j=1

∂uj
∂x

(0),
n∑
k=1

∂uk
∂x

(0)

)
+∇ρ(p)

(
n∑
j=1

∂2uj
∂x2

(0)

)
and

∂2(ρ ◦ u)

∂y2
(0) = ∇2ρ(p)

(
n∑
j=1

∂uj
∂y

(0),
n∑
k=1

∂uk
∂y

(0)

)
+∇ρ(p)

(
n∑
j=1

∂2uj
∂y2

(0)

)
.

Since u is harmonic, it follows from (??) that

n∑
j=1

(
∂2uj
∂x2

(0) +
∂2uj
∂y2

(0)

)
= −

n∑
j,k,l=1

Γjk,l(p)
∂uk
∂x

(0)
∂ul
∂x

(0) = 0.
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Hence, we obtain
(20)

∆(ρ ◦ u)(0) =
∂2(ρ ◦ u)

∂x2
(0) +

∂2(ρ ◦ u)

∂y2
(0)

= ∇2ρ(p)

(
n∑
j=1

∂uj
∂x

(0),
n∑
j=1

∂uj
∂x

(0)

)
+∇2ρ(p)

(
n∑
j=1

∂uj
∂y

(0),
n∑
j=1

∂uj
∂y

(0)

)
.

�

Finally we have the following

Lemma 5.9. Let ρ be a C2 function on M . Assume that for every p in M and every 2-
dimensional subspace E of TpM , there exists a conformal harmonic disc u such that u(0) = p
and Tpu(D) = E, and such that ∆(ρ ◦ u)(0) ≥ 0. Then ρ is an MPSH function.

Proof. Let f : D→ M be a conformal harmonic immersion. Let p = f(ζ0) for some ζ0 ∈ D.
By assumption, there exists a conformal harmonic disc u : D → M satisfying u(0) = p,
Tpf(D) = Tpu(D), and ∆(ρ ◦ u)(0) ≥ 0. Let h = (h1, h2) be a holomorphic automorphism
of D such that h(0) = ζ0. Then g := f ◦ h is a conformal harmonic immersed disc, with
g(0) = p and Tpg(D) = Tpf(D). Moreover

∆(ρ ◦ g)(0) = ∆(ρ ◦ f)(ζ0)

(∣∣∣∣∂h1

∂x
(0)

∣∣∣∣2 +

∣∣∣∣∂h2

∂x
(0)

∣∣∣∣2
)
.

Let v1 := du(0) (∂/∂x), v2 := du(0) (∂/∂y). Let e1, e2 ∈ R2, with ‖e1‖ = ‖e2‖ = 1 and let
λ ∈ R be such that dg(0)(e1) = λv1, dg(0)(e2) = λv2. Let L be a conformal linear isometry
of R2 such that L(∂/∂x) = e1, L(∂/∂y) = e2. Then g̃ := g ◦ L is a conformal harmonic
immersed disc satisfying g̃(0) = p, dg̃(0)(∂/∂x) = λv1, dg̃(0)(∂/∂y) = λv2 and by Lemma 5.8

∆(ρ ◦ u)(0) = ∆(ρ ◦ g̃)(0) = λ2∆(ρ ◦ g)(0).

Hence ∆(ρ ◦ g)(0) ≥ 0 and so ∆(ρ ◦ f)(ζ0) ≥ 0. �

5.2. Some examples. Let p ∈M and let ρ be a smooth C2 function defined in a neighbor-
hood U of p. If ρ is strictly convex on U i.e., ρ is of class C2 and ∇2ρ is positive definite on
U , then it follows from (20) that ρ is MPSH on U . In particular, we have

Example 5.10. Let x = (x1, . . . , xn) be normal coordinates at p. Then the function |x|2 :
q 7→ |x(q)|2 =

∑n
j=1 x

2
j(q) is MPSH in a neighborhood of p.

Indeed, using (19) we have

∇2(|x|2) =
n∑
i=1

(
1 +O(|x|2)

)
dxi ⊗ dxi +

∑
1≤i<j≤n

O(|x|2)dxi ⊗ dxj,

which is a small deformation of
∑n

i=1 dxi ⊗ dxi near p. Hence |x|2 is strictly convex near p.

We also have the following

Lemma 5.11. Suppose that the normal coordinates x are choosen at the point p = 0. Then
the function φ(x) = log |x|+A|x| is MPSH in a neighborhood of the origin for a sufficiently
large A > 0.
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Proof. By Lemma 5.5 there exists a family of immersed minimal discs centered at the origin,
such that their tangent spaces at the origin fill the Grassmannian Gr(2, n). Furthermore,
these discs depend smoothly on the spaces that run over Gr(2, n).

We denote by ζ = ξ + iη the coordinates in D. Let u : D −→ (Rn, g) be a conformal
harmonic immersion with u(ζ) = (ξ, η, 0, ..., 0) +O(|ζ|2). Then

∆ log u(ζ) = O (1/|ζ|)
and

∆|u|(ζ) = (1/|ζ|) (1 +O(|ζ|)) .
This implies that log u+A|u| is subharmonic near the origin for a sufficiently large constant

A > 0. Notice that up to now the constant A > 0 depends on u. Hence, there exists B > 0
such that

∆φ(u(ζ)) ≥ B/|ζ|(21)

near the origin in D. Since everything depends smoothly on parameters, the same estimate
holds for minimal discs of the above family close enough to the initial disc u. The tangent
spaces of these discs fill an open non-empty subset of Gr(2, n). By compactness of Gr(2, n),
we obtain that the estimate (21) holds for all discs with suitable A,B > 0. The above family
of minimal discs also smoothly depends on it starting point, the origin in our case. Moving
(using Lemma 5.5) this family to a point q close enough to the origin, we obtain by continuity
that the estimate (21) holds for all minimal discs of this family. This implies Lemma 5.11
in view of Lemma 5.9.

�

6. Localization principle and preliminary boundary estimates

Let (M, g) be a Riemannian manifold of dimension n and let D be a domain in M .
We denote by FD(x, ξ) the value of the Kobayashi-Royden pseudometric at (x, ξ) ∈ TM .
The definition of the Kobayashi-Royden metric is similar to the classical case of complex
manifolds, see [?]. Denote by Bn the unit ball of Rn. The main result of this section is the
following localization principle for the Kobayashi-Royden metric.

Theorem 6.1. Let x : U → 3Bn be a normal coordinate neighborhood in M centered at a
point p ∈ D (in particular, x(p) = 0). Assume that U is small enough such that |x|2 is a
MPSH function on U . Let ρ be a negative MPSH function in D such that the function ρ−ε|x|2
is MPSH on D ∩ U and |ρ| ≤ B in D ∩ x−1(2Bn) for some constants ε, B > 0. Then there
exists a constant C = C(ε, B) > 0, independent of ρ, such that for every w ∈ D ∩ x−1(Bn)
and every tangent vector ξ ∈ Tw(M):

FD(w, ξ) ≥ C|ξ||ρ(w)|−1/2.

The coordinate neighborhood U is not assumed to be contained in D. Therefore, this
result gives a first (non optimal) asymptotic behavior estimate of FD near the boundary of
D in M . Note also that no conditions such as boundedness or Kobayashi hyperbolicity are
imposed on D. A similar rselt is obtained in [?] and [?] for the case of complex and almost
complex manifolds respectively.

The proof consists of several steps.

Step 1. Construction of suitable MPSH functions. Consider a smooth non-
decreasing function ψ on R+ satisfying ψ(t) = t for 0 ≤ t ≤ 1/2 and ψ(t) = 1 for
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t ≥ 3/4. For each point q ∈ M satisfying |x(q)| < 2, we define the function Ψq =
ψ(|x− x(q)|2) exp(Aψ(|x− x(q)|)) exp(λρ) on D ∩U , and Ψq = exp(Aψ(|x− x(q)|)) exp(λρ)
on D \ U ; the positive constants A and λ will be chosen later.

The function log Ψq(x) = logψ(|x− x(q)|2) +Aψ(|x− x(q)|) + λρ is MPSH on D \ {|x−
x(q)|2 ≤ 3/4}. On the other hand, there exists a constant A > 0 such that the function
logψ(|x−x(q)|2)+A|x−x(q)|+A|x|2 is MPSH on U . Moreover, by assumption the function
ρ − ε|x|2 is MPSH on D ∩ {|x − x(q)| ≤ 1}. Hence, taking λ = A/ε, we obtain that the
function log Ψq which is MPSH on D ∩ {|x− x(q)| ≤ 1} and, therefore, everywhere on D.

Step 2. Preliminary estimate of the Kobayashi-Royden metric. Let u : D → D
be a conformal harmonic mapping satisfying u(0) = q with |x(q)| < 2. Then the function
φ(z) = Ψq(u(z))/|z|2 is subharmonic on the punctured disc D \ {0} and is upper bounded
by exp(A) as z tends to the unit circle.

Without loss of generality, we assume that the local coordinates are normal at q. Since u
is a conformal map, it is easy to see that limz→0 φ(z) = |du(0)e1)|2 exp(Aρ(q)/ε). Hence, φ
extends on D as a subharmonic function. By the maximum principle for subharmonic func-
tions, we have |du(0)e1)|2 ≤ exp(A) exp(−Aρ(q)/ε). Now by the definition of the Kobayashi-
Royden metric, we obtain the estimate

FD(q, ξ) ≥ exp(−A+ Aρ(q)/2ε)|ξ| ≥N(ε, B)|ξ|(22)

for any q ∈ D ∩ x−1(2B) and ξ ∈ TqD. Here N(ε, B) = exp(−A−AB/2ε).

Step 3. Localization of the Kobayashi balls on D. As it is shown in [?], FD is an
upper semi-continuous function on the tangent bundle TD, and dD is the integrated form of
FD i.e. for any points p, q ∈ D we have

dD(p, q) = inf
γ∈Γ(p,q)

∫ 1

0

FD(γ(t), dγ(t))dt(23)

where the infimum is taken over the set Γ(p, q) of all C1- smooth paths γ : [0, 1] −→ D
with γ(0) = p, γ(1) = q. Denote by BD(q, δ) the Kobayashi ball with respect to dD,
centered at q ∈ D and of radius δ > 0. We want to compare BD(q, δ) with a suitable ball
with respect to the Euclidean ball (in local coordinates). This in turn allows to control
a distortion of conformal harmonic discs giving the desired localization of the Kobayashi-
Royden pseudometric.

Lemma 6.2. For any point q in D∩x−1(Bn) and any δ ≤ N = N(ε, B), the Kobayashi ball
BD(q, δ) is contained in D ∩ {|x− x(q)| < δ/N}.

Proof. Fix a point w ∈ D. Setting G = {w̃ ∈ U : |x(w̃) − x(q)| < 1}, we obtain from (22)
and (23) that

dD(w, q) ≥ inf
γ∈Γ(q,w)

∫
γ−1(G)

FD(γ(t), dγ(t))dt ≥ N inf
γ∈Γ(q,w)

∫
γ−1(G)

|dγ(t)|dt.

Given a path γ, the last integral represents the Euclidean length of the part of γ([0, 1])
contained in G.

Claim. For w ∈ G, infγ∈Γ(q,w)

∫
γ−1(G)

|dγ(t)|dt ≥ |x(w)− x(q)|.
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To prove the Claim, there are two cases to consider. First, if the path γ is contained in
G, then obviously its length is not smaller than |x(w) − x(q)|. Second, if γ intersects the
boundary of G, then the length of a connected component of γ joining q and a boundary
point of G is larger than or equal to 1, which is larger than or equal to |x(w)− x(q)|. This
proves the Claim.

Finally, if w is not in G (for example, if w is not in U), then for every γ ∈ Γ(q, w), the
length

∫
γ−1(G)

|dγ(t)|dt is bounded from below by 1. Therefore, we have the estimates

dD(w, q) ≥ N min{1, |x(w)− x(q)|}, w ∈ D ∩ U(24)

and

dD(w, q) ≥ N, w ∈ D \ U.(25)

Now it follows from (24) and (25) that the condition w ∈ BD(q, δ) implies that w ∈ U and
that |x(w)− x(q)| < δ/N . �

Step 4. Precise estimate on FD. Consider a smooth function ψ defined quite similarly
as in Step 1 and satisfying ψ(t) = t for t ≤ 1/2 and ψ(t) = 1 when t ≥ 1. For every
w ∈ D ∩ x−1(Bn) and every λ, β > 0, consider the function

Φλ,β,w(x) = ψ(|x− x(w)|2/β2) exp(Aψ(|x− x(w)|)) exp(λρ(x))

defined on D ∩ U , where A is given in Step 1. This function is well-defined and takes its
values in [0, eA]. There exists a constant C > 0 depending only on the function ψ such that
the function log Φλ,β,w + (C/β2 − λε)|x|2 is MPSH in D ∩ U . Now set λ = 1/|ρ(w)| and
β2 = C|ρ(w)|/ε. We obtain a function denoted by Φw, with log Φw of class MPSH on D∩U .

Set r = (e2N − 1)/(e2N + 1), so that the Poincaré radius of the disc rD in D is equal to N .
It follows by Lemma 6.2 that for each conformal harmonic mapping g : D −→ D such that
w = g(0) ∈ D ∩ x−1(Bn), one has the inclusion g(rD) ⊂ D ∩ x−1(2Bn). Let f : D −→ D be
a conformal harmonic mapping satisfying f(0) = w and df(0)e1 = α−1ξ, where α > 0 and
ξ ∈ TwD. Then the function

v(z) = Φw(f(z))/|z|2

is subharmonic on rD \ {0}. Furthermore, lim supz→0 v(z) = ε|ξ|2/(eC|ρ(w)|α2) (we choose
normal coordinates at w as above). Therefore, v extends on rD as a subharmonic function.
By the maximum principle, we have : α ≥ e−Aε1/2r|ξ|(eC|ρ(w)|)−1/2. Now by the definition
of the Kobayashi-Royden metric we obtain the estimate

FD((w, ξ) ≥ e−Aε1/2r|ξ|(eC|ρ(w)|)−1/2.

This completes the proof of Theorem 6.1.

As a first application, we obtain the following result.

Theorem 6.3. Let (M, g) be a Riemannian manifold, ρ be a MPSH function on M , and let
u : D → M be a conformal harmonic map such that ρ ◦ u ≥ 0 on D and (ρ ◦ u)(z) → 0 as
z ∈ D tends to an open arc γ ⊂ bD. Assume that for a certain point a ∈ γ the cluster set
C(f, a) contains a point p ∈ M such that ρ is strictly MPSH near p. Then u extends to a
neighborhood of a in D ∪ γ as a Hölder 1/2-continuous map.

The proof follows from Theorem 6.1 via the same argument as in [?] so we skip it. In
particular, we have the following
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Corollary 6.4. Let ρ be a strictly MPSH function on a Riemannian manifold (M, g). Set
M+ := {ρ > 0} and Γ = {ρ = 0}. Assume that u : D → M+ is a conformal harmonic disc
such that the cluster set C(u, γ) is contained in Γ for some open non-empty arc γ ⊂ bD.
Then u extends on D ∪ γ as a Hölder 1/2-continuous map.

7. Complete hyperbolicity of strictly pseudoconvex domains

Let (M, g) be a Riemannian manifold. We recall that :

(a) M is (Kobayashi) hyperbolic if the pseudistance dg is a distance on TM ,
(b) M is complete hyperbolic if the metric space (M,dg) is complete.

Here we obtain one of our main results.

Theorem 7.1. Let Ω be a relatively compact domain in (M, g). Assume that ρ is a strictly
MPSH C2 function in a neighborhood of Ω such that Ω = {ρ < 0} and dρ 6= 0 on bΩ. Then
Ω is a complete hyperbolic domain.

The proof is based on the approach of S. Ivashkovich - J.P. Rosay in [?]. The following
lemma is obtained in [?] for pseudoholomorphic discs. The proof is the same for conformal
harmonic discs, so we drop it.

Lemma 7.2. Let Ω be a domain in (M, g). Let p ∈ bΩ. Let φ be either:

(a) a C1 map from Ω into R2 with φ(p) = 0 and φ 6= 0 on Ω, or
(b) a C1 map from a neighborhood U of p int R2, such that φ(p) = 0 and φ 6= 0 on

U ∩ Ω \ {p}.
Let δ be a positive function defined on (0,+∞), and satisfying

∫ 1

0
dt
δ(t)

= +∞. Assume that

for every conformal hermonic map u : D→ Ω, such that u(0) is close to p one has

|∇(φ ◦ u)(0)| ≤ δ(|φ ◦ u)(0)|)

(here ∇ denotes the gradient). Then p is at infinite Kobayashi distance from the points in
Ω.

We begin with the following localization principle which.

Lemma 7.3. Let p0 be a boundary point of Ω. There exists a neighborhood V of p0 and
r ∈ (0, 1) with the following property: if u : D→ Ω is a conformal harmonic map such that
u(0) ∈ V , then u(rD) ⊂ V .

Consider in the unit disc D the ball BP (0, t) with respect to the Poincare metric, centered
at the origin and of radius t. it follows from [?, Ga-Su]hat u(BP (0, t) ⊂ BΩ(u(0), t). Now
result follows by Lemma ??.

N we present another localization principle for the Kobayashi - Royden metric. In this
section ∇ denotes the gradient, and not the Levi-Civita connection.

Lemma 7.4. Under the hypothesis of Theorem 7.1 let p0 be a boundary point of Ω. Then
for any 0 < r < 1 there exist δ > 0 and C > 0 with the following property: if a conformal
harmonic disc u : D −→ Ω satisfies dist(u(0), p0) < δ, then

dist(u(0), u(ζ)) ≤ Cdist(u(0), bΩ)1/2(26)

for |ζ| < r.
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Proof. Fix r < r1 < 1 small enough, such that r1 satisfies the localization Lemma 6.2 .
Consider a coordinate neighborhood U of p0 with normal coordinates centered at p0 = 0.
We identify U with a ball in Rn and assume without loss of generality that the metric g
is a small deformation of the standard Euclidean metric gst on that ball. It follows from
Example 5.10 and Lemma 5.11 that there exists a neighborhood V ⊂ U of p0 and a small
enough ε > 0 such that for each p ∈ V the function q 7→ ρp(q) = ρ(q) − ε|q − p|2, as well
as the functions q 7→ |q − p|2 are MPSH on V . Here we use the notation | · | for the norm
induced on U by the local coordinates x and the Euclidean metric in Rn. Also there exists
A,B > 0 such that

−B|q − p| ≤ ρp(q) ≤ −A|q − p|2.
It follows by the localization principle established in Lemma 6.2 that if u : D → Ω is a
conformal harmonic map such that u(0) is close enough to p0, then u(ζ) ∈ V when |ζ| ≤ r1.
Choose p ∈ bΩ such that dist(u(0), bΩ) = dist(u(0), p). Since the function |u(ζ) − p|2 is
subharmonic on |ζ| ≤ r1, by the mean inequality we have

|u(ζ)− p|2 ≤ 1

2π

∫ 2π

0

|u(r1e
iθ − p|2dθ.

Again by the mean value property we have

−(ρp ◦ u)(0) ≥ 1

2π

∫ 2π

0

−(ρp ◦ u)(r1e
iθ)dθ ≥ A

2π

∫ 2π

0

|u(r1e
iθ − p|2dθ ≥ A|u(ζ)− p|2.

Therefore

dist(u(ζ), u(0)) ≤ (dist(u(0), p) + dist(p, u(ζ)) ≤ Cdist(u(0), p)1/2

for some constant C > 0 which proves Lemma 7.4.
We also have the following version of the Schwarz lemma for harmonic map (a more general

result is contained in [5], Th. 4.8):

Lemma 7.5. Let Ω be a bounded subset in (Rn, g). Let K be a compact subset of Ω. There
exists δ > 0 such that: for every 0 < r < 1 there exists C > 0 such that if u : D → Ω is a
harmonic disc (with respect to the metric g) and u(D) ⊂ K, then

|∇u(ζ)| ≤ C sup
|ω|<1

|u(ω)− u(0)|(27)

if |u(ω)− u(0)| ≤ δ and |ζ| ≤ r.

We continue the proof of Theorem 7.1. As above, we consider the local normal coordinates
centered at p = 0. Using dilations, we may assume that U contains the unit ball Bn and g is
close enough to gst in the Ck norm on U , with k big enough. Furthermore, we may assume
that U ∩ Ω \ {0} is contained in {x ∈ U : x1 < 0}.

Let u : D → Ω be a conformal harmonic map. We assume that u(0) is close enough to
p, so by the localization principle, u(ζ) ∈ U when |ζ| < r/2, whee r ∈ (0, 1) is provided by
Lemma 6.2. Then by Lemmas 7.4 and 7.5 we obtain

|∇u(ζ)| ≤ Cdist(u(0), bΩ)1/2 ≤ C(−u1(0))1/2(28)

if |ζ| ≤ 1/4. Rescaling the disc D, we assume that the above estimate holds on D.
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Our goal is to prove that changing C if necessary,

|∇u1(0)| ≤ C|u1(0)|.(29)

Apply the formula (20) to the function ρ = x1. Then for every ζ ∈ D

∆(ρ ◦ u)(ζ) = (∇2x1)u(ζ)

(
n∑
j=1

∂uj
∂x

(ζ),
n∑
j=1

∂uj
∂x

(ζ)

)
+ (∇2x1)u(ζ)

(
n∑
j=1

∂uj
∂y

(ζ),
n∑
j=1

∂uj
∂y

(ζ)

)
.

Here ∇2 denote the Hessian defined previously by the Levi-Civita connection.
Using the estimate (28) we conclude that

|∆u1(ζ)| ≤ A|u1(0)|(30)

where A > 0 is a constant. Consider the function h harmonic on D:

h(ζ) = u1(ζ)− 1

2π

∫
R2

∆u1(ω) ln(ω − ζ)dm(ω)− A|u1(0)|.(31)

Here we suppose that ∆u1 is extended by 0 outside D. Using (30) we see that∣∣∣∣ 1

2π

∫
R2

∆u1(ω + ζ) ln(ω)dm(ω)

∣∣∣∣ ≤ A|u1(0)|.

Since u1 < 0, we obtain that h < 0. Furthermore, we have |h(0)| < (2A+ 1)|u1(0)|.
Now it follows from the classical Schwarz lemma for negative harmonic functions that
|∇h(0)| ≤ 2|h(0)|. Therefore from (31) we obtain

|∇u1(0)| ≤ |∇h(0)|+ C sup |∆u1| ≤ (2(2A+ 1) + CA) |u1(0)|.

This proves (29). Now Theorem 7.1 follows exactly as in the proof of Theorem 1 in [?], using
Lemma 7.2.

As a direct application of Theorem 7.1, we have the following

Corollary 7.6. Let Ω = {ρ < 0} be a relatively compact domain in a Riemannian manifold
(M, g). We assume that ρ is of class C2 in a neighborhood of Ω. If there exists c > 0
such that ∇2ρ(p)(v, v) ≥ cg(v, v) for every p ∈ Ω and every v ∈ TpM , then Ω is complete
hyperbolic.

As an application of Corollary 7.6 we have the following examples of complete hyperbolic
domains in Riemannian manifolds.

Proposition 7.7. (i) Let p ∈ Rn and let r > 0. Then every small C2 deformation of
the Euclidean ball BEucl(p, r) is complete hyperbolic.

(ii) Let (M, g) be a Riemannian manifold. For every p ∈M , there exists r > 0 such that
the ball Bg(p, r) is complete hyperbolic.

(iii) Let (M, g) be a Riemannian manifold with non positive Riemannian sectional curva-
ture. Then for every p ∈M and every r > 0, the ball Bg(p, r) is complete hyperbolic.
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Proof. Point (i). For every p ∈ Rn, the function fp : x 7→ |x − p|2 satisfies ∇2fp(x)(v, v) ≥
‖v‖2 for every x, v ∈ Rn. Let r′ > r and let ρ be a C2 function defined in a neighborhood of

BEucl(p, r′) and such that ‖ρ− fp‖C2(BEucl(p,r′)) is sufficiently small. Then there exists c > 0

such that for every x ∈ BEucl(p, r
′) and every v ∈ Rn, ∇2ρ(x)(v, v) ≥ c‖v‖2.

Point (ii). It follows from Example 5.10 that there exists a neighborhood U of p and a
constant c > 0 such that the function fp : x ∈ M 7→ d2

g(x, p) satisfies, for every x ∈ U and

every v ∈ TxM : ∇2fp(x)(v, v) ≥ cg(v, v).
Point (iii). According to Theorem 4.1 (2) in [?], the funtion fp : x ∈ M 7→ d2

g(x, p) is
strictly convex in a Riemannian manifold with non positive Riemannian sectional curvature.

�
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