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1. Holomorphic Foliations

Definition

A holomorphic foliation of codimension 1 on a complex manifold Mn is a
decomposition F of M into pairwise disjoint immersed complex
manifolds of dimension n − 1 (called the leaves of F) such that
(i) for any p ∈ M there exists a unique submanifold Lp of the
decomposition that passes through p.
(ii) For any p ∈ M there exists a distinguished holomorphic chart of M
(φ,U), p ∈ U, φ : U → φ(U) ⊂ Cn such that φ(U) = ∆n−1 ×∆, and if
L is a leaf of F with L ∩ U 6= ∅, then

L ∩ U = ∪q∈Pφ−1(∆n−1 × {q}),

where P is a countable subset of ∆.

The sets φ−1(∆n−1 × {q}) are called plaques of the distinguished chart
(φ,U). Foliations of arbitrary codimension are defined the same way.
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2. How to define a holomorphic foliation?

A holomorphic foliation can be defined

(0) In prose.
(1) By local submersions.
(2) Foliation of dimension 1 can be defined by a holomorphic vector field:
if X is a holomorphic vector field on M, then it defines a foliation on
M \ {X = 0}, whose structure is determined by the Flow box theorem for
vector fields, so integral curves of X are the leaves. In fact, any foliation
of dimension 1 can be locally defined by a holomorphic vector field.
(3) By a holomorphic 1-form ω 6≡ 0. The form generates a distribution of
hyperplanes ker (ωp) on M \ {ω = 0}. This defines a foliation tangent to
ker (ωp) iff ω is integrable, i.e., ω ∧ dω = 0 (Frobenius). Any foliation of
codimension 1 is locally defined by a nonvanishing holomorphic 1-form.

In dimension 2: (2) and (3) are equivalent: X = P(z ,w) ∂
∂z + Q(z ,w) ∂

∂w
⇐⇒ ω = Pdw − Qdz .
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3. Singular foliations

Let M be a complex manifold, dimM ≥ 2.

Definition

A singular holomorphic foliation F of codimension 1 is given by an open
cover M = ∪jUj , holomorphic integrable 1-forms ωj on Uj such that if
Uj ∩ Uk 6= ∅, then ωj = gjkωk in Uj ∩ Uk for some gjk ∈ O∗(Uj ∩ Uk).
The singular locus sing(F) is defined by sing(F) ∩ Uj = {ωj = 0}. We
may assume that sing(F) is a complex analytic set of codimension ≥ 2.

If F is a codimension 1 holomorphic foliation on M \ A, where A is a
complex analytic subset of M, codim A ≥ 2, then there exists a singular
holomorphic foliation F̃ on M that extends F .

If dimM = 2 then a singular foliation F has dimension and
codimension 1. In this case sing(F) is a discrete set and near a singular
point F can be given by a vector field that vanishes precisely at the
singularity.
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4. Dimension 2

Let F be a holomorphic foliation on C2 singular at the origin. A
separatrix of F is a holomorphic curve S 3 0 which is invariant by F ,
i.e., S \ {0} is contained in a leaf of F . Camacho-Sad (Ann. of Math.,
1982): any singularity admits at least one separatrix.

The point 0 is called a dicritical singularity if F has infinitely many
distinct separatrices, otherwise the singularity is nondicritical.

A nonconstant holomorphic function f : C2 → C is called a holomorphic
first integral for F if f is constant on the leaves of F .

If F is given by a vector field X singular at 0, then the above is
equivalent to df (X ) ≡ 0, and in terms of 1-form ω, the condition
becomes ω ∧ df = 0.

If F admits a holomorphic first integral f , then separatrices are the
irreducible components of f −1(f (0)), so the origin is a nondicritical
singularity. The converse is the following.
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5. First integrals

Theorem (Mattei-Moussu, Ann. Sci. Ecole Norm. Sup., 1980)

Let F be a holomorphic foliation on C2, singular at the origin. If 0 is a
nondicritical singularity and the leaves of F are closed in V \ {0} for
some neighbourhood V of the origin, then there exists a neighbourhood
W ⊂ V of 0 and a holomorphic first integral f : W → C of F .

What about dicritical singularities? These clearly cannot admit
holomorphic first integrals, but may have meromorphic first integrals, i.e.,
a nonconstant meromorphic function g with the indeterminacy at the
origin that is constant on the leaves of F .

Example: The foliation corresponding to ω = zdw − wdz has leaves that
are complex lines passing through the origin, which is a dicritical
singularity. The meromorphic first integral is g(z ,w) = z/w .

There are examples of dicritical singularities that do not admit
meromorphic first integral, Cerveau-Mattei (Asterisque, 1982):topologically indistinguishable).
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6. Levi-flat hypersurfaces 1

Let M ⊂ Cn be a C∞-smooth real hypersurface defined by ρ = 0 with
dρ|M 6= 0. Then the following are equivalent:

(i) M is foliated by complex hypersurfaces.
(ii) The complex hyperplane distribution Hp ⊂ TpM is involutive on M.

(iii) The Levi-form ∂2ρ(p)
∂zj∂zk

|Hp = 0 for all p ∈ M.

The foliation of M by complex hypersurfaces is called the Levi foliation
of M.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically
equivalent to {xn = 0}. Other examples: For a curve γ ⊂ C, γ × Ck is
Levi flat; if f : Cn → Cξ is a submersion, then f −1(Re ξ) is Levi-flat.

Definition

Let M be an irreducible real analytic set in Cn of codimension 1. M is
called Levi-flat, if the regular locus of M (of dimension 2n − 1) is
Levi-flat (in the above sense).
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Levi-flat (in the above sense).
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7. Levi-flat hypersurfaces 2

Example 1: M1 = {z ∈ Cn : Re (z2
1 + · · ·+ z2

n ) = 0} is a real algebraic
Levi flat hypersurface singular at the origin. Burns-Gong (Amer. J. of
Math., 1999): if a real analytic hypersurface

M = {z ∈ Cn : Re (z2
1 + · · ·+ z2

n ) + O(|z |3) = 0}

is Levi flat, then M is biholomorphically equivalent to M1 (cf. Cartan.)

Example 2: the hypersurface M2 = {z ∈ C2 : |z1|2 − |z2|2 = 0} is Levi
flat, singular at 0; Again, Burns-Gong proved that if a real analytic Levi
flat M is given by ρ = Q(z , z) + O(|z |3), where Q is positive definite
with the rank of the Levi form at least 2, then M is biholomorphic to M2.
Note that the Levi foliation of M2 agrees with the previously discussed
singular foliation on C2 given by the 1-form ω = zdw − wdz .
The above results of Burns-Gong give a classification of Levi flat hypersurfaces with an isolated nondegenerate singularities.
Further generalizations can be found in the work of Fernández-Pérez and co-authors. But a general local classification of
singular Levi flat hypersurfaces in incomplete.
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8. More on first integrals

Definition

A (singular) Levi flat hypersurface M is called tangent to a (singular)
holomorphic foliation F if the leaves of the Levi foliation on M are also
the leaves of F .

Theorem (Cerveau-Lins Neto, Amer. J. of Math., 2011)

Let F be the germ at 0 ∈ Cn, n ≥ 2, of a holomorphic codimension one
foliation which is tangent to the germ at 0 ∈ Cn of a real analytic Levi
flat M. Then F has a nonconstant meromorphic first integral. If n = 2,
then further
(a) If F is dicritical then it has a meromorphic first integral;
(b) If F is nondicritical then it has a holomorphic first integral.

The problem can be reduced to the case n = 2. In this dimension
Brunella (L’Enseignement Math. 2012) gave an elegant geometric proof.
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9. Even more on first integrals

We will see later that the result of Cerveau - Lins Neto is a proper
generalization of Mattei-Moussu.

Perhaps unnoticed in the literature, the statement of the theorem above
is, in fact, “if and only if”. The following argument is essentially due to
Burns-Gong:

Let F be a holomorphic foliation on Cn singular at the origin. Suppose it
admits a meromorphic first integral m. Near the origin we set m = f /g ,
where f (0) = g(0) = 0, and f and g are holomorphic and coprime. Then

M = {z ∈ Cn : Re (f (z)g(z)) = 0}

is a real analytic Levi flat set. One readily sees that M is tangent to F .
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10. Segre varieties 1

Let M ⊂ Rn
x be the germ of a real analytic set at the origin. The

complexification Mc of M is a complex analytic germ at the origin in
Cn
z = Rn

x + iRn
y such that that any holomorphic function that vanishes on

M necessarily vanishes on Mc . Equivalently, Mc is the smallest complex
analytic germ in Cn that contains M. If dimM = 2n − 1, then it admits
a defining function ρ such that Mc = {ρc = 0}, where ρc is a
complexification of ρ, and ρc is minimal, i.e., is a generator of the sheaf
of ideals on Mc . Complexification of real analytic sets in Cn can be
obtained by a totally real embedding Cn ↪→ C2n.
Given a real analytic hypersurface M and using a minimal defining
function of M as above, in some small neighbourhood U of the origin, for
w ∈ U the Segre variety Qw (associated with M) is defined by

Qw = {z ∈ U : ρ(z ,w) = 0}.

Qw is a complex hypersurface in U for most w ∈ U.
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11. Segre varieties 2

Definition

A point w ∈ M ⊂ Cn is called Segre degenerate if dimQw = n.

For example, if M = {|z1|2 − |z2|2 = 0}, then Qw = {z1w1 − z2w2 = 0},
and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by Lp the leaf of
the Levi foliation that passes through a regular point p ∈ M. Then there
exists a unique irreducible component Sp of Qp containing Lp. This is
also a unique complex hypersurface through p which is contained in M.

A singular point 0 ∈ M is called dicritical if it belongs to infinitely many
geometrically different leaves Lp.

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then 0 ∈ Qw for all w , but one needs to show that 0 ∈ Sw . Our proof essentially shows that, in
fact, every irreducible component of Qw passes through the origin. This shows that 0 is dicritical.

Rasul Shafikov Singular Holomorphic Foliations and Levi-flat hypersurfaces



11. Segre varieties 2

Definition

A point w ∈ M ⊂ Cn is called Segre degenerate if dimQw = n.

For example, if M = {|z1|2 − |z2|2 = 0}, then Qw = {z1w1 − z2w2 = 0},
and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by Lp the leaf of
the Levi foliation that passes through a regular point p ∈ M. Then there
exists a unique irreducible component Sp of Qp containing Lp. This is
also a unique complex hypersurface through p which is contained in M.

A singular point 0 ∈ M is called dicritical if it belongs to infinitely many
geometrically different leaves Lp.

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then 0 ∈ Qw for all w , but one needs to show that 0 ∈ Sw . Our proof essentially shows that, in
fact, every irreducible component of Qw passes through the origin. This shows that 0 is dicritical.

Rasul Shafikov Singular Holomorphic Foliations and Levi-flat hypersurfaces



11. Segre varieties 2

Definition

A point w ∈ M ⊂ Cn is called Segre degenerate if dimQw = n.

For example, if M = {|z1|2 − |z2|2 = 0}, then Qw = {z1w1 − z2w2 = 0},
and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by Lp the leaf of
the Levi foliation that passes through a regular point p ∈ M. Then there
exists a unique irreducible component Sp of Qp containing Lp. This is
also a unique complex hypersurface through p which is contained in M.

A singular point 0 ∈ M is called dicritical if it belongs to infinitely many
geometrically different leaves Lp.

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then 0 ∈ Qw for all w , but one needs to show that 0 ∈ Sw . Our proof essentially shows that, in
fact, every irreducible component of Qw passes through the origin. This shows that 0 is dicritical.

Rasul Shafikov Singular Holomorphic Foliations and Levi-flat hypersurfaces



11. Segre varieties 2

Definition

A point w ∈ M ⊂ Cn is called Segre degenerate if dimQw = n.

For example, if M = {|z1|2 − |z2|2 = 0}, then Qw = {z1w1 − z2w2 = 0},
and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by Lp the leaf of
the Levi foliation that passes through a regular point p ∈ M. Then there
exists a unique irreducible component Sp of Qp containing Lp. This is
also a unique complex hypersurface through p which is contained in M.

A singular point 0 ∈ M is called dicritical if it belongs to infinitely many
geometrically different leaves Lp.

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then 0 ∈ Qw for all w , but one needs to show that 0 ∈ Sw . Our proof essentially shows that, in
fact, every irreducible component of Qw passes through the origin. This shows that 0 is dicritical.

Rasul Shafikov Singular Holomorphic Foliations and Levi-flat hypersurfaces



11. Segre varieties 2

Definition

A point w ∈ M ⊂ Cn is called Segre degenerate if dimQw = n.

For example, if M = {|z1|2 − |z2|2 = 0}, then Qw = {z1w1 − z2w2 = 0},
and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by Lp the leaf of
the Levi foliation that passes through a regular point p ∈ M. Then there
exists a unique irreducible component Sp of Qp containing Lp. This is
also a unique complex hypersurface through p which is contained in M.

A singular point 0 ∈ M is called dicritical if it belongs to infinitely many
geometrically different leaves Lp.

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then 0 ∈ Qw for all w , but one needs to show that 0 ∈ Sw . Our proof essentially shows that, in
fact, every irreducible component of Qw passes through the origin. This shows that 0 is dicritical.

Rasul Shafikov Singular Holomorphic Foliations and Levi-flat hypersurfaces



11. Segre varieties 2

Definition

A point w ∈ M ⊂ Cn is called Segre degenerate if dimQw = n.

For example, if M = {|z1|2 − |z2|2 = 0}, then Qw = {z1w1 − z2w2 = 0},
and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by Lp the leaf of
the Levi foliation that passes through a regular point p ∈ M. Then there
exists a unique irreducible component Sp of Qp containing Lp. This is
also a unique complex hypersurface through p which is contained in M.

A singular point 0 ∈ M is called dicritical if it belongs to infinitely many
geometrically different leaves Lp.

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then 0 ∈ Qw for all w , but one needs to show that 0 ∈ Sw . Our proof essentially shows that, in
fact, every irreducible component of Qw passes through the origin. This shows that 0 is dicritical.

Rasul Shafikov Singular Holomorphic Foliations and Levi-flat hypersurfaces



12. Levi flat hypersurfaces as minimal sets

Given a (singular) holomorphic foliation F on a compact complex
manifold M, a closed set S is called nontrivial minimal if it is 1) invariant
for F (or saturated in F), i.e., if p ∈ S , then Lp ⊂ S ; 2) S 6= ∅; 3)
minimal wrt inclusion; 4) (nontriviality) does not contain singular points of F .

Theorem (Lins Neto (Ann. de L’Inst. Fourier, 1999)

No codimension 1 holomorphic foliation on CPn, n > 2, admits a
nontrivial minimal set.

This implies nonexistence of (closed nonsingular) Levi flat hypersurfaces
in CPn for n > 2, because such a Levi flat can be realized as a nontrivial
minimal set of some holomorphic foliation on CPn. This can be also
proved directly as follows.

Let M be a nonsingular closed real analytic Levi flat in CPn. Then there
exists a neighbourhood U of M in CPn such that the Levi foliation on M
extends to a nonsingular holomorphic foliation on U.
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13. Nonexistence of Levi flats

Lins Neto: if V is a Stein manifold and K ⊂ V is a compact satisfying
U = V \ K is connected, Then any holomorphic codimension one
foliation F on U, such that codim (sing(F)) ≥ 2, can be extended to a
holomorphic foliation on V .

The complement of M is the union of two Stein manifolds, and so the
Levi foliation on M extends to a (singular) holomorphic foliation F on
CPn, and M is an invariant subset of F . Lins Neto: Sing(F) necessarily
contains a component of codimension 2.

A Stein manifold has no complex varieties of positive dimension.
Therefore, if n > 2, Sing(F) ∩M 6= ∅, which is a contradiction. Hence,
there are no nonsingular Levi flats in CPn for n > 2. If n = 2, the
singularities of F are isolated points and the argument falls short.

Further generalizations of nonexistence of Levi flats were obtained by
Brunella, Ohsawa, Brinkschulte, and others.

The problem is open for CP2.
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14. Extension of Levi foliations

As we already saw, a Levi foliation on M extends to a holomorphic
foliation in a neighbourhood of any regular point on M. A natural
question is whether this holds near singular points of a Levi flat M.
The answer is no in general.

Example (Brunella, Ann. Sc. Norm. Super. Pisa, 2007): Let

M = {(z1, z2) ∈ C2 : y2
2 = 4(y2

1 + x2)y2
1 }, zj = xj + iyj .

This is a singular Levi flat hypersurface with the Levi foliation L given by

Lc = {z2 = (z1 + c)2, y1 6= 0}, c ∈ R.

It cannot be extended to a neighbourhood of the origin as a (singular)
holomorphic foliation due to ramification. The extension of L is a
“foliation with branching” given by solutions of ODE (dz2

dz1
)2 = 4z2.

(i.e., the leaves are graphs of functions z2 = z2(z1) satisfying the ODE.)
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M = {(z1, z2) ∈ C2 : y2
2 = 4(y2

1 + x2)y2
1 }, zj = xj + iyj .

This is a singular Levi flat hypersurface with the Levi foliation L given by

Lc = {z2 = (z1 + c)2, y1 6= 0}, c ∈ R.

It cannot be extended to a neighbourhood of the origin as a (singular)
holomorphic foliation due to ramification. The extension of L is a
“foliation with branching” given by solutions of ODE (dz2

dz1
)2 = 4z2.

(i.e., the leaves are graphs of functions z2 = z2(z1) satisfying the ODE.)
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15. Holomorphic d-webs

For simplicity, consider only the case n = 2. For d ∈ N, a singular
holomorphic d-web W is defined by solutions of ODE

P

(
z1, z2,

dz2

dz1

)
=

d∑
k=0

ak(z1, z2)

(
dz2

dz1

)k

= 0,

where ak(z1, z2) are holomorphic in a neighbourhood of 0. We treat z2

as a function of z1. If the above expression admits factorization into
holomorphic terms linear in dz2/dz1, then the web splits into the union of
d foliations. In particular, if d = 1 we obtain a usual foliation. But in
general, the ODE is unresolved with respect to dz2/dz1.

So at a regular point p of W there are exactly d leaves of the web that
pass through p.

In the example of Brunella the Levi foliation extends to a neighbourhood
of the origin as a 2-web given by (dz2/dz1)2 = 4z2.
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16. Extension of Levi foliations as webs

A holomorphic correspondence G : Cn → Cm is a multiple-valued map
whose graph is a complex analytic set in Cn × Cm with a proper
projection on Cn. A meromorphic correspondence is defined the same
way except that we allow the fibres of the projection ΓG 7→ Cn from the
graph of G to be of positive dimension on a set of codimension 2 in Cn.
Example: G (z1, z2) =

√
z1, G (z1, z2) =

√
z1/z2.

We say that G : C2 → C is a multiple-valued holomorphic (meromorphic)
first integral for a d-web W if for every regular point p of W for any leaf
Lp there exists a branch of G near p that is constant on Lp.

Theorem (Sukhov-RS, Comment. Math. Helv., 2015)

Let M ⊂ Cn be a real analytic Levi-flat, 0 ∈ M is a singular point such
that 0 is nondicritical, or M is real algebraic. Then there exist a
neighbourhood U of the origin and a singular holomorphic d-web W in U
such that W extends the Levi foliation of M. Furthermore, W admits a
multiple-valued meromorphic first integral in U .
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17. First integrals and Segre varieties

As we see from the discussion above, the existence of a first integral for a
given foliation in intricately related to the existence of a tangent Levi flat
hypersurface.

For a further speculation, consider the so-called Segre map: λ : w → Qw

associated with a Levi flat hypersurface M. This is a formal map from a
neighbourhood U of a (singular) point in M into the (formal) space of
Segre varieties defined in U. If p ∈ M ∩ U is a regular point, and Lp is
the leaf of the Levi foliation on M passing through p, then Lp ⊂ Qp, and
one can show that, in fact, Qp = Qw for any point w ∈ Lp.

It follows then that the map λ is constant on the leaves of the foliation.
Therefore, if one can realize λ as a holomorphic map from U into C,
then λ is a holomorphic first integral!

The family of Serge varieties associated with a Levi flat hypersurface is
complex one dimensional, and so this idea can be realized. This is the
main idea behind Brunella’s proof of the Cerveau-Lins Neto theorem, and
the proof of Sukhov-RS for d-webs.
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18. More on Mattei-Moussu

Proposition

Let F be a holomorphic foliation on C2, singular at 0. The following are
equivalent.
(a) 0 is a nondicritical singularity and the leaves of F are closed in
V \ {0} for some neighbourhood V of the origin.
(b) There exists a neighbourhood W of 0 and a holomorphic first
integral f : W → C of F .
(c) There exists a (singular) Levi flat hypersurface M tangent to F .

Mattei-Moussu proved (a)⇒ (b). The implication (a)⇐ (b) is
immediate. That (b) implies (c) can be shown by taking the preimage of
some real line under the first integral. Finally, (c)⇒ (a) follows from the
observation that a leaf of the foliation F is a component of a Segre
variety of M and the properties of Segre varieties.

This show, in particular, that the theorem of Cerveau-Lins Neto is a
proper generalization of Mattei-Moussu.
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19. Local hulls of Levi flat hypersurfaces, 1

Smooth case: A smooth real hypersurface M is locally polynomially
convex iff M is Levi-flat.

Indeed, if the Levi form of M has at least one nonzero eigenvalue, then
there exist holomorphic discs attached to M. If M is Levi flat real
analytic, then the proof of local polynomial convexity is straight forward;
the general case (when M is just C 1-smooth) can be found in Airapetyan
(Math USSR Sbornik,1989).

Note that a Levi flat may contain boundaries of “large” holomorphic
discs, e.g., D× {pt} are attached to S1 × C.

What about local convexity near singular points of a real analytic Levi
flat?

Suppose that 0 ∈ M is a Segre nondegenerate (nondicritical) singular
point. Then by the previous result, the Levi foliation extends as a d-web.
We say that the Segre singularity is unbranched if d = 1, i.e., the Levi
foliation extends as a singular foliation to the ambient space.
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20. Local hulls of Levi flats, 2

Theorem (Sukhov-RS, Int. J. of Math., 2021)

Let M ⊂ Cn be a real analytic Levi-flat hypersurface, 0 ∈ M (*). Then

(i) If 0 is a regular point of M, or is an unbranched Segre nondegenerate
singularity, then M is locally polynomially convex at 0.

(ii) There exists M ⊂ C2 with a two-branched Segre nondegenerate
singularity at 0 that is not locally rationally convex at 0.
Furthermore, there exists a neighbourhood basis (Uk)k∈N of 0 such
that for every k the polynomially convex hull of M ∩ Uk contains a
full neighbourhood of 0 in C2.

(iii) If 0 is a Segre degenerate (dicritical) singularity, then M is not
locally rationally convex at 0. Furthermore, the rationally convex
hull of any compact neighbourhood K ⊂ M of 0 includes a family of
Riemann surfaces with the following property: each surface is not
contained in M, but its boundary is contained in K .
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21. Hulls of Levi flats 3

(*) In this result we ignore possible points on M where it is a real analytic
manifold of dimension < 2n − 1, i.e., we consider the set M reg \Msng,
even if this is only a semianalytic set. In particular, 0 ∈ M reg.

Part (i): in the situation of the theorem, the singular foliation admits a
holomorphic first integral f : U → C in some neighbourhood of the origin
in C2. The set f (M) is subanalytic (in fact, semianalytic), and therefore,
the complement of f (M) in some neighbourhood of f (0) ∈ C is
connected. To prove local polynomial convexity of 0 ∈ M one can use
Oka’s characterization of polynomial convexity using the level sets of f
that avoid the set f (M).

Part (iii): one can show that there exists w0 near 0 such that
Qw0 ∩M = {0}. Then a small perturbation S of Qw0 will be such that
M ∩ S bounds a domain in S , which is a complex analytic variety
attached to M. This variety is part of the polynomially (rationally)
convex hull of a compact neighbourhood of 0 that contains M ∩ S .
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22. Hulls of Levi flats 4

Part (ii): the example of a Levi flat M with a nonempty local hull is the
example of Brunella discussed above. One can show that the map
f (z1, z2) = z1 ±

√
z2 is the multiple valued first integral. One can prove

that the closure of smooth points can be given by {Im (z1 ±
√
z2) = 0}.

The map F : C2
w → C2

z given by (w1,w2)→ (w1,w
2
2 ) satisfies

F−1(M) = {Im (w1 + w2) = 0} ∪ {Im (w1 − w2) = 0}.

After a complex linear change of coordinates we may assume that the
hyperplanes above have the form {yj = 0}, j = 1, 2, with the intersection
equal to R2. The domain C2 \ R2 is given by the union of 4 domains
{±yj < 0}. As an example, the wedge W = {yj < 0, j = 1, 2} is
contained in the strictly pseudoconvex domain

Ω = {y1 + y2 + y2
1 + y2

2 < 0},

which is biholomorphic to the unit ball.
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22. Hulls of Levi flats 4
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√
z2 is the multiple valued first integral. One can prove
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√
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2
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23. Hulls of Levi flats 5

Then there exists a complex curve touching the boundary Ω from outside
exactly at the origin. Translating this curve and considering the
intersections with W gives a family of Riemann surfaces filling W . This
proves the result.

Corollary

Let M ⊂ Cn, n > 1, be a Levi-flat hypersurface such that its Levi
foliation extends as a singular foliation to a neighbourhood of a singular
point p ∈ M. Then M is locally polynomially convex at p if and only if p
is a Segre nondegenerate (nondicritical) singularity of M.

We do not know if every Levi flat hypersurface that admits the extension
of the Levi foliation as a d-web with d > 1 has a nontrivial hull.
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24. Almost done!

A special case of a d-web in C2 is when the defining pseudopolynomial is
monic, i.e., W is defined by(

dz2

dz1

)d

+ ad−1(z1, z2)

(
dz2

dz1

)d−1

+ · · ·+ a0(z1, z2) = 0. (1)

If W is given by (1) then
(i) W admits a multiple-valued holomorphic first integral.
(ii) There exists a singular Levi flat tangent to W.
(iii) There exists an irreducible complex analytic set A ⊂ C2 × C of
dimension 2 such that the regular part of A is foliated by complex curves
and the projection π : A→ C2 sends this foliation to W.
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Thank you! Hvala vam!
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