Singular Holomorphic Foliations and Levi-flat hypersurfaces

Rasul Shafikov

University of Western Ontario

Portorož, Slovenia, June 2024

A holomorphic foliation of codimension 1 on a complex manifold M^n is a decomposition \mathcal{F} of M into pairwise disjoint immersed complex manifolds of dimension n-1 (called the *leaves* of \mathcal{F}) such that (i) for any $p \in M$ there exists a unique submanifold L_p of the decomposition that passes through p.

(ii) For any $p \in M$ there exists a *distinguished* holomorphic chart of M $(\phi, U), p \in U, \phi : U \to \phi(U) \subset \mathbb{C}^n$ such that $\phi(U) = \Delta^{n-1} \times \Delta$, and if L is a leaf of \mathcal{F} with $L \cap U \neq \emptyset$, then

$$L \cap U = \cup_{q \in P} \phi^{-1}(\Delta^{n-1} \times \{q\}),$$

where P is a countable subset of Δ .

The sets $\phi^{-1}(\Delta^{n-1} \times \{q\})$ are called plaques of the distinguished chart (ϕ, U) . Foliations of arbitrary codimension are defined the same way.

A holomorphic foliation of codimension 1 on a complex manifold M^n is a decomposition \mathcal{F} of M into pairwise disjoint immersed complex manifolds of dimension n-1 (called the *leaves* of \mathcal{F}) such that (i) for any $p \in M$ there exists a unique submanifold L_p of the decomposition that passes through p.

(ii) For any $p \in M$ there exists a *distinguished* holomorphic chart of M $(\phi, U), p \in U, \phi : U \to \phi(U) \subset \mathbb{C}^n$ such that $\phi(U) = \Delta^{n-1} \times \Delta$, and if L is a leaf of \mathcal{F} with $L \cap U \neq \emptyset$, then

$$L \cap U = \cup_{q \in P} \phi^{-1}(\Delta^{n-1} \times \{q\}),$$

where P is a countable subset of Δ .

The sets $\phi^{-1}(\Delta^{n-1} \times \{q\})$ are called plaques of the distinguished chart (ϕ, U) . Foliations of arbitrary codimension are defined the same way.

A holomorphic foliation of codimension 1 on a complex manifold M^n is a decomposition \mathcal{F} of M into pairwise disjoint immersed complex manifolds of dimension n-1 (called the *leaves* of \mathcal{F}) such that (i) for any $p \in M$ there exists a unique submanifold L_p of the decomposition that passes through p.

(ii) For any $p \in M$ there exists a *distinguished* holomorphic chart of M $(\phi, U), p \in U, \phi : U \to \phi(U) \subset \mathbb{C}^n$ such that $\phi(U) = \Delta^{n-1} \times \Delta$, and if L is a leaf of \mathcal{F} with $L \cap U \neq \emptyset$, then

$$L \cap U = \cup_{q \in P} \phi^{-1}(\Delta^{n-1} \times \{q\}),$$

where P is a countable subset of Δ .

The sets $\phi^{-1}(\Delta^{n-1} \times \{q\})$ are called plaques of the distinguished chart (ϕ, U) . Foliations of arbitrary codimension are defined the same way.

(0) In prose.

(1) By local submersions.

(0) In prose.

By local submersions.

(0) In prose.

(1) By local submersions.

(0) In prose.

(1) By local submersions.

(2) Foliation of dimension 1 can be defined by a holomorphic vector field: if X is a holomorphic vector field on M, then it defines a foliation on $M \setminus \{X = 0\}$, whose structure is determined by the Flow box theorem for vector fields, so integral curves of X are the leaves. In fact, any foliation of dimension 1 can be locally defined by a holomorphic vector field.

(3) By a holomorphic 1-form $\omega \neq 0$. The form generates a distribution of hyperplanes ker (ω_p) on $M \setminus \{\omega = 0\}$. This defines a foliation tangent to ker (ω_p) iff ω is integrable, i.e., $\omega \wedge d\omega = 0$ (Frobenius). Any foliation of codimension 1 is locally defined by a nonvanishing holomorphic 1-form.

In dimension 2: (2) and (3) are equivalent: $X = P(z, w)\frac{\partial}{\partial z} + Q(z, w)\frac{\partial}{\partial w}$ $\iff \omega = Pdw - Qdz$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

(0) In prose.

(1) By local submersions.

(2) Foliation of dimension 1 can be defined by a holomorphic vector field: if X is a holomorphic vector field on M, then it defines a foliation on $M \setminus \{X = 0\}$, whose structure is determined by the Flow box theorem for vector fields, so integral curves of X are the leaves. In fact, any foliation of dimension 1 can be locally defined by a holomorphic vector field. (3) By a holomorphic 1-form $\omega \neq 0$. The form generates a distribution of hyperplanes ker (ω_p) on $M \setminus \{\omega = 0\}$. This defines a foliation tangent to ker (ω_p) iff ω is integrable, i.e., $\omega \wedge d\omega = 0$ (Frobenius). Any foliation of codimension 1 is locally defined by a nonvanishing holomorphic 1-form.

In dimension 2: (2) and (3) are equivalent: $X = P(z, w)\frac{\partial}{\partial z} + Q(z, w)\frac{\partial}{\partial w}$ $\iff \omega = Pdw - Qdz$.

(0) In prose.

(1) By local submersions.

(2) Foliation of dimension 1 can be defined by a holomorphic vector field: if X is a holomorphic vector field on M, then it defines a foliation on $M \setminus \{X = 0\}$, whose structure is determined by the Flow box theorem for vector fields, so integral curves of X are the leaves. In fact, any foliation of dimension 1 can be locally defined by a holomorphic vector field. (3) By a holomorphic 1-form $\omega \neq 0$. The form generates a distribution of hyperplanes ker (ω_p) on $M \setminus \{\omega = 0\}$. This defines a foliation tangent to ker (ω_p) iff ω is integrable, i.e., $\omega \wedge d\omega = 0$ (Frobenius). Any foliation of codimension 1 is locally defined by a nonvanishing holomorphic 1-form. In dimension 2: (2) and (3) are equivalent: $X = P(z, w) \frac{\partial}{\partial z} + Q(z, w) \frac{\partial}{\partial w}$ $\iff \omega = Pdw - Qdz$

3. Singular foliations

Let *M* be a complex manifold, dim $M \ge 2$.

Definition

A singular holomorphic foliation \mathcal{F} of codimension 1 is given by an open cover $M = \bigcup_j U_j$, holomorphic integrable 1-forms ω_j on U_j such that if $U_j \cap U_k \neq \emptyset$, then $\omega_j = g_{jk}\omega_k$ in $U_j \cap U_k$ for some $g_{jk} \in \mathcal{O}^*(U_j \cap U_k)$. The singular locus sing(\mathcal{F}) is defined by sing(\mathcal{F}) $\cap U_j = \{\omega_j = 0\}$. We may assume that sing(\mathcal{F}) is a complex analytic set of codimension ≥ 2 .

If \mathcal{F} is a codimension 1 holomorphic foliation on $M \setminus A$, where A is a complex analytic subset of M, codim $A \ge 2$, then there exists a singular holomorphic foliation $\tilde{\mathcal{F}}$ on M that extends \mathcal{F} .

If dim M = 2 then a singular foliation \mathcal{F} has dimension and codimension 1. In this case sing(\mathcal{F}) is a discrete set and near a singular point \mathcal{F} can be given by a vector field that vanishes precisely at the singularity.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

3. Singular foliations

Let *M* be a complex manifold, dim $M \ge 2$.

Definition

A singular holomorphic foliation \mathcal{F} of codimension 1 is given by an open cover $M = \bigcup_j U_j$, holomorphic integrable 1-forms ω_j on U_j such that if $U_j \cap U_k \neq \emptyset$, then $\omega_j = g_{jk}\omega_k$ in $U_j \cap U_k$ for some $g_{jk} \in \mathcal{O}^*(U_j \cap U_k)$. The singular locus sing(\mathcal{F}) is defined by sing(\mathcal{F}) $\cap U_j = \{\omega_j = 0\}$. We may assume that sing(\mathcal{F}) is a complex analytic set of codimension ≥ 2 .

If \mathcal{F} is a codimension 1 holomorphic foliation on $M \setminus A$, where A is a complex analytic subset of M, codim $A \ge 2$, then there exists a singular holomorphic foliation $\tilde{\mathcal{F}}$ on M that extends \mathcal{F} .

If dim M = 2 then a singular foliation \mathcal{F} has dimension and codimension 1. In this case sing(\mathcal{F}) is a discrete set and near a singular point \mathcal{F} can be given by a vector field that vanishes precisely at the singularity.

3. Singular foliations

Let *M* be a complex manifold, dim $M \ge 2$.

Definition

A singular holomorphic foliation \mathcal{F} of codimension 1 is given by an open cover $M = \bigcup_j U_j$, holomorphic integrable 1-forms ω_j on U_j such that if $U_j \cap U_k \neq \emptyset$, then $\omega_j = g_{jk}\omega_k$ in $U_j \cap U_k$ for some $g_{jk} \in \mathcal{O}^*(U_j \cap U_k)$. The singular locus sing(\mathcal{F}) is defined by sing(\mathcal{F}) $\cap U_j = \{\omega_j = 0\}$. We may assume that sing(\mathcal{F}) is a complex analytic set of codimension ≥ 2 .

If \mathcal{F} is a codimension 1 holomorphic foliation on $M \setminus A$, where A is a complex analytic subset of M, codim $A \ge 2$, then there exists a singular holomorphic foliation $\tilde{\mathcal{F}}$ on M that extends \mathcal{F} .

If dim M = 2 then a singular foliation \mathcal{F} has dimension and codimension 1. In this case sing(\mathcal{F}) is a discrete set and near a singular point \mathcal{F} can be given by a vector field that vanishes precisely at the singularity.

・ 何 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 singular at the origin. A *separatrix* of \mathcal{F} is a holomorphic curve $S \ni 0$ which is invariant by \mathcal{F} , i.e., $S \setminus \{0\}$ is contained in a leaf of \mathcal{F} . Camacho-Sad (Ann. of Math., 1982): any singularity admits at least one separatrix.

The point 0 is called a *dicritical* singularity if \mathcal{F} has infinitely many distinct separatrices, otherwise the singularity is *nondicritical*.

A nonconstant holomorphic function $f : \mathbb{C}^2 \to \mathbb{C}$ is called a *holomorphic first integral* for \mathcal{F} if f is constant on the leaves of \mathcal{F} .

If \mathcal{F} is given by a vector field X singular at 0, then the above is equivalent to $df(X) \equiv 0$, and in terms of 1-form ω , the condition becomes $\omega \wedge df = 0$.

If \mathcal{F} admits a holomorphic first integral f, then separatrices are the irreducible components of $f^{-1}(f(0))$, so the origin is a nondicritical singularity. The converse is the following.

イロト イヨト イヨト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 singular at the origin. A *separatrix* of \mathcal{F} is a holomorphic curve $S \ni 0$ which is invariant by \mathcal{F} , i.e., $S \setminus \{0\}$ is contained in a leaf of \mathcal{F} . Camacho-Sad (Ann. of Math., 1982): any singularity admits at least one separatrix.

The point 0 is called a *dicritical* singularity if \mathcal{F} has infinitely many distinct separatrices, otherwise the singularity is *nondicritical*.

A nonconstant holomorphic function $f : \mathbb{C}^2 \to \mathbb{C}$ is called a *holomorphic first integral* for \mathcal{F} if f is constant on the leaves of \mathcal{F} .

If \mathcal{F} is given by a vector field X singular at 0, then the above is equivalent to $df(X) \equiv 0$, and in terms of 1-form ω , the condition becomes $\omega \wedge df = 0$.

If \mathcal{F} admits a holomorphic first integral f, then separatrices are the irreducible components of $f^{-1}(f(0))$, so the origin is a nondicritical singularity. The converse is the following.

イロト イヨト イヨト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 singular at the origin. A *separatrix* of \mathcal{F} is a holomorphic curve $S \ni 0$ which is invariant by \mathcal{F} , i.e., $S \setminus \{0\}$ is contained in a leaf of \mathcal{F} . Camacho-Sad (Ann. of Math., 1982): any singularity admits at least one separatrix.

The point 0 is called a *dicritical* singularity if \mathcal{F} has infinitely many distinct separatrices, otherwise the singularity is *nondicritical*.

A nonconstant holomorphic function $f : \mathbb{C}^2 \to \mathbb{C}$ is called a *holomorphic first integral* for \mathcal{F} if f is constant on the leaves of \mathcal{F} .

If \mathcal{F} is given by a vector field X singular at 0, then the above is equivalent to $df(X) \equiv 0$, and in terms of 1-form ω , the condition becomes $\omega \wedge df = 0$.

If \mathcal{F} admits a holomorphic first integral f, then separatrices are the irreducible components of $f^{-1}(f(0))$, so the origin is a nondicritical singularity. The converse is the following.

イロト イボト イヨト イヨト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 singular at the origin. A *separatrix* of \mathcal{F} is a holomorphic curve $S \ni 0$ which is invariant by \mathcal{F} , i.e., $S \setminus \{0\}$ is contained in a leaf of \mathcal{F} . Camacho-Sad (Ann. of Math., 1982): any singularity admits at least one separatrix.

The point 0 is called a *dicritical* singularity if \mathcal{F} has infinitely many distinct separatrices, otherwise the singularity is *nondicritical*.

A nonconstant holomorphic function $f : \mathbb{C}^2 \to \mathbb{C}$ is called a *holomorphic first integral* for \mathcal{F} if f is constant on the leaves of \mathcal{F} .

If \mathcal{F} is given by a vector field X singular at 0, then the above is equivalent to $df(X) \equiv 0$, and in terms of 1-form ω , the condition becomes $\omega \wedge df = 0$.

If \mathcal{F} admits a holomorphic first integral f, then separatrices are the irreducible components of $f^{-1}(f(0))$, so the origin is a nondicritical singularity. The converse is the following.

イロト イボト イヨト イヨト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 singular at the origin. A *separatrix* of \mathcal{F} is a holomorphic curve $S \ni 0$ which is invariant by \mathcal{F} , i.e., $S \setminus \{0\}$ is contained in a leaf of \mathcal{F} . Camacho-Sad (Ann. of Math., 1982): any singularity admits at least one separatrix.

The point 0 is called a *dicritical* singularity if \mathcal{F} has infinitely many distinct separatrices, otherwise the singularity is *nondicritical*.

A nonconstant holomorphic function $f : \mathbb{C}^2 \to \mathbb{C}$ is called a *holomorphic first integral* for \mathcal{F} if f is constant on the leaves of \mathcal{F} .

If \mathcal{F} is given by a vector field X singular at 0, then the above is equivalent to $df(X) \equiv 0$, and in terms of 1-form ω , the condition becomes $\omega \wedge df = 0$.

If \mathcal{F} admits a holomorphic first integral f, then separatrices are the irreducible components of $f^{-1}(f(0))$, so the origin is a nondicritical singularity. The converse is the following.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at the origin. If 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin, then there exists a neighbourhood $W \subset V$ of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

What about dicritical singularities? These clearly cannot admit holomorphic first integrals, but may have meromorphic first integrals, i.e., a nonconstant meromorphic function g with the indeterminacy at the origin that is constant on the leaves of F.

Example: The foliation corresponding to $\omega = zdw - wdz$ has leaves that are complex lines passing through the origin, which is a dicritical singularity. The meromorphic first integral is g(z, w) = z/w. There are examples of dicritical singularities that do not admit meromorphic first integral, Cerveau-Mattei (Asterisque, 1982):topologically indistinguishable).

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at the origin. If 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin, then there exists a neighbourhood $W \subset V$ of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

What about dicritical singularities? These clearly cannot admit holomorphic first integrals, but may have meromorphic first integrals, i.e., a nonconstant meromorphic function g with the indeterminacy at the origin that is constant on the leaves of F.

Example: The foliation corresponding to $\omega = zdw - wdz$ has leaves that are complex lines passing through the origin, which is a dicritical singularity. The meromorphic first integral is g(z, w) = z/w. There are examples of dicritical singularities that do not admit meromorphic first integral, Cerveau-Mattei (Asterisque, 1982):topologically indistinguishable).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at the origin. If 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin, then there exists a neighbourhood $W \subset V$ of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

What about dicritical singularities? These clearly cannot admit holomorphic first integrals, but may have meromorphic first integrals, i.e., a nonconstant meromorphic function g with the indeterminacy at the origin that is constant on the leaves of F.

Example: The foliation corresponding to $\omega = zdw - wdz$ has leaves that are complex lines passing through the origin, which is a dicritical singularity. The meromorphic first integral is g(z, w) = z/w.

There are examples of dicritical singularities that do not admit meromorphic first integral, Cerveau-Mattei (Asterisque, 1982):topologically indistinguishable).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

ъ.

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at the origin. If 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin, then there exists a neighbourhood $W \subset V$ of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

What about dicritical singularities? These clearly cannot admit holomorphic first integrals, but may have meromorphic first integrals, i.e., a nonconstant meromorphic function g with the indeterminacy at the origin that is constant on the leaves of F.

Example: The foliation corresponding to $\omega = zdw - wdz$ has leaves that are complex lines passing through the origin, which is a dicritical singularity. The meromorphic first integral is g(z, w) = z/w.

There are examples of dicritical singularities that do not admit meromorphic first integral, Cerveau-Mattei (Asterisque, 1982):topologically indistinguishable).

ヘロト ヘ河ト ヘヨト ヘヨト

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

(i) *M* is foliated by complex hypersurfaces.

(ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial z_i \partial \overline{z}_k}|_{H_p} = 0$ for all $p \in M$.

The foliation of *M* by complex hypersurfaces is called the *Levi foliation* of *M*.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \ \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\text{Re } \xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

イロト イヨト イヨト

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

- (i) M is foliated by complex hypersurfaces.
- (ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial z_i \partial \overline{z}_k}|_{H_p} = 0$ for all $p \in M$.

The foliation of *M* by complex hypersurfaces is called the *Levi foliation* of *M*.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\text{Re }\xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

イロト イヨト イヨト

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

- (i) M is foliated by complex hypersurfaces.
- (ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial p}|_{H} = 0$ for all $p \in M$.

The foliation of M by complex hypersurfaces is called the *Levi foliation* of M.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \ \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\operatorname{Re} \xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

イロト イボト イヨト イヨト

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

(i) M is foliated by complex hypersurfaces.

(ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial z_i \partial \overline{z}_k}|_{H_p} = 0$ for all $p \in M$.

The foliation of *M* by complex hypersurfaces is called the *Levi foliation* of *M*.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\text{Re }\xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

イロト イボト イヨト イヨト

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

- (i) M is foliated by complex hypersurfaces.
- (ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial z_i \partial \overline{z}_k}|_{H_p} = 0$ for all $p \in M$.

The foliation of M by complex hypersurfaces is called the *Levi foliation* of M.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \ \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\operatorname{Re} \xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

くロ と く 同 と く ヨ と 一

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

- (i) M is foliated by complex hypersurfaces.
- (ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial z_i \partial \overline{z}_k}|_{H_p} = 0$ for all $p \in M$.

The foliation of M by complex hypersurfaces is called the *Levi foliation* of M.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \ \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\operatorname{Re} \xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

Let $M \subset \mathbb{C}^n$ be a C^{∞} -smooth real hypersurface defined by $\rho = 0$ with $d\rho|_M \neq 0$. Then the following are equivalent:

- (i) M is foliated by complex hypersurfaces.
- (ii) The complex hyperplane distribution $H_p \subset T_p M$ is involutive on M. (iii) The Levi-form $\frac{\partial^2 \rho(p)}{\partial z_i \partial \overline{z}_k}|_{H_p} = 0$ for all $p \in M$.

The foliation of M by complex hypersurfaces is called the *Levi foliation* of M.

Cartan: if M is real analytic Levi flat, then M is locally biholomorphically equivalent to $\{x_n = 0\}$. Other examples: For a curve $\gamma \subset \mathbb{C}, \ \gamma \times \mathbb{C}^k$ is Levi flat; if $f : \mathbb{C}^n \to \mathbb{C}_{\xi}$ is a submersion, then $f^{-1}(\operatorname{Re} \xi)$ is Levi-flat.

Definition

Let M be an irreducible real analytic set in \mathbb{C}^n of codimension 1. M is called Levi-flat, if the regular locus of M (of dimension 2n - 1) is Levi-flat (in the above sense).

イロト イヨト イヨト

э

Example 1: $M_1 = \{z \in \mathbb{C}^n : \text{Re } (z_1^2 + \cdots + z_n^2) = 0\}$ is a real algebraic Levi flat hypersurface singular at the origin. Burns-Gong (Amer. J. of Math., 1999): if a real analytic hypersurface

$$M = \{z \in \mathbb{C}^n : \operatorname{Re}(z_1^2 + \dots + z_n^2) + O(|z|^3) = 0\}$$

is Levi flat, then M is biholomorphically equivalent to M_1 (cf. Cartan.)

Example 2: the hypersurface $M_2 = \{z \in \mathbb{C}^2 : |z_1|^2 - |z_2|^2 = 0\}$ is Levi flat, singular at 0; Again, Burns-Gong proved that if a real analytic Levi flat M is given by $\rho = Q(z, \overline{z}) + O(|z|^3)$, where Q is positive definite with the rank of the Levi form at least 2, then M is biholomorphic to M_2 . Note that the Levi foliation of M_2 agrees with the previously discussed singular foliation on \mathbb{C}^2 given by the 1-form $\omega = zdw - wdz$.

The above results of Burms-Gong give a classification of Levi flat hypersurfaces with an isolated nondegenerate singularities. Further generalizations can be found in the work of Fernández-Pérez and co-authors. But a general local classification of singular Levi flat hypersurfaces in incomplete.

Example 1: $M_1 = \{z \in \mathbb{C}^n : \text{Re } (z_1^2 + \cdots + z_n^2) = 0\}$ is a real algebraic Levi flat hypersurface singular at the origin. Burns-Gong (Amer. J. of Math., 1999): if a real analytic hypersurface

$$M = \{z \in \mathbb{C}^n : \operatorname{Re} (z_1^2 + \dots + z_n^2) + O(|z|^3) = 0\}$$

is Levi flat, then M is biholomorphically equivalent to M_1 (cf. Cartan.) Example 2: the hypersurface $M_2 = \{z \in \mathbb{C}^2 : |z_1|^2 - |z_2|^2 = 0\}$ is Levi flat, singular at 0; Again, Burns-Gong proved that if a real analytic Levi flat M is given by $\rho = Q(z, \overline{z}) + O(|z|^3)$, where Q is positive definite with the rank of the Levi form at least 2, then M is biholomorphic to M_2 . Note that the Levi foliation of M_2 agrees with the previously discussed singular foliation on \mathbb{C}^2 given by the 1-form $\omega = zdw - wdz$.

The above results of Burms-Gong give a classification of Levi flat hypersurfaces with an isolated nondegenerate singularities. Further generalizations can be found in the work of Fernández-Pérez and co-authors. But a general local classification of singular Levi flat hypersurfaces in incomplete.

イロト イボト イヨト イヨト

Example 1: $M_1 = \{z \in \mathbb{C}^n : \text{Re } (z_1^2 + \cdots + z_n^2) = 0\}$ is a real algebraic Levi flat hypersurface singular at the origin. Burns-Gong (Amer. J. of Math., 1999): if a real analytic hypersurface

$$M = \{z \in \mathbb{C}^n : \operatorname{Re} (z_1^2 + \dots + z_n^2) + O(|z|^3) = 0\}$$

is Levi flat, then M is biholomorphically equivalent to M_1 (cf. Cartan.) Example 2: the hypersurface $M_2 = \{z \in \mathbb{C}^2 : |z_1|^2 - |z_2|^2 = 0\}$ is Levi flat, singular at 0; Again, Burns-Gong proved that if a real analytic Levi flat M is given by $\rho = Q(z, \overline{z}) + O(|z|^3)$, where Q is positive definite with the rank of the Levi form at least 2, then M is biholomorphic to M_2 . Note that the Levi foliation of M_2 agrees with the previously discussed singular foliation on \mathbb{C}^2 given by the 1-form $\omega = zdw - wdz$.

The above results of Burns-Gong give a classification of Levi flat hypersurfaces with an isolated nondegenerate singularities. Further generalizations can be found in the work of Fernández-Pérez and co-authors. But a general local classification of singular Levi flat hypersurfaces in incomplete.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A (singular) Levi flat hypersurface M is called tangent to a (singular) holomorphic foliation \mathcal{F} if the leaves of the Levi foliation on M are also the leaves of \mathcal{F} .

Theorem (Cerveau-Lins Neto, Amer. J. of Math., 2011)

Let \mathcal{F} be the germ at $0 \in \mathbb{C}^n$, $n \ge 2$, of a holomorphic codimension one foliation which is tangent to the germ at $0 \in \mathbb{C}^n$ of a real analytic Levi flat M. Then \mathcal{F} has a nonconstant meromorphic first integral. If n = 2, then further

(a) If $\mathcal F$ is dicritical then it has a meromorphic first integral;

(b) If \mathcal{F} is nondicritical then it has a holomorphic first integral.

The problem can be reduced to the case n = 2. In this dimension Brunella (L'Enseignement Math. 2012) gave an elegant geometric proof.

ヘロト 人間 とくほ とくほう

A (singular) Levi flat hypersurface M is called tangent to a (singular) holomorphic foliation \mathcal{F} if the leaves of the Levi foliation on M are also the leaves of \mathcal{F} .

Theorem (Cerveau-Lins Neto, Amer. J. of Math., 2011)

Let \mathcal{F} be the germ at $0 \in \mathbb{C}^n$, $n \ge 2$, of a holomorphic codimension one foliation which is tangent to the germ at $0 \in \mathbb{C}^n$ of a real analytic Levi flat M. Then \mathcal{F} has a nonconstant meromorphic first integral. If n = 2, then further

(a) If F is dicritical then it has a meromorphic first integral;
(b) If F is nondicritical then it has a holomorphic first integral.

The problem can be reduced to the case n = 2. In this dimension Brunella (L'Enseignement Math. 2012) gave an elegant geometric proof.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

A (singular) Levi flat hypersurface M is called tangent to a (singular) holomorphic foliation \mathcal{F} if the leaves of the Levi foliation on M are also the leaves of \mathcal{F} .

Theorem (Cerveau-Lins Neto, Amer. J. of Math., 2011)

Let \mathcal{F} be the germ at $0 \in \mathbb{C}^n$, $n \ge 2$, of a holomorphic codimension one foliation which is tangent to the germ at $0 \in \mathbb{C}^n$ of a real analytic Levi flat M. Then \mathcal{F} has a nonconstant meromorphic first integral. If n = 2, then further

(a) If F is dicritical then it has a meromorphic first integral;
(b) If F is nondicritical then it has a holomorphic first integral.

The problem can be reduced to the case n = 2. In this dimension Brunella (L'Enseignement Math. 2012) gave an elegant geometric proof.

We will see later that the result of Cerveau - Lins Neto is a proper generalization of Mattei-Moussu.

Perhaps unnoticed in the literature, the statement of the theorem above is, in fact, "if and only if". The following argument is essentially due to Burns-Gong:

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^n singular at the origin. Suppose it admits a meromorphic first integral m. Near the origin we set m = f/g, where f(0) = g(0) = 0, and f and g are holomorphic and coprime. Then

$$M = \{z \in \mathbb{C}^n : \operatorname{Re} \left(f(z)\overline{g}(z)\right) = 0\}$$

is a real analytic Levi flat set. One readily sees that M is tangent to \mathcal{F} .

・ 同 ト ・ ヨ ト ・ ヨ ト
We will see later that the result of Cerveau - Lins Neto is a proper generalization of Mattei-Moussu.

Perhaps unnoticed in the literature, the statement of the theorem above is, in fact, "if and only if". The following argument is essentially due to Burns-Gong:

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^n singular at the origin. Suppose it admits a meromorphic first integral m. Near the origin we set m = f/g, where f(0) = g(0) = 0, and f and g are holomorphic and coprime. Then

$$M = \{z \in \mathbb{C}^n : \operatorname{Re} (f(z)\overline{g}(z)) = 0\}$$

is a real analytic Levi flat set. One readily sees that M is tangent to \mathcal{F} .

We will see later that the result of Cerveau - Lins Neto is a proper generalization of Mattei-Moussu.

Perhaps unnoticed in the literature, the statement of the theorem above is, in fact, "if and only if". The following argument is essentially due to Burns-Gong:

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^n singular at the origin. Suppose it admits a meromorphic first integral m. Near the origin we set m = f/g, where f(0) = g(0) = 0, and f and g are holomorphic and coprime. Then

$$M = \{z \in \mathbb{C}^n : \operatorname{Re} (f(z)\overline{g}(z)) = 0\}$$

is a real analytic Levi flat set. One readily sees that M is tangent to \mathcal{F} .

b 4 3 b 4 3 b

10. Segre varieties 1

Let $M \subset \mathbb{R}^n_{\star}$ be the germ of a real analytic set at the origin. The complexification M^c of M is a complex analytic germ at the origin in $\mathbb{C}_{z}^{n} = \mathbb{R}_{x}^{n} + i\mathbb{R}_{y}^{n}$ such that that any holomorphic function that vanishes on M necessarily vanishes on M^c . Equivalently, M^c is the smallest complex analytic germ in \mathbb{C}^n that contains M. If dim M = 2n - 1, then it admits a defining function ρ such that $M^c = \{\rho^c = 0\}$, where ρ^c is a complexification of ρ , and ρ^c is *minimal*, i.e., is a generator of the sheaf of ideals on M^c . Complexification of real analytic sets in \mathbb{C}^n can be obtained by a totally real embedding $\mathbb{C}^n \hookrightarrow \mathbb{C}^{2n}$. Given a real analytic hypersurface M and using a minimal defining function of M as above, in some small neighbourhood U of the origin, for $w \in U$ the Segre variety Q_w (associated with M) is defined by

$$Q_w = \{z \in U : \rho(z, \overline{w}) = 0\}.$$

 Q_w is a complex hypersurface in U for most $w \in U$.

• • = • • = •

A point $w \in M \subset \mathbb{C}^n$ is called *Segre degenerate* if dim $Q_w = n$.

For example, if $M = \{|z_1|^2 - |z_2|^2 = 0\}$, then $Q_w = \{z_1\overline{w}_1 - z_2\overline{w}_2 = 0\}$, and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by L_p the leaf of the Levi foliation that passes through a regular point $p \in M$. Then there exists a unique irreducible component S_p of Q_p containing L_p . This is also a unique complex hypersurface through p which is contained in M. A singular point $0 \in M$ is called *dicritical* if it belongs to infinitely many

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then $0 \in Q_w$ for all w, but one needs to show that $0 \in S_w$. Our proof essentially shows that, in fact, every irreducible component of Q_w passes through the origin. This shows that 0 is dicritical.

A point $w \in M \subset \mathbb{C}^n$ is called *Segre degenerate* if dim $Q_w = n$.

For example, if $M = \{|z_1|^2 - |z_2|^2 = 0\}$, then $Q_w = \{z_1\overline{w}_1 - z_2\overline{w}_2 = 0\}$, and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by L_p the leaf of the Levi foliation that passes through a regular point $p \in M$. Then there exists a unique irreducible component S_p of Q_p containing L_p . This is also a unique complex hypersurface through p which is contained in M. A singular point $0 \in M$ is called *dicritical* if it belongs to infinitely many geometrically different leaves L_p .

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then $0 \in Q_w$ for all w, but one needs to show that $0 \in S_w$. Our proof essentially shows that, in fact, every irreducible component of Q_w passes through the origin. This shows that 0 is dicritical.

A point $w \in M \subset \mathbb{C}^n$ is called *Segre degenerate* if dim $Q_w = n$.

For example, if $M = \{|z_1|^2 - |z_2|^2 = 0\}$, then $Q_w = \{z_1\overline{w}_1 - z_2\overline{w}_2 = 0\}$, and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by L_p the leaf of the Levi foliation that passes through a regular point $p \in M$. Then there exists a unique irreducible component S_p of Q_p containing L_p . This is also a unique complex hypersurface through p which is contained in M.

A singular point $0 \in M$ is called *dicritical* if it belongs to infinitely many geometrically different leaves L_p .

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then $0 \in Q_w$ for all w, but one needs to show that $0 \in S_w$. Our proof essentially shows that, in fact, every irreducible component of Q_w passes through the origin. This shows that 0 is discritical.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

A point $w \in M \subset \mathbb{C}^n$ is called *Segre degenerate* if dim $Q_w = n$.

For example, if $M = \{|z_1|^2 - |z_2|^2 = 0\}$, then $Q_w = \{z_1\overline{w}_1 - z_2\overline{w}_2 = 0\}$, and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by L_p the leaf of the Levi foliation that passes through a regular point $p \in M$. Then there exists a unique irreducible component S_p of Q_p containing L_p . This is also a unique complex hypersurface through p which is contained in M. A singular point $0 \in M$ is called *dicritical* if it belongs to infinitely many geometrically different leaves L_p .

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then $0 \in Q_w$ for all w, but one needs to show that $0 \in S_w$. Our proof essentially shows that, in fact, every irreducible component of Q_w passes through the origin. This shows that 0 is dicritical.

A point $w \in M \subset \mathbb{C}^n$ is called *Segre degenerate* if dim $Q_w = n$.

For example, if $M = \{|z_1|^2 - |z_2|^2 = 0\}$, then $Q_w = \{z_1\overline{w}_1 - z_2\overline{w}_2 = 0\}$, and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by L_p the leaf of the Levi foliation that passes through a regular point $p \in M$. Then there exists a unique irreducible component S_p of Q_p containing L_p . This is also a unique complex hypersurface through p which is contained in M. A singular point $0 \in M$ is called *dicritical* if it belongs to infinitely many

geometrically different leaves L_{p} .

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then $0 \in Q_w$ for all w, but one needs to show that $0 \in S_w$. Our proof essentially shows that, in fact, every irreducible component of Q_w passes through the origin. This shows that 0 is discritical.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

A point $w \in M \subset \mathbb{C}^n$ is called *Segre degenerate* if dim $Q_w = n$.

For example, if $M = \{|z_1|^2 - |z_2|^2 = 0\}$, then $Q_w = \{z_1\overline{w}_1 - z_2\overline{w}_2 = 0\}$, and so w = 0 is a Segre degenerate point.

Let now M be a (singular) Levi flat hypersuface. Denote by L_p the leaf of the Levi foliation that passes through a regular point $p \in M$. Then there exists a unique irreducible component S_p of Q_p containing L_p . This is also a unique complex hypersurface through p which is contained in M. A singular point $0 \in M$ is called *dicritical* if it belongs to infinitely many

geometrically different leaves L_p .

Theorem (Pinchuk-Sukhov-RS, Izv. Math., 2017)

A singular point of a Levi flat M is dicritical iff it is Segre degenerate

If 0 is Segre degenerate, then $0 \in Q_w$ for all w, but one needs to show that $0 \in S_w$. Our proof essentially shows that, in fact, every irreducible component of Q_w passes through the origin. This shows that 0 is dicritical.

・ロト ・同ト ・ヨト ・ヨト ・ヨ

Given a (singular) holomorphic foliation \mathcal{F} on a compact complex manifold M, a closed set S is called *nontrivial minimal* if it is 1) invariant for \mathcal{F} (or saturated in \mathcal{F}), i.e., if $p \in S$, then $L_p \subset S$; 2) $S \neq \emptyset$; 3) minimal wrt inclusion; 4) (nontriviality) does not contain singular points of \mathcal{F} .

Theorem (Lins Neto (Ann. de L'Inst. Fourier, 1999)

No codimension 1 holomorphic foliation on \mathbb{CP}^n , n > 2, admits a nontrivial minimal set.

This implies nonexistence of (closed nonsingular) Levi flat hypersurfaces in \mathbb{CP}^n for n > 2, because such a Levi flat can be realized as a nontrivial minimal set of some holomorphic foliation on \mathbb{CP}^n . This can be also proved directly as follows.

Let M be a nonsingular closed real analytic Levi flat in \mathbb{CP}^n . Then there exists a neighbourhood U of M in \mathbb{CP}^n such that the Levi foliation on M extends to a nonsingular holomorphic foliation on U.

Given a (singular) holomorphic foliation \mathcal{F} on a compact complex manifold M, a closed set S is called *nontrivial minimal* if it is 1) invariant for \mathcal{F} (or saturated in \mathcal{F}), i.e., if $p \in S$, then $L_p \subset S$; 2) $S \neq \emptyset$; 3) minimal wrt inclusion; 4) (nontriviality) does not contain singular points of \mathcal{F} .

Theorem (Lins Neto (Ann. de L'Inst. Fourier, 1999)

No codimension 1 holomorphic foliation on \mathbb{CP}^n , n > 2, admits a nontrivial minimal set.

This implies nonexistence of (closed nonsingular) Levi flat hypersurfaces in \mathbb{CP}^n for n > 2, because such a Levi flat can be realized as a nontrivial minimal set of some holomorphic foliation on \mathbb{CP}^n . This can be also proved directly as follows.

Let M be a nonsingular closed real analytic Levi flat in \mathbb{CP}^n . Then there exists a neighbourhood U of M in \mathbb{CP}^n such that the Levi foliation on M extends to a nonsingular holomorphic foliation on U.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a (singular) holomorphic foliation \mathcal{F} on a compact complex manifold M, a closed set S is called *nontrivial minimal* if it is 1) invariant for \mathcal{F} (or saturated in \mathcal{F}), i.e., if $p \in S$, then $L_p \subset S$; 2) $S \neq \emptyset$; 3) minimal wrt inclusion; 4) (nontriviality) does not contain singular points of \mathcal{F} .

Theorem (Lins Neto (Ann. de L'Inst. Fourier, 1999)

No codimension 1 holomorphic foliation on \mathbb{CP}^n , n > 2, admits a nontrivial minimal set.

This implies nonexistence of (closed nonsingular) Levi flat hypersurfaces in \mathbb{CP}^n for n > 2, because such a Levi flat can be realized as a nontrivial minimal set of some holomorphic foliation on \mathbb{CP}^n . This can be also proved directly as follows.

Let M be a nonsingular closed real analytic Levi flat in \mathbb{CP}^n . Then there exists a neighbourhood U of M in \mathbb{CP}^n such that the Levi foliation on M extends to a nonsingular holomorphic foliation on U.

伺 と く ヨ と く ヨ と

Given a (singular) holomorphic foliation \mathcal{F} on a compact complex manifold M, a closed set S is called *nontrivial minimal* if it is 1) invariant for \mathcal{F} (or saturated in \mathcal{F}), i.e., if $p \in S$, then $L_p \subset S$; 2) $S \neq \emptyset$; 3) minimal wrt inclusion; 4) (nontriviality) does not contain singular points of \mathcal{F} .

Theorem (Lins Neto (Ann. de L'Inst. Fourier, 1999)

No codimension 1 holomorphic foliation on \mathbb{CP}^n , n > 2, admits a nontrivial minimal set.

This implies nonexistence of (closed nonsingular) Levi flat hypersurfaces in \mathbb{CP}^n for n > 2, because such a Levi flat can be realized as a nontrivial minimal set of some holomorphic foliation on \mathbb{CP}^n . This can be also proved directly as follows.

Let M be a nonsingular closed real analytic Levi flat in \mathbb{CP}^n . Then there exists a neighbourhood U of M in \mathbb{CP}^n such that the Levi foliation on M extends to a nonsingular holomorphic foliation on U.

Lins Neto: if V is a Stein manifold and $K \subset V$ is a compact satisfying $U = V \setminus K$ is connected, Then any holomorphic codimension one foliation \mathcal{F} on U, such that codim $(sing(\mathcal{F})) \ge 2$, can be extended to a holomorphic foliation on V.

The complement of M is the union of two Stein manifolds, and so the Levi foliation on M extends to a (singular) holomorphic foliation \mathcal{F} on \mathbb{CP}^n , and M is an invariant subset of \mathcal{F} . Lins Neto: Sing(\mathcal{F}) necessarily contains a component of codimension 2.

A Stein manifold has no complex varieties of positive dimension. Therefore, if n > 2, $Sing(\mathcal{F}) \cap M \neq \emptyset$, which is a contradiction. Hence, there are no nonsingular Levi flats in \mathbb{CP}^n for n > 2. If n = 2, the singularities of \mathcal{F} are isolated points and the argument falls short.

Further generalizations of nonexistence of Levi flats were obtained by Brunella, Ohsawa, Brinkschulte, and others.

The problem is open for \mathbb{CP}^2 .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Lins Neto: if V is a Stein manifold and $K \subset V$ is a compact satisfying $U = V \setminus K$ is connected, Then any holomorphic codimension one foliation \mathcal{F} on U, such that codim $(sing(\mathcal{F})) \ge 2$, can be extended to a holomorphic foliation on V.

The complement of M is the union of two Stein manifolds, and so the Levi foliation on M extends to a (singular) holomorphic foliation \mathcal{F} on \mathbb{CP}^n , and M is an invariant subset of \mathcal{F} . Lins Neto: Sing(\mathcal{F}) necessarily contains a component of codimension 2.

A Stein manifold has no complex varieties of positive dimension. Therefore, if n > 2, $Sing(\mathcal{F}) \cap M \neq \emptyset$, which is a contradiction. Hence, there are no nonsingular Levi flats in \mathbb{CP}^n for n > 2. If n = 2, the singularities of \mathcal{F} are isolated points and the argument falls short.

Further generalizations of nonexistence of Levi flats were obtained by Brunella, Ohsawa, Brinkschulte, and others.

The problem is open for \mathbb{CP}^2 .

・ 何 ト ・ ヨ ト ・ ヨ ト

Lins Neto: if V is a Stein manifold and $K \subset V$ is a compact satisfying $U = V \setminus K$ is connected, Then any holomorphic codimension one foliation \mathcal{F} on U, such that codim $(sing(\mathcal{F})) \ge 2$, can be extended to a holomorphic foliation on V.

The complement of M is the union of two Stein manifolds, and so the Levi foliation on M extends to a (singular) holomorphic foliation \mathcal{F} on \mathbb{CP}^n , and M is an invariant subset of \mathcal{F} . Lins Neto: Sing(\mathcal{F}) necessarily contains a component of codimension 2.

A Stein manifold has no complex varieties of positive dimension. Therefore, if n > 2, $Sing(\mathcal{F}) \cap M \neq \emptyset$, which is a contradiction. Hence, there are no nonsingular Levi flats in \mathbb{CP}^n for n > 2. If n = 2, the singularities of \mathcal{F} are isolated points and the argument falls short.

Further generalizations of nonexistence of Levi flats were obtained by Brunella, Ohsawa, Brinkschulte, and others.

The problem is open for \mathbb{CP}^2

= nac

Lins Neto: if V is a Stein manifold and $K \subset V$ is a compact satisfying $U = V \setminus K$ is connected, Then any holomorphic codimension one foliation \mathcal{F} on U, such that codim $(sing(\mathcal{F})) \ge 2$, can be extended to a holomorphic foliation on V.

The complement of M is the union of two Stein manifolds, and so the Levi foliation on M extends to a (singular) holomorphic foliation \mathcal{F} on \mathbb{CP}^n , and M is an invariant subset of \mathcal{F} . Lins Neto: Sing(\mathcal{F}) necessarily contains a component of codimension 2.

A Stein manifold has no complex varieties of positive dimension. Therefore, if n > 2, $Sing(\mathcal{F}) \cap M \neq \emptyset$, which is a contradiction. Hence, there are no nonsingular Levi flats in \mathbb{CP}^n for n > 2. If n = 2, the singularities of \mathcal{F} are isolated points and the argument falls short.

Further generalizations of nonexistence of Levi flats were obtained by Brunella, Ohsawa, Brinkschulte, and others.

The problem is open for $\mathbb{CP}^2.$

ъ.

Lins Neto: if V is a Stein manifold and $K \subset V$ is a compact satisfying $U = V \setminus K$ is connected, Then any holomorphic codimension one foliation \mathcal{F} on U, such that codim $(sing(\mathcal{F})) \ge 2$, can be extended to a holomorphic foliation on V.

The complement of M is the union of two Stein manifolds, and so the Levi foliation on M extends to a (singular) holomorphic foliation \mathcal{F} on \mathbb{CP}^n , and M is an invariant subset of \mathcal{F} . Lins Neto: Sing(\mathcal{F}) necessarily contains a component of codimension 2.

A Stein manifold has no complex varieties of positive dimension. Therefore, if n > 2, $Sing(\mathcal{F}) \cap M \neq \emptyset$, which is a contradiction. Hence, there are no nonsingular Levi flats in \mathbb{CP}^n for n > 2. If n = 2, the singularities of \mathcal{F} are isolated points and the argument falls short.

Further generalizations of nonexistence of Levi flats were obtained by Brunella, Ohsawa, Brinkschulte, and others.

The problem is open for \mathbb{CP}^2 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Example (Brunella, Ann. Sc. Norm. Super. Pisa, 2007): Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : y_2^2 = 4(y_1^2 + x_2)y_1^2\}, \quad z_j = x_j + iy_j.$$

This is a singular Levi flat hypersurface with the Levi foliation $\mathcal L$ given by

$$L_c = \{z_2 = (z_1 + c)^2, y_1 \neq 0\}, \ \ c \in \mathbb{R}.$$

It cannot be extended to a neighbourhood of the origin as a (singular) holomorphic foliation due to ramification. The extension of \mathcal{L} is a "foliation with branching" given by solutions of ODE $\left(\frac{dz_2}{dz_1}\right)^2 = 4z_2$. (i.e., the leaves are graphs of functions $z_2 = z_2(z_1)$ satisfying the ODE.)

イロト イヨト イヨト

Example (Brunella, Ann. Sc. Norm. Super. Pisa, 2007): Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : y_2^2 = 4(y_1^2 + x_2)y_1^2\}, \quad z_j = x_j + iy_j.$$

This is a singular Levi flat hypersurface with the Levi foliation $\mathcal L$ given by

$$L_c = \{z_2 = (z_1 + c)^2, y_1 \neq 0\}, \ \ c \in \mathbb{R}.$$

It cannot be extended to a neighbourhood of the origin as a (singular) holomorphic foliation due to ramification. The extension of \mathcal{L} is a "foliation with branching" given by solutions of ODE $\left(\frac{dz_2}{dz_1}\right)^2 = 4z_2$. (i.e., the leaves are graphs of functions $z_2 = z_2(z_1)$ satisfying the ODE.)

< ロ > < 同 > < 回 > < 回 >

Example (Brunella, Ann. Sc. Norm. Super. Pisa, 2007): Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : y_2^2 = 4(y_1^2 + x_2)y_1^2\}, \quad z_j = x_j + iy_j.$$

This is a singular Levi flat hypersurface with the Levi foliation $\mathcal L$ given by

$$L_c = \{z_2 = (z_1 + c)^2, y_1 \neq 0\}, \ \ c \in \mathbb{R}.$$

It cannot be extended to a neighbourhood of the origin as a (singular) holomorphic foliation due to ramification. The extension of \mathcal{L} is a "foliation with branching" given by solutions of ODE $\left(\frac{dz_2}{dz_1}\right)^2 = 4z_2$. (i.e., the leaves are graphs of functions $z_2 = z_2(z_1)$ satisfying the ODE.)

< ロ > < 同 > < 回 > < 回 >

Example (Brunella, Ann. Sc. Norm. Super. Pisa, 2007): Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : y_2^2 = 4(y_1^2 + x_2)y_1^2\}, \quad z_j = x_j + iy_j.$$

This is a singular Levi flat hypersurface with the Levi foliation $\mathcal L$ given by

$$L_c = \{z_2 = (z_1 + c)^2, y_1 \neq 0\}, \ \ c \in \mathbb{R}.$$

It cannot be extended to a neighbourhood of the origin as a (singular) holomorphic foliation due to ramification. The extension of \mathcal{L} is a "foliation with branching" given by solutions of ODE $(\frac{dz_2}{dz_1})^2 = 4z_2$.

(i.e., the leaves are graphs of functions $z_2 = z_2(z_1)$ satisfying the ODE.)

- 4 周 ト 4 ヨ ト 4 ヨ ト

Example (Brunella, Ann. Sc. Norm. Super. Pisa, 2007): Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : y_2^2 = 4(y_1^2 + x_2)y_1^2\}, \quad z_j = x_j + iy_j.$$

This is a singular Levi flat hypersurface with the Levi foliation $\mathcal L$ given by

$$L_c = \{z_2 = (z_1 + c)^2, y_1 \neq 0\}, \ c \in \mathbb{R}.$$

It cannot be extended to a neighbourhood of the origin as a (singular) holomorphic foliation due to ramification. The extension of \mathcal{L} is a "foliation with branching" given by solutions of ODE $(\frac{dz_2}{dz_1})^2 = 4z_2$. (i.e., the leaves are graphs of functions $z_2 = z_2(z_1)$ satisfying the ODE.)

・ 同 ト ・ ヨ ト ・ ヨ ト

15. Holomorphic *d*-webs

For simplicity, consider only the case n = 2. For $d \in \mathbb{N}$, a singular holomorphic *d*-web W is defined by solutions of ODE

$$P\left(z_1, z_2, \frac{dz_2}{dz_1}\right) = \sum_{k=0}^d a_k(z_1, z_2) \left(\frac{dz_2}{dz_1}\right)^k = 0,$$

where $a_k(z_1, z_2)$ are holomorphic in a neighbourhood of 0. We treat z_2 as a function of z_1 . If the above expression admits factorization into holomorphic terms linear in dz_2/dz_1 , then the web splits into the union of d foliations. In particular, if d = 1 we obtain a usual foliation. But in general, the ODE is unresolved with respect to dz_2/dz_1 .

So at a regular point p of \mathcal{W} there are exactly d leaves of the web that pass through p.

In the example of Brunella the Levi foliation extends to a neighbourhood of the origin as a 2-web given by $(dz_2/dz_1)^2 = 4z_2$.

ヘロト ヘヨト ヘヨト

15. Holomorphic *d*-webs

For simplicity, consider only the case n = 2. For $d \in \mathbb{N}$, a singular holomorphic *d*-web W is defined by solutions of ODE

$$P\left(z_1, z_2, \frac{dz_2}{dz_1}\right) = \sum_{k=0}^d a_k(z_1, z_2) \left(\frac{dz_2}{dz_1}\right)^k = 0,$$

where $a_k(z_1, z_2)$ are holomorphic in a neighbourhood of 0. We treat z_2 as a function of z_1 . If the above expression admits factorization into holomorphic terms linear in dz_2/dz_1 , then the web splits into the union of d foliations. In particular, if d = 1 we obtain a usual foliation. But in general, the ODE is unresolved with respect to dz_2/dz_1 .

So at a regular point p of \mathcal{W} there are exactly d leaves of the web that pass through p.

In the example of Brunella the Levi foliation extends to a neighbourhood of the origin as a 2-web given by $(dz_2/dz_1)^2 = 4z_2$.

< ロ > < 同 > < 回 > < 回 >

15. Holomorphic *d*-webs

For simplicity, consider only the case n = 2. For $d \in \mathbb{N}$, a singular holomorphic *d*-web W is defined by solutions of ODE

$$P\left(z_1, z_2, \frac{dz_2}{dz_1}\right) = \sum_{k=0}^d a_k(z_1, z_2) \left(\frac{dz_2}{dz_1}\right)^k = 0,$$

where $a_k(z_1, z_2)$ are holomorphic in a neighbourhood of 0. We treat z_2 as a function of z_1 . If the above expression admits factorization into holomorphic terms linear in dz_2/dz_1 , then the web splits into the union of d foliations. In particular, if d = 1 we obtain a usual foliation. But in general, the ODE is unresolved with respect to dz_2/dz_1 .

So at a regular point p of W there are exactly d leaves of the web that pass through p.

In the example of Brunella the Levi foliation extends to a neighbourhood of the origin as a 2-web given by $(dz_2/dz_1)^2 = 4z_2$.

A holomorphic correspondence $G : \mathbb{C}^n \to \mathbb{C}^m$ is a multiple-valued map whose graph is a complex analytic set in $\mathbb{C}^n \times \mathbb{C}^m$ with a proper projection on \mathbb{C}^n . A meromorphic correspondence is defined the same way except that we allow the fibres of the projection $\Gamma_G \mapsto \mathbb{C}^n$ from the graph of G to be of positive dimension on a set of codimension 2 in \mathbb{C}^n . Example: $G(z_1, z_2) = \sqrt{z_1}, G(z_1, z_2) = \sqrt{z_1}/z_2$. We say that $G : \mathbb{C}^2 \to \mathbb{C}$ is a multiple-valued holomorphic (meromorphic) first integral for a *d*-web \mathcal{W} if for every regular point p of \mathcal{W} for any leaf L_p there exists a branch of G near p that is constant on L_p .

Theorem (Sukhov-RS, Comment. Math. Helv., 2015)

Let $M \subset \mathbb{C}^n$ be a real analytic Levi-flat, $0 \in M$ is a singular point such that 0 is nondicritical, or M is real algebraic. Then there exist a neighbourhood U of the origin and a singular holomorphic d-web W in Usuch that W extends the Levi foliation of M. Furthermore, W admits a multiple-valued meromorphic first integral in U.

A holomorphic correspondence $G : \mathbb{C}^n \to \mathbb{C}^m$ is a multiple-valued map whose graph is a complex analytic set in $\mathbb{C}^n \times \mathbb{C}^m$ with a proper projection on \mathbb{C}^n . A meromorphic correspondence is defined the same way except that we allow the fibres of the projection $\Gamma_G \mapsto \mathbb{C}^n$ from the graph of G to be of positive dimension on a set of codimension 2 in \mathbb{C}^n . Example: $G(z_1, z_2) = \sqrt{z_1}$, $G(z_1, z_2) = \sqrt{z_1}/z_2$.

We say that $G : \mathbb{C}^2 \to \mathbb{C}$ is a multiple-valued holomorphic (meromorphic) first integral for a *d*-web \mathcal{W} if for every regular point *p* of \mathcal{W} for any leaf L_p there exists a branch of *G* near *p* that is constant on L_p .

Theorem (Sukhov-RS, Comment. Math. Helv., 2015)

Let $M \subset \mathbb{C}^n$ be a real analytic Levi-flat, $0 \in M$ is a singular point such that 0 is nondicritical, or M is real algebraic. Then there exist a neighbourhood U of the origin and a singular holomorphic d-web W in Usuch that W extends the Levi foliation of M. Furthermore, W admits a multiple-valued meromorphic first integral in U.

ロト (行) (ヨト (ヨ))

A holomorphic correspondence $G : \mathbb{C}^n \to \mathbb{C}^m$ is a multiple-valued map whose graph is a complex analytic set in $\mathbb{C}^n \times \mathbb{C}^m$ with a proper projection on \mathbb{C}^n . A meromorphic correspondence is defined the same way except that we allow the fibres of the projection $\Gamma_G \mapsto \mathbb{C}^n$ from the graph of G to be of positive dimension on a set of codimension 2 in \mathbb{C}^n . Example: $G(z_1, z_2) = \sqrt{z_1}$, $G(z_1, z_2) = \sqrt{z_1}/z_2$. We say that $G : \mathbb{C}^2 \to \mathbb{C}$ is a multiple-valued holomorphic (meromorphic) first integral for a d-web \mathcal{W} if for every regular point p of \mathcal{W} for any leaf

 L_p there exists a branch of G near p that is constant on L_p .

Theorem (Sukhov-RS, Comment. Math. Helv., 2015)

Let $M \subset \mathbb{C}^n$ be a real analytic Levi-flat, $0 \in M$ is a singular point such that 0 is nondicritical, or M is real algebraic. Then there exist a neighbourhood U of the origin and a singular holomorphic d-web W in Usuch that W extends the Levi foliation of M. Furthermore, W admits a multiple-valued meromorphic first integral in U.

ロト (行) (ヨト (ヨ))

A holomorphic correspondence $G : \mathbb{C}^n \to \mathbb{C}^m$ is a multiple-valued map whose graph is a complex analytic set in $\mathbb{C}^n \times \mathbb{C}^m$ with a proper projection on \mathbb{C}^n . A meromorphic correspondence is defined the same way except that we allow the fibres of the projection $\Gamma_G \mapsto \mathbb{C}^n$ from the graph of G to be of positive dimension on a set of codimension 2 in \mathbb{C}^n . Example: $G(z_1, z_2) = \sqrt{z_1}$, $G(z_1, z_2) = \sqrt{z_1}/z_2$. We say that $G : \mathbb{C}^2 \to \mathbb{C}$ is a multiple-valued holomorphic (meromorphic)

first integral for a *d*-web W if for every regular point p of W for any leaf L_p there exists a branch of G near p that is constant on L_p .

Theorem (Sukhov-RS, Comment. Math. Helv., 2015)

Let $M \subset \mathbb{C}^n$ be a real analytic Levi-flat, $0 \in M$ is a singular point such that 0 is nondicritical, or M is real algebraic. Then there exist a neighbourhood U of the origin and a singular holomorphic d-web W in U such that W extends the Levi foliation of M. Furthermore, W admits a multiple-valued meromorphic first integral in U.

ロト ・ 同ト ・ ヨト ・ ヨト

As we see from the discussion above, the existence of a first integral for a given foliation in intricately related to the existence of a tangent Levi flat hypersurface.

For a further speculation, consider the so-called Segre map: $\lambda : w \to Q_w$ associated with a Levi flat hypersurface M. This is a formal map from a neighbourhood U of a (singular) point in M into the (formal) space of Segre varieties defined in U. If $p \in M \cap U$ is a regular point, and L_p is the leaf of the Levi foliation on M passing through p, then $L_p \subset Q_p$, and one can show that, in fact, $Q_p = Q_w$ for any point $w \in L_p$.

It follows then that the map λ is constant on the leaves of the foliation. Therefore, if one can realize λ as a holomorphic map from U into \mathbb{C} , then λ is a holomorphic first integral!

As we see from the discussion above, the existence of a first integral for a given foliation in intricately related to the existence of a tangent Levi flat hypersurface.

For a further speculation, consider the so-called Segre map: $\lambda : w \to Q_w$ associated with a Levi flat hypersurface M. This is a formal map from a neighbourhood U of a (singular) point in M into the (formal) space of Segre varieties defined in U. If $p \in M \cap U$ is a regular point, and L_p is the leaf of the Levi foliation on M passing through p, then $L_p \subset Q_p$, and one can show that, in fact, $Q_p = Q_w$ for any point $w \in L_p$.

It follows then that the map λ is constant on the leaves of the foliation. Therefore, if one can realize λ as a holomorphic map from U into \mathbb{C} , then λ is a holomorphic first integral!

As we see from the discussion above, the existence of a first integral for a given foliation in intricately related to the existence of a tangent Levi flat hypersurface.

For a further speculation, consider the so-called Segre map: $\lambda : w \to Q_w$ associated with a Levi flat hypersurface M. This is a formal map from a neighbourhood U of a (singular) point in M into the (formal) space of Segre varieties defined in U. If $p \in M \cap U$ is a regular point, and L_p is the leaf of the Levi foliation on M passing through p, then $L_p \subset Q_p$, and one can show that, in fact, $Q_p = Q_w$ for any point $w \in L_p$.

It follows then that the map λ is constant on the leaves of the foliation. Therefore, if one can realize λ as a holomorphic map from U into \mathbb{C} , then λ is a holomorphic first integral!

As we see from the discussion above, the existence of a first integral for a given foliation in intricately related to the existence of a tangent Levi flat hypersurface.

For a further speculation, consider the so-called Segre map: $\lambda : w \to Q_w$ associated with a Levi flat hypersurface M. This is a formal map from a neighbourhood U of a (singular) point in M into the (formal) space of Segre varieties defined in U. If $p \in M \cap U$ is a regular point, and L_p is the leaf of the Levi foliation on M passing through p, then $L_p \subset Q_p$, and one can show that, in fact, $Q_p = Q_w$ for any point $w \in L_p$.

It follows then that the map λ is constant on the leaves of the foliation. Therefore, if one can realize λ as a holomorphic map from U into \mathbb{C} , then λ is a holomorphic first integral!

Proposition

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at 0. The following are equivalent.

(a) 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin.

(b) There exists a neighbourhood W of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

(c) There exists a (singular) Levi flat hypersurface M tangent to \mathcal{F} .

Mattei-Moussu proved $(a) \Rightarrow (b)$. The implication $(a) \Leftarrow (b)$ is immediate. That (b) implies (c) can be shown by taking the preimage of some real line under the first integral. Finally, $(c) \Rightarrow (a)$ follows from the observation that a leaf of the foliation \mathcal{F} is a component of a Segre variety of M and the properties of Segre varieties.

This show, in particular, that the theorem of Cerveau-Lins Neto is a proper generalization of Mattei-Moussu.

Proposition

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at 0. The following are equivalent.

(a) 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin.

(b) There exists a neighbourhood W of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

(c) There exists a (singular) Levi flat hypersurface M tangent to \mathcal{F} .

Mattei-Moussu proved $(a) \Rightarrow (b)$. The implication $(a) \Leftarrow (b)$ is immediate. That (b) implies (c) can be shown by taking the preimage of some real line under the first integral. Finally, $(c) \Rightarrow (a)$ follows from the observation that a leaf of the foliation \mathcal{F} is a component of a Segre variety of M and the properties of Segre varieties.

This show, in particular, that the theorem of Cerveau-Lins Neto is a proper generalization of Mattei-Moussu.
Proposition

Let \mathcal{F} be a holomorphic foliation on \mathbb{C}^2 , singular at 0. The following are equivalent.

(a) 0 is a nondicritical singularity and the leaves of \mathcal{F} are closed in $V \setminus \{0\}$ for some neighbourhood V of the origin.

(b) There exists a neighbourhood W of 0 and a holomorphic first integral $f : W \to \mathbb{C}$ of \mathcal{F} .

(c) There exists a (singular) Levi flat hypersurface M tangent to \mathcal{F} .

Mattei-Moussu proved $(a) \Rightarrow (b)$. The implication $(a) \Leftarrow (b)$ is immediate. That (b) implies (c) can be shown by taking the preimage of some real line under the first integral. Finally, $(c) \Rightarrow (a)$ follows from the observation that a leaf of the foliation \mathcal{F} is a component of a Segre variety of M and the properties of Segre varieties.

This show, in particular, that the theorem of Cerveau-Lins Neto is a proper generalization of Mattei-Moussu.

Smooth case: A smooth real hypersurface M is locally polynomially convex iff M is Levi-flat.

Indeed, if the Levi form of M has at least one nonzero eigenvalue, then there exist holomorphic discs attached to M. If M is Levi flat real analytic, then the proof of local polynomial convexity is straight forward; the general case (when M is just C^1 -smooth) can be found in Airapetyan (Math USSR Sbornik,1989).

Note that a Levi flat may contain boundaries of "large" holomorphic discs, e.g., $\mathbb{D} \times \{pt\}$ are attached to $S^1 \times \mathbb{C}$.

What about local convexity near singular points of a real analytic Levi flat?

Smooth case: A smooth real hypersurface M is locally polynomially convex iff M is Levi-flat.

Indeed, if the Levi form of M has at least one nonzero eigenvalue, then there exist holomorphic discs attached to M. If M is Levi flat real analytic, then the proof of local polynomial convexity is straight forward; the general case (when M is just C^1 -smooth) can be found in Airapetyan (Math USSR Sbornik,1989).

Note that a Levi flat may contain boundaries of "large" holomorphic discs, e.g., $\mathbb{D} \times \{pt\}$ are attached to $S^1 \times \mathbb{C}$.

What about local convexity near singular points of a real analytic Levi flat?

Smooth case: A smooth real hypersurface M is locally polynomially convex iff M is Levi-flat.

Indeed, if the Levi form of M has at least one nonzero eigenvalue, then there exist holomorphic discs attached to M. If M is Levi flat real analytic, then the proof of local polynomial convexity is straight forward; the general case (when M is just C^1 -smooth) can be found in Airapetyan (Math USSR Sbornik,1989).

Note that a Levi flat may contain boundaries of "large" holomorphic discs, e.g., $\mathbb{D} \times \{pt\}$ are attached to $S^1 \times \mathbb{C}$.

What about local convexity near singular points of a real analytic Levi flat?

Smooth case: A smooth real hypersurface M is locally polynomially convex iff M is Levi-flat.

Indeed, if the Levi form of M has at least one nonzero eigenvalue, then there exist holomorphic discs attached to M. If M is Levi flat real analytic, then the proof of local polynomial convexity is straight forward; the general case (when M is just C^1 -smooth) can be found in Airapetyan (Math USSR Sbornik,1989).

Note that a Levi flat may contain boundaries of "large" holomorphic discs, e.g., $\mathbb{D} \times \{pt\}$ are attached to $S^1 \times \mathbb{C}$.

What about local convexity near singular points of a real analytic Levi flat?

Smooth case: A smooth real hypersurface M is locally polynomially convex iff M is Levi-flat.

Indeed, if the Levi form of M has at least one nonzero eigenvalue, then there exist holomorphic discs attached to M. If M is Levi flat real analytic, then the proof of local polynomial convexity is straight forward; the general case (when M is just C^1 -smooth) can be found in Airapetyan (Math USSR Sbornik,1989).

Note that a Levi flat may contain boundaries of "large" holomorphic discs, e.g., $\mathbb{D} \times \{pt\}$ are attached to $S^1 \times \mathbb{C}$.

What about local convexity near singular points of a real analytic Levi flat?

Theorem (Sukhov-RS, Int. J. of Math., 2021)

Let $M \subset \mathbb{C}^n$ be a real analytic Levi-flat hypersurface, $0 \in M$ (*). Then

- (i) If 0 is a regular point of M, or is an unbranched Segre nondegenerate singularity, then M is locally polynomially convex at 0.
- (ii) There exists $M \subset \mathbb{C}^2$ with a two-branched Segre nondegenerate singularity at 0 that is not locally rationally convex at 0. Furthermore, there exists a neighbourhood basis $(U_k)_{k\in\mathbb{N}}$ of 0 such that for every k the polynomially convex hull of $M \cap U_k$ contains a full neighbourhood of 0 in \mathbb{C}^2 .
- (iii) If 0 is a Segre degenerate (dicritical) singularity, then M is not locally rationally convex at 0. Furthermore, the rationally convex hull of any compact neighbourhood $K \subset M$ of 0 includes a family of Riemann surfaces with the following property: each surface is not contained in M, but its boundary is contained in K.

< ロ > < 同 > < 回 > < 回 >

(*) In this result we ignore possible points on M where it is a real analytic manifold of dimension < 2n - 1, i.e., we consider the set $\overline{M^{\text{reg}} \setminus M^{\text{sng}}}$, even if this is only a semianalytic set. In particular, $0 \in \overline{M^{\text{reg}}}$.

Part (i): in the situation of the theorem, the singular foliation admits a holomorphic first integral $f: U \to \mathbb{C}$ in some neighbourhood of the origin in \mathbb{C}^2 . The set f(M) is subanalytic (in fact, semianalytic), and therefore, the complement of f(M) in some neighbourhood of $f(0) \in \mathbb{C}$ is connected. To prove local polynomial convexity of $0 \in M$ one can use Oka's characterization of polynomial convexity using the level sets of f that avoid the set f(M).

Part (iii): one can show that there exists w_0 near 0 such that $Q_{w_0} \cap M = \{0\}$. Then a small perturbation S of Q_{w_0} will be such that $M \cap S$ bounds a domain in S, which is a complex analytic variety attached to M. This variety is part of the polynomially (rationally) convex hull of a compact neighbourhood of 0 that contains $M \cap S$.

(*) In this result we ignore possible points on M where it is a real analytic manifold of dimension < 2n - 1, i.e., we consider the set $\overline{M^{\text{reg}} \setminus M^{\text{sng}}}$, even if this is only a semianalytic set. In particular, $0 \in \overline{M^{\text{reg}}}$.

Part (i): in the situation of the theorem, the singular foliation admits a holomorphic first integral $f : U \to \mathbb{C}$ in some neighbourhood of the origin in \mathbb{C}^2 . The set f(M) is subanalytic (in fact, semianalytic), and therefore, the complement of f(M) in some neighbourhood of $f(0) \in \mathbb{C}$ is connected. To prove local polynomial convexity of $0 \in M$ one can use Oka's characterization of polynomial convexity using the level sets of f that avoid the set f(M).

Part (iii): one can show that there exists w_0 near 0 such that $Q_{w_0} \cap M = \{0\}$. Then a small perturbation S of Q_{w_0} will be such that $M \cap S$ bounds a domain in S, which is a complex analytic variety attached to M. This variety is part of the polynomially (rationally) convex hull of a compact neighbourhood of 0 that contains $M \cap S$.

・ 「 ト ・ ヨ ト ・ ヨ ト

(*) In this result we ignore possible points on M where it is a real analytic manifold of dimension < 2n - 1, i.e., we consider the set $\overline{M^{\text{reg}} \setminus M^{\text{sng}}}$, even if this is only a semianalytic set. In particular, $0 \in \overline{M^{\text{reg}}}$.

Part (i): in the situation of the theorem, the singular foliation admits a holomorphic first integral $f : U \to \mathbb{C}$ in some neighbourhood of the origin in \mathbb{C}^2 . The set f(M) is subanalytic (in fact, semianalytic), and therefore, the complement of f(M) in some neighbourhood of $f(0) \in \mathbb{C}$ is connected. To prove local polynomial convexity of $0 \in M$ one can use Oka's characterization of polynomial convexity using the level sets of f that avoid the set f(M).

Part (iii): one can show that there exists w_0 near 0 such that $Q_{w_0} \cap M = \{0\}$. Then a small perturbation S of Q_{w_0} will be such that $M \cap S$ bounds a domain in S, which is a complex analytic variety attached to M. This variety is part of the polynomially (rationally) convex hull of a compact neighbourhood of 0 that contains $M \cap S$.

< 同 ト < 三 ト < 三 ト

Part (ii): the example of a Levi flat M with a nonempty local hull is the example of Brunella discussed above. One can show that the map $f(z_1, z_2) = z_1 \pm \sqrt{z_2}$ is the multiple valued first integral. One can prove that the closure of smooth points can be given by $\{ \text{Im} (z_1 \pm \sqrt{z_2}) = 0 \}$. The map $F : \mathbb{C}^2_w \to \mathbb{C}^2_z$ given by $(w_1, w_2) \to (w_1, w_2^2)$ satisfies

$$F^{-1}(M) = \{ \operatorname{Im} (w_1 + w_2) = 0 \} \cup \{ \operatorname{Im} (w_1 - w_2) = 0 \}.$$

After a complex linear change of coordinates we may assume that the hyperplanes above have the form $\{y_j = 0\}$, j = 1, 2, with the intersection equal to \mathbb{R}^2 . The domain $\mathbb{C}^2 \setminus \mathbb{R}^2$ is given by the union of 4 domains $\{\pm y_j < 0\}$. As an example, the wedge $W = \{y_j < 0, j = 1, 2\}$ is contained in the strictly pseudoconvex domain

$$\Omega = \{y_1 + y_2 + y_1^2 + y_2^2 < 0\},\$$

which is biholomorphic to the unit ball.

イロト イヨト イヨト

Part (ii): the example of a Levi flat M with a nonempty local hull is the example of Brunella discussed above. One can show that the map $f(z_1, z_2) = z_1 \pm \sqrt{z_2}$ is the multiple valued first integral. One can prove that the closure of smooth points can be given by $\{ \text{Im} (z_1 \pm \sqrt{z_2}) = 0 \}$. The map $F : \mathbb{C}^2_w \to \mathbb{C}^2_z$ given by $(w_1, w_2) \to (w_1, w_2^2)$ satisfies

$$F^{-1}(M) = \{ \operatorname{Im} (w_1 + w_2) = 0 \} \cup \{ \operatorname{Im} (w_1 - w_2) = 0 \}.$$

After a complex linear change of coordinates we may assume that the hyperplanes above have the form $\{y_j = 0\}$, j = 1, 2, with the intersection equal to \mathbb{R}^2 . The domain $\mathbb{C}^2 \setminus \mathbb{R}^2$ is given by the union of 4 domains $\{\pm y_j < 0\}$. As an example, the wedge $W = \{y_j < 0, j = 1, 2\}$ is contained in the strictly pseudoconvex domain

$$\Omega = \{y_1 + y_2 + y_1^2 + y_2^2 < 0\},\$$

which is biholomorphic to the unit ball.

Then there exists a complex curve touching the boundary Ω from outside exactly at the origin. Translating this curve and considering the intersections with W gives a family of Riemann surfaces filling W. This proves the result.

Corollary

Let $M \subset \mathbb{C}^n$, n > 1, be a Levi-flat hypersurface such that its Levi foliation extends as a singular foliation to a neighbourhood of a singular point $p \in M$. Then M is locally polynomially convex at p if and only if p is a Segre nondegenerate (nondicritical) singularity of M.

We do not know if every Levi flat hypersurface that admits the extension of the Levi foliation as a d-web with d > 1 has a nontrivial hull.

・ 同 ト ・ ヨ ト ・ ヨ ト

Then there exists a complex curve touching the boundary Ω from outside exactly at the origin. Translating this curve and considering the intersections with W gives a family of Riemann surfaces filling W. This proves the result.

Corollary

Let $M \subset \mathbb{C}^n$, n > 1, be a Levi-flat hypersurface such that its Levi foliation extends as a singular foliation to a neighbourhood of a singular point $p \in M$. Then M is locally polynomially convex at p if and only if pis a Segre nondegenerate (nondicritical) singularity of M.

We do not know if every Levi flat hypersurface that admits the extension of the Levi foliation as a d-web with d > 1 has a nontrivial hull.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Then there exists a complex curve touching the boundary Ω from outside exactly at the origin. Translating this curve and considering the intersections with W gives a family of Riemann surfaces filling W. This proves the result.

Corollary

Let $M \subset \mathbb{C}^n$, n > 1, be a Levi-flat hypersurface such that its Levi foliation extends as a singular foliation to a neighbourhood of a singular point $p \in M$. Then M is locally polynomially convex at p if and only if pis a Segre nondegenerate (nondicritical) singularity of M.

We do not know if every Levi flat hypersurface that admits the extension of the Levi foliation as a d-web with d > 1 has a nontrivial hull.

< 同 ト < 三 ト < 三 ト

A special case of a d-web in \mathbb{C}^2 is when the defining pseudopolynomial is monic, i.e., $\mathcal W$ is defined by

$$\left(\frac{dz_2}{dz_1}\right)^d + a_{d-1}(z_1, z_2) \left(\frac{dz_2}{dz_1}\right)^{d-1} + \dots + a_0(z_1, z_2) = 0.$$
(1)

If $\mathcal W$ is given by (1) then

(i) $\mathcal W$ admits a multiple-valued holomorphic first integral.

(ii) There exists a singular Levi flat tangent to ${\cal W}.$

(iii) There exists an irreducible complex analytic set $A \subset \mathbb{C}^2 imes \mathbb{C}$ of

dimension 2 such that the regular part of A is foliated by complex curves and the projection $\pi : A \to \mathbb{C}^2$ sends this foliation to \mathcal{W} .

直 ト イヨ ト イヨト

A special case of a d-web in \mathbb{C}^2 is when the defining pseudopolynomial is monic, i.e., $\mathcal W$ is defined by

$$\left(\frac{dz_2}{dz_1}\right)^d + a_{d-1}(z_1, z_2) \left(\frac{dz_2}{dz_1}\right)^{d-1} + \dots + a_0(z_1, z_2) = 0.$$
(1)

If \mathcal{W} is given by (1) then

(i) \mathcal{W} admits a multiple-valued holomorphic first integral.

(ii) There exists a singular Levi flat tangent to \mathcal{W} .

(iii) There exists an irreducible complex analytic set $A \subset \mathbb{C}^2 \times \mathbb{C}$ of dimension 2 such that the regular part of A is foliated by complex curves

and the projection $\pi: A \to \mathbb{C}^2$ sends this foliation to \mathcal{W} .

Thank you! Hvala vam!

→ < ∃ →

э