The Ru-Vojta inequality and its applications

Min Ru

University of Houston TX, USA

Min Ru The Ru-Vojta inequality and its applications

Let X be an algebraic variety.

イロト イヨト イヨト イヨト

Let X be an algebraic variety.

• An algebraic curve in X is a holomorphic map $f : S \to X$ where S is a compact Riemann surface.

э

Let X be an algebraic variety.

• An algebraic curve in X is a holomorphic map $f : S \to X$ where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor.

• • = • • = •

Let X be an algebraic variety.

• An algebraic curve in X is a holomorphic map $f : S \to X$ where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let X be an algebraic variety.

• An algebraic curve in X is a holomorphic map $f : S \to X$ where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.

• For a holomorphic curve $f : \mathbb{C} \to X$,

イロト イヨト イヨト

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X,

くロ と く 同 と く ヨ と 一

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X, (ii) f(C) may omit divisors in X.

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X, (ii) f(C) may omit divisors in X. for example, the value of f(z) = e^z omits 0 and ∞.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X, (ii) f(C) may omit divisors in X. for example, the value of f(z) = e^z omits 0 and ∞.

• Question: When $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate (i.e. $\overline{f(\mathbb{C})}$ is a proper subvariety of X)?

イロト イヨト イヨト

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X, (ii) f(C) may omit divisors in X. for example, the value of f(z) = e^z omits 0 and ∞.

• Question: When $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate (i.e. $\overline{f(\mathbb{C})}$ is a proper subvariety of X)?

• Guideline (Griffiths-Lang's conjecture):

イロト イヨト イヨト

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X, (ii) f(C) may omit divisors in X. for example, the value of f(z) = e^z omits 0 and ∞.

• Question: When $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate (i.e. $\overline{f(\mathbb{C})}$ is a proper subvariety of X)?

• Guideline (Griffiths-Lang's conjecture): If $K_X + D$ is big, then $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate.

イロト 不得 トイヨト イヨト 二日

Let X be an algebraic variety.

An algebraic curve in X is a holomorphic map f : S → X where S is a compact Riemann surface. A non-constant algebraic curve always intersects D when D is an ample divisor. For example, P(z) = a always have roots, where P is a polynomial.
For a holomorphic curve f : C → X, (i) f(C), the Zariski closure of f, can be equal to X, (ii) f(C) may omit divisors in X. for example, the value of f(z) = e^z omits 0 and ∞.

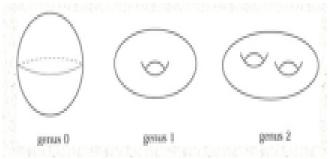
• Question: When $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate (i.e. $\overline{f(\mathbb{C})}$ is a proper subvariety of X)?

• Guideline (Griffiths-Lang's conjecture): If $K_X + D$ is big, then $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate.

イロト 不得 トイヨト イヨト 二日

One-dimensional case:

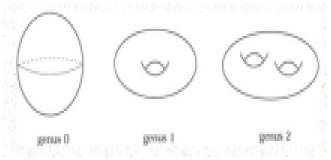
- compact Riemann surfaces of genus ≥ 2 .
- **2** A torus $T \setminus \{a \text{ point } \}$
- $\textcircled{3} \mathbb{P}^1 \setminus \{ \texttt{3 points} \}$



 K_M =canonical line bundle. Riemann Roth Theorem deg $K_M = 2(g(M) - 1)$, so

One-dimensional case:

- compact Riemann surfaces of genus ≥ 2 .
- **2** A torus $T \setminus \{a \text{ point } \}$



 K_M =canonical line bundle. Riemann Roth Theorem deg $K_M = 2(g(M) - 1)$, so K_M^{-1} ample $\iff g(M) = 0$, $K_M = \mathcal{O}_M$ $\iff g(M) = 1$, K_M ample $\iff g(M) \ge 2$.

Arithmetic:

Min Ru The Ru-Vojta inequality and its applications

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣

Arithmetic: Lang's conjecture:

< □ > < 注 > < 注 > ... 注

Arithmetic: Lang's conjecture: Let V be a projective variety defined over a number field, then $\#V(k) < \infty$ if and only if $V(\mathbb{C})$ is hyperbolic.

A B M A B M

э

Arithmetic: Lang's conjecture: Let V be a projective variety defined over a number field, then $\#V(k) < \infty$ if and only if $V(\mathbb{C})$ is hyperbolic. More specifically, an infinite set of k-rational points in V(k) corresponds to a non-consant holomorphic curve $f : \mathbb{C} \to V(\mathbb{C})$.

• • = • • = •

Arithmetic: Lang's conjecture: Let V be a projective variety defined over a number field, then $\#V(k) < \infty$ if and only if $V(\mathbb{C})$ is hyperbolic. More specifically, an infinite set of *k*-rational points in V(k) corresponds to a non-consant holomorphic curve $f : \mathbb{C} \to V(\mathbb{C})$. Paul Vojta complied a dictionary about the correspondence between Nevanlinna theory and Diophantine approximation,

4 周 ト 4 ヨ ト 4 ヨ ト

Arithmetic: Lang's conjecture: Let V be a projective variety defined over a number field, then $\#V(k) < \infty$ if and only if $V(\mathbb{C})$ is hyperbolic. More specifically, an infinite set of k-rational points in V(k) corresponds to a non-consant holomorphic curve $f : \mathbb{C} \to V(\mathbb{C})$. Paul Vojta complied a dictionary about the correspondence between Nevanlinna theory and Diophantine approximation, and gave a new proof of Mordell's conjecture based on the correspondence.

・ 何 ト ・ ヨ ト ・ ヨ ト

・ロト ・回ト ・ヨト ・ヨト

Let X be an algebraic variety and D be an effective Cartier divisor.

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_{\alpha}|^2 h_{\alpha}$.

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c [\log ||s_D||^2] = -D + c_1([D])$.

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c [\log ||s_D||^2] = -D + c_1([D])$. Algebraic case:

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c [\log ||s_D||^2] = -D + c_1([D])$. Algebraic case: For holomorphic map $f : S \to X$ where S is a compact Riemann surface, we have $\int_S f^* c_1([D]) = n_f(D)$.

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c [\log ||s_D||^2] = -D + c_1([D])$. Algebraic case: For holomorphic map $f : S \to X$ where S is a compact Riemann surface, we have $\int_S f^* c_1([D]) = n_f(D)$. Analytic case:

(4月) (3日) (3日) 日

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c [\log ||s_D||^2] = -D + c_1([D])$. Algebraic case: For holomorphic map $f : S \to X$ where S is a compact Riemann surface, we have $\int_S f^* c_1([D]) = n_f(D)$. Analytic case: For holomorphic map $f : \mathbb{C} \to X$. Note $\int_{\mathbb{C}} f^* c_1([D])$ doesn't make sense.

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c [\log ||s_D||^2] = -D + c_1([D])$. Algebraic case: For holomorphic map $f : S \to X$ where S is a compact Riemann surface, we have $\int_S f^* c_1([D]) = n_f(D)$. Analytic case: For holomorphic map $f : \mathbb{C} \to X$. Note $\int_{\mathbb{C}} f^* c_1([D])$ doesn't make sense. We need take the "approximation" form, i.e. applying $\int_1^r \frac{dt}{t} \int_{|z| < t}$.

(4月) (3日) (3日) 日

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^{c}[\log ||s_{D}||^{2}] = -D + c_{1}([D]).$ Algebraic case: For holomorphic map $f : S \rightarrow X$ where S is a compact Riemann surface, we have $\int_{S} f^* c_1([D]) = n_f(D)$. Analytic case: For holomorphic map $f : \mathbb{C} \to X$. Note $\int_{\mathbb{C}} f^* c_1([D])$ doesn't make sense. We need take the "approximation" form, i.e. applying $\int_{1}^{r} \frac{dt}{t} \int_{|z| < t}$. By using the Green-Jensen (Stoke's theorem), we get the First Main Theorem:

(人間) シスヨン スヨン ヨ

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^c[\log ||s_D||^2] = -D + c_1([D])$. Algebraic case: For holomorphic map $f : S \to X$ where S is a compact Riemann surface, we have $\int_S f^*c_1([D]) = n_f(D)$. Analytic case: For holomorphic map $f : \mathbb{C} \to X$. Note $\int_{\mathbb{C}} f^*c_1([D])$ doesn't make sense. We need take the "approximation" form, i.e. applying $\int_1^r \frac{dt}{t} \int_{|z| < t}$. By using the Green-Jensen (Stoke's theorem), we get the First Main Theorem:

 $T_{f,D}(r) = m_f(r,D) + N_f(r,D) + O(1).$

where $T_{f,D}(r) := \int_1^r \frac{dt}{t} \int_{|z| < t} f^* c_1([D]), \ N_f(r,D) := \int_1^r n_{f,D}(t) \frac{dt}{t},$ and $m_f(r,D) = -\int_0^{2\pi} \log \|s_D(f(re^{i\theta})\| \frac{d\theta}{2\pi}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let X be an algebraic variety and D be an effective Cartier divisor. Let s_D be the canonical section of [D] (i.e. $[s_D = 0] = D$) and consider $||s||^2 := |s_\alpha|^2 h_\alpha$. By Poincare-Lelong formula, $-dd^{c}[\log ||s_{D}||^{2}] = -D + c_{1}([D]).$ Algebraic case: For holomorphic map $f : S \rightarrow X$ where S is a compact Riemann surface, we have $\int_{S} f^* c_1([D]) = n_f(D)$. Analytic case: For holomorphic map $f : \mathbb{C} \to X$. Note $\int_{\mathbb{C}} f^* c_1([D])$ doesn't make sense. We need take the "approximation" form, i.e. applying $\int_{1}^{r} \frac{dt}{t} \int_{|z| < t}$. By using the Green-Jensen (Stoke's theorem), we get the First Main Theorem:

 $T_{f,D}(r) = m_f(r,D) + N_f(r,D) + O(1).$

where $T_{f,D}(r) := \int_1^r \frac{dt}{t} \int_{|z| < t} f^* c_1([D])$, $N_f(r, D) := \int_1^r n_{f,D}(t) \frac{dt}{t}$, and $m_f(r, D) = -\int_0^{2\pi} \log \|s_D(f(re^{i\theta})\| \frac{d\theta}{2\pi})$. The Second Main Theorem seeks to control the boundary term $m_{f,D}(r)$ or equivalently bound $T_{f,D}(r)$ in terms of $N_f(r, D)$.

```
Guideline(Griffiths Conjecture).
```

* ヨト * ヨト -

Guideline(Griffiths Conjecture). Let X be a smooth projective variety with an ample line bundle L.

3

Guideline(Griffiths Conjecture). Let X be a smooth projective variety with an ample line bundle L. Let D be a simple normal crossing divisor.

向下 イヨト イヨト ニヨ

$$T_{K_X+D,f}(r) \leq_{exc} N_f^{(1)}(r,D) + o(T_{f,L}(r)),$$

向下 イヨト イヨト ニヨ

$$T_{\mathcal{K}_X+D,f}(r) \leq_{\mathsf{exc}} N_f^{(1)}(r,D) + o(T_{f,L}(r)),$$

where \leq_{exc} means the inequality holds for all $r \in (0, \infty)$ except for a set E of finite measure.

周下 化原下 化原下

-

$$T_{\mathcal{K}_X+D,f}(r) \leq_{exc} N_f^{(1)}(r,D) + o(T_{f,L}(r)),$$

where \leq_{exc} means the inequality holds for all $r \in (0, \infty)$ except for a set E of finite measure.

As a consequence, we have Guideline (Griffiths-Lang's conjecture):

伺 ト イ ヨ ト イ ヨ ト

$$T_{\mathcal{K}_X+D,f}(r) \leq_{\mathsf{exc}} N_f^{(1)}(r,D) + o(T_{f,L}(r)),$$

where \leq_{exc} means the inequality holds for all $r \in (0, \infty)$ except for a set E of finite measure.

As a consequence, we have Guideline (Griffiths-Lang's conjecture): If $K_X + D$ is big, then $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate.

$$T_{\mathcal{K}_X+D,f}(r) \leq_{\mathsf{exc}} N_f^{(1)}(r,D) + o(T_{f,L}(r)),$$

where \leq_{exc} means the inequality holds for all $r \in (0, \infty)$ except for a set E of finite measure.

As a consequence, we have Guideline (Griffiths-Lang's conjecture): If $K_X + D$ is big, then $f : \mathbb{C} \to X \setminus D$ is algebraic degenerate.

ヘロト ヘヨト ヘヨト ヘヨト

• Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_1, ..., a_q \in \mathbb{C} \cup \{\infty\}$ distinct. Then, for any $\delta > 0$, $(q-2)T_f(r) \leq_{exc} \sum_{j=1}^q N_f^{(1)}(r, a_j) + \log T_f(r) + \delta \log r$.

b 4 3 b 4 3 b

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_1, ..., a_q \in \mathbb{C} \cup \{\infty\}$ distinct. Then, for any $\delta > 0$, $(q-2)T_f(r) \leq_{exc} \sum_{j=1}^q N_f^{(1)}(r, a_j) + \log T_f(r) + \delta \log r$.
- S. S. Chern, 1969, Amer. J. Math.: Griffiths Conjecture holds when dim X = 1.

b 4 3 b 4 3 b

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_1, ..., a_q \in \mathbb{C} \cup \{\infty\}$ distinct. Then, for any $\delta > 0$, $(q-2)T_f(r) \leq_{exc} \sum_{j=1}^q N_f^{(1)}(r, a_j) + \log T_f(r) + \delta \log r$.
- S. S. Chern, 1969, Amer. J. Math.: Griffiths Conjecture holds when dim X = 1.
- H. Cartan, 1933 Let f : C → Pⁿ(C) be a linearly nondegenerate holomorphic map.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_1, ..., a_q \in \mathbb{C} \cup \{\infty\}$ distinct. Then, for any $\delta > 0$, $(q-2)T_f(r) \leq_{exc} \sum_{j=1}^q N_f^{(1)}(r, a_j) + \log T_f(r) + \delta \log r$.
- S. S. Chern, 1969, Amer. J. Math.: Griffiths Conjecture holds when dim X = 1.
- H. Cartan, 1933 Let f : C → Pⁿ(C) be a linearly nondegenerate holomorphic map. Let H₁,..., H_q be hyperplanes on Pⁿ(C) in general position, then, for δ > 0,

・ 同 ト ・ ヨ ト ・ ヨ ト

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_1, ..., a_q \in \mathbb{C} \cup \{\infty\}$ distinct. Then, for any $\delta > 0$, $(q-2)T_f(r) \leq_{exc} \sum_{j=1}^q N_f^{(1)}(r, a_j) + \log T_f(r) + \delta \log r$.
- S. S. Chern, 1969, Amer. J. Math.: Griffiths Conjecture holds when dim *X* = 1.
- H. Cartan, 1933 Let f : C → Pⁿ(C) be a linearly nondegenerate holomorphic map. Let H₁,..., H_q be hyperplanes on Pⁿ(C) in general position, then, for δ > 0,

$$(q - (n + 1))T_f(r) \leq_{exc} \sum_{j=1}^{q} N_f^{[n]}(r, H_j)$$

 $+ \left(\frac{n(n+1)}{2}\right) (\log T_f(r) + \delta \log r) + O(1).$

 Ru, 2004 (Amer. J. Math.): Extend H. Cartan's result (without truncation) by replacing the hyperplanes to hypersurfaces for f : C → Pⁿ(C).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Ru, 2004 (Amer. J. Math.): Extend H. Cartan's result (without truncation) by replacing the hyperplanes to hypersurfaces for f : C → Pⁿ(C).
- **Ru, 2009 (Annals of Math.)**: Let $f : \mathbb{C} \to X$ be holo with Zariski dense image, D_1, \ldots, D_q be divisors in general position in X. Assume that $D_j \sim d_j A$ (A being ample). Then, for $\forall \epsilon > 0$, $\sum_{j=1}^q \frac{1}{d_j} m_f(r, D_j) \leq_{exc} (n+1+\epsilon) T_{f,A}(r)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Ru, 2004 (Amer. J. Math.): Extend H. Cartan's result (without truncation) by replacing the hyperplanes to hypersurfaces for f : C → Pⁿ(C).
- **Ru, 2009 (Annals of Math.)**: Let $f : \mathbb{C} \to X$ be holo with Zariski dense image, D_1, \ldots, D_q be divisors in general position in X. Assume that $D_j \sim d_j A$ (A being ample). Then, for $\forall \epsilon > 0$, $\sum_{j=1}^q \frac{1}{d_j} m_f(r, D_j) \leq_{exc} (n+1+\epsilon) T_{f,A}(r)$.
- Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a very ample line bundle over X. Let D ∈ |A^m| be a general smooth hypersurface with m ≥ (n+2)ⁿ⁺³(n+1)ⁿ⁺³.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Ru, 2004 (Amer. J. Math.): Extend H. Cartan's result (without truncation) by replacing the hyperplanes to hypersurfaces for f : C → Pⁿ(C).
- **Ru, 2009 (Annals of Math.)**: Let $f : \mathbb{C} \to X$ be holo with Zariski dense image, D_1, \ldots, D_q be divisors in general position in X. Assume that $D_j \sim d_j A$ (A being ample). Then, for $\forall \epsilon > 0$, $\sum_{j=1}^q \frac{1}{d_j} m_f(r, D_j) \leq_{exc} (n+1+\epsilon) T_{f,A}(r)$.
- Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a very ample line bundle over X. Let $D \in |A^m|$ be a general smooth hypersurface with $m \ge (n+2)^{n+3}(n+1)^{n+3}$. Let $f : \mathbb{C} \to X$ be holomorphic with $f(\mathbb{C}) \not\subset D$, for $\delta > 0$, $T_{f,A}(r) \le_{exc} N_f^{(1)}(r,D) + C(\log^+ T_{f,A}(r) + \delta \log r) + O(1)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Ru, 2004 (Amer. J. Math.): Extend H. Cartan's result (without truncation) by replacing the hyperplanes to hypersurfaces for f : C → Pⁿ(C).
- **Ru, 2009 (Annals of Math.)**: Let $f : \mathbb{C} \to X$ be holo with Zariski dense image, D_1, \ldots, D_q be divisors in general position in X. Assume that $D_j \sim d_j A$ (A being ample). Then, for $\forall \epsilon > 0$, $\sum_{j=1}^q \frac{1}{d_j} m_f(r, D_j) \leq_{exc} (n+1+\epsilon) T_{f,A}(r)$.
- Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a very ample line bundle over X. Let $D \in |A^m|$ be a general smooth hypersurface with $m \ge (n+2)^{n+3}(n+1)^{n+3}$. Let $f : \mathbb{C} \to X$ be holomorphic with $f(\mathbb{C}) \not\subset D$, for $\delta > 0$, $T_{f,A}(r) \le_{exc} N_f^{(1)}(r,D) + C(\log^+ T_{f,A}(r) + \delta \log r) + O(1)$.
- Siu-Yeung, 1997, Noguchi, Winkelmann and Yamanoi, 2002: Let A be an abelian variety and D be an ample divisor on A. Let f : C → A be holomorphic with f(C) ⊄ D. Then T_{f,D}(r) ≤_{exc} N⁽¹⁾_f(r, D) + C(log⁺ T_{f,D}(r) + δ log r) + O(1).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Ru-Vojta, Amer. J. Math., 2020).

ヘロト ヘヨト ヘヨト ヘヨト

æ

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_1, \ldots, D_q be effective Cartier divisors in general position.

伺 と く ヨ と く ヨ と

э

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_1, \ldots, D_q be effective Cartier divisors in general position. Let L be a line sheaf on X with $h^0(L^N) \ge 1$ for N big enough.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_1, \ldots, D_q be effective Cartier divisors in general position. Let L be a line sheaf on X with $h^0(L^N) \ge 1$ for N big enough. Let $f : \mathbb{C} \to X$ be a holomorphic map with Zariski image.

< 回 > < 三 > < 三 > <

-

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_1, \ldots, D_q be effective Cartier divisors in general position. Let L be a line sheaf on X with $h^0(L^N) \ge 1$ for N big enough. Let $f : \mathbb{C} \to X$ be a holomorphic map with Zariski image. Then, for every $\epsilon > 0$,

$$\sum_{j=1}^{q} \beta_j(L, D_j) m_f(r, D_j) \leq_{exc} (1+\epsilon) T_{f,L}(r)$$

・回り イヨト イヨト 一日

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_1, \ldots, D_q be effective Cartier divisors in general position. Let L be a line sheaf on X with $h^0(L^N) \ge 1$ for N big enough. Let $f : \mathbb{C} \to X$ be a holomorphic map with Zariski image. Then, for every $\epsilon > 0$,

$$\sum_{j=1}^{q} \beta_j(L, D_j) m_f(r, D_j) \leq_{exc} (1+\epsilon) T_{f,L}(r)$$

where

$$\beta(L,D) = \limsup_{N \to +\infty} \frac{\sum_{m \ge 1} \dim H^0(X, L^N(-mD))}{N \dim H^0(X, L^N)}$$

・回り イヨト イヨト 一日

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_1, \ldots, D_q be effective Cartier divisors in general position. Let L be a line sheaf on X with $h^0(L^N) \ge 1$ for N big enough. Let $f : \mathbb{C} \to X$ be a holomorphic map with Zariski image. Then, for every $\epsilon > 0$,

$$\sum_{j=1}^{q} \beta_j(L, D_j) m_f(r, D_j) \leq_{exc} (1+\epsilon) T_{f,L}(r)$$

where

$$\beta(L,D) = \limsup_{N \to +\infty} \frac{\sum_{m \ge 1} \dim H^0(X, L^N(-mD))}{N \dim H^0(X, L^N)}$$

In the case when $D_j \sim A$, then $\beta(D, D_j) = \frac{q}{n+1}$, where $D = D_1 + \cdots + D_q$.

Theorem (Ru-Vojta, 2020, Arithmetic Part) Let X be a projective variety over a number field k, and D_1, \ldots, D_q be effective Cartier divisors intersecting properly on X. Let L be a line bundle on X with $h^0(L^N) \ge 1$ for N big enough. Let $S \subset M_k$ be a finite set of places. Then, for every $\epsilon > 0$, the inequality

$$\sum_{i=1}^{q} \beta(L, D_j) m_{\mathcal{S}}(x, D_j) \leq (1+\epsilon) h_L(x)$$

holds for all k-rational points outside a proper Zariski-closed subset of X.

伺い イヨト イヨト

As a special case of Pisot's conjecure,

> < 문 > < 문 >

æ

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$,

・ 戸 ト ・ ヨ ト ・ ヨ ト

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b.

・ 同 ト ・ ヨ ト ・ ヨ ト

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988.

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n",

・ 同 ト ・ ヨ ト ・ ヨ ト …

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n", then a, b are multiplicatively dependent, i.e. $a^m = b^n$ for some integers m, n.

・ 同 ト ・ ヨ ト ・ ヨ ト

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n", then a, b are multiplicatively dependent, i.e. $a^m = b^n$ for some integers m, n. Instead considering the condition $(a^n - 1)|(b^n - 1)$, one considers $gcd(a^n - 1, b^n - 1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n", then a, b are multiplicatively dependent, i.e. $a^m = b^n$ for some integers m, n. Instead considering the condition $(a^n - 1)|(b^n - 1)$, one considers $gcd(a^n - 1, b^n - 1)$. Theorem (Bugeaud, Corvaja, Zannier, 2003).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n", then a, b are multiplicatively dependent, i.e. $a^m = b^n$ for some integers m, n. Instead considering the condition $(a^n - 1)|(b^n - 1)$, one considers $gcd(a^n - 1, b^n - 1)$. Theorem (Bugeaud, Corvaja, Zannier, 2003). Let a, b be multiplicatively independent integers ≥ 2 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n", then a, b are multiplicatively dependent, i.e. $a^m = b^n$ for some integers m, n. Instead considering the condition $(a^n - 1)|(b^n - 1)$, one considers $gcd(a^n - 1, b^n - 1)$. Theorem (Bugeaud, Corvaja, Zannier, 2003). Let a, b be multiplicatively independent integers ≥ 2 . Then, for $\epsilon > 0$, there is $N(a, b, \epsilon)$ such that for n > N,

$$gcd(a^n-1,b^n-1) < 2^{\epsilon n}$$

イロト イポト イヨト イヨト 三日

The GCD problem

As a special case of Pisot's conjecure, Given integers a, b > 1, if $(a^n - 1)|(b^n - 1)$ for $\forall n >> 0$, then a is a power of b. It was solved by Van den Porteen in 1988. Corvaja-Zannier later proved, with weaker condition that "for only an infinite set of integers n", then a, b are multiplicatively dependent, i.e. $a^m = b^n$ for some integers m, n. Instead considering the condition $(a^n - 1)|(b^n - 1)$, one considers $gcd(a^n - 1, b^n - 1)$. Theorem (Bugeaud, Corvaja, Zannier, 2003). Let a, b be multiplicatively independent integers ≥ 2 . Then, for $\epsilon > 0$, there is $N(a, b, \epsilon)$ such that for n > N,

$$gcd(a^n-1,b^n-1) < 2^{\epsilon n}$$

イロト イポト イヨト イヨト 三日

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u - 1 and v - 1 by other pairs of polynomials of two variables).

b 4 3 b 4 3 b

э

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u-1 and v-1 by other pairs of polynomials of two variables). For simplicity, we only state their result over \mathbb{Q} .

伺 と く ヨ と く ヨ と

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u - 1 and v - 1 by other pairs of polynomials of two variables). For simplicity, we only state their result over \mathbb{Q} . Theorem (Corvaja-Zannier, 2004).

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u - 1 and v - 1 by other pairs of polynomials of two variables). For simplicity, we only state their result over \mathbb{Q} . Theorem (Corvaja-Zannier, 2004). Let $S = \{\infty, p_1, \dots, p_t\}$ be a finite set of primes, and $\epsilon > 0$.

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u - 1 and v - 1 by other pairs of polynomials of two variables). For simplicity, we only state their result over \mathbb{Q} . Theorem (Corvaja-Zannier, 2004). Let $S = \{\infty, p_1, \dots, p_t\}$ be a finite set of primes, and $\epsilon > 0$. There is a finite set $Z(S, \epsilon) \subset \mathbb{Z}^2$ such that

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u - 1 and v - 1 by other pairs of polynomials of two variables). For simplicity, we only state their result over \mathbb{Q} . Theorem (Corvaja-Zannier, 2004). Let $S = \{\infty, p_1, \dots, p_t\}$ be a finite set of primes, and $\epsilon > 0$. There is a finite set $Z(S, \epsilon) \subset \mathbb{Z}^2$ such that

$$\log \gcd(u-1,v-1) \leq \epsilon \log \max\{|u|,|v|\}$$

for all $(u, v) \notin Z(S, \epsilon)$ with u, v being S-units and multiplicatively independent.

Corvaja and Zannier later replaced a^n and b^n with arbitrary elements from a fixed finitely generated subgroup $\Gamma \subset \overline{\mathbb{Q}}^* \times \overline{\mathbb{Q}}^*$ (also replaced u - 1 and v - 1 by other pairs of polynomials of two variables). For simplicity, we only state their result over \mathbb{Q} . Theorem (Corvaja-Zannier, 2004). Let $S = \{\infty, p_1, \dots, p_t\}$ be a finite set of primes, and $\epsilon > 0$. There is a finite set $Z(S, \epsilon) \subset \mathbb{Z}^2$ such that

$$\log \gcd(u-1,v-1) \leq \epsilon \log \max\{|u|,|v|\}$$

for all $(u, v) \notin Z(S, \epsilon)$ with u, v being S-units and multiplicatively independent. Here *a* is a S-unit means that $a = \pm p_1^{a_1} \cdots p_t^{a_t}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Theorem (Noguchi, Winkelmann and Yamanoi, 2002).

・ 同 ト ・ ヨ ト ・ ヨ ト

Ξ.

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions),

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$).

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max \{T_f(r), T_g(r)\}$,

(4月) (3日) (3日) 日

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max\{T_f(r), T_g(r)\}$, where $n(f, g, r) := \sum_{|z| \leq r} \min\{ord_z^+(f), ord_z^+(g)\}$ and $N(f, g, r) = \int_1^r n(f, g, t) \frac{dt}{t}$.

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max\{T_f(r), T_g(r)\}$, where $n(f, g, r) := \sum_{|z| \leq r} \min\{ord_z^+(f), ord_z^+(g)\}$ and $N(f, g, r) = \int_1^r n(f, g, t) \frac{dt}{t}$. Their full -statement is as follows.

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max\{T_f(r), T_g(r)\}$, where $n(f, g, r) := \sum_{|z| \leq r} \min\{ord_z^+(f), ord_z^+(g)\}$ and $N(f, g, r) = \int_1^r n(f, g, t) \frac{dt}{t}$. Their full -statement is as follows.

Let $f : \mathbb{C} \to A$ be a holomorphic map to a semi-abelian variety A with Zariski-dense image.

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max\{T_f(r), T_g(r)\}$, where $n(f, g, r) := \sum_{|z| \leq r} \min\{ord_z^+(f), ord_z^+(g)\}$ and $N(f, g, r) = \int_1^r n(f, g, t) \frac{dt}{t}$. Their full -statement is as follows. Let $f : \mathbb{C} \to A$ be a holomorphic map to a semi-abelian variety A with Zariski-dense image. Let Y be a closed subscheme of A

with codim $Y \ge 2$.

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max\{T_f(r), T_g(r)\}$, where $n(f, g, r) := \sum_{|z| \leq r} \min\{ord_z^+(f), ord_z^+(g)\}$ and $N(f, g, r) = \int_1^r n(f, g, t) \frac{dt}{t}$. Their full -statement is as follows.

Let $f : \mathbb{C} \to A$ be a holomorphic map to a semi-abelian variety A with Zariski-dense image. Let Y be a closed subscheme of A with codim $Y \ge 2$. Then, for any $\epsilon > 0$, we have

$$N_f(r, Y) \leq_{exc} \epsilon T_f(r).$$

(人間) シスヨン スヨン ヨ

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f, g be entire functions without zeros (i.e., units of entire functions), and suppose that f, g are multiplicatively independent(i.e., for $\forall (m, n) \in \mathbb{Z} \times \mathbb{Z} \setminus (0, 0)$, we have $f^m \cdot g^n \notin \mathbb{C}$). Then, for every $\epsilon > 0$, $N(f - 1, g - 1, r) \leq_{exc} \epsilon max \{T_f(r), T_g(r)\}$, where $n(f, g, r) := \sum_{|z| \leq r} \min\{ord_z^+(f), ord_z^+(g)\}$ and $N(f, g, r) = \int_1^r n(f, g, t) \frac{dt}{t}$. Their full -statement is as follows. Let $f : \mathbb{C} \to A$ be a holomorphic map to a semi-abelian variety A

with Zariski-dense image. Let Y be a closed subscheme of A with $\operatorname{codim} Y \ge 2$. Then, for any $\epsilon > 0$, we have

$$N_f(r, Y) \leq_{exc} \epsilon T_f(r).$$

Note: The GCD problem eventually gets to to estimate $N_f(Y, r)$ (or $T_{f,Y}(r)$ or $h_Y(x)$ in the arithmetic case) for closed subscheme Y with codim $Y \ge 2$. The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)):

э

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Grifffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_X,f}(r) \leq_{exc} o(T_{f,A}(r)).$

伺 と く ヨ と く ヨ と

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Griffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_X,f}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture.

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Griffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_X,f}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \geq 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Griffiths conjecture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_X,f}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \geq 2$. Let $\pi : \tilde{X} := Bl_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E.

・ロト ・雪 ト ・ヨ ト ・

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Griffiths conjecture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_X,f}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \geq 2$. Let $\pi : \tilde{X} := Bl_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $\tilde{f}: \mathbb{C} \to \tilde{X}$ be the lifting of f.

・ 同 ト ・ ヨ ト ・ ヨ ト

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Griffiths conjecture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_X,f}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \geq 2$. Let $\pi : \tilde{X} := Bl_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $\tilde{f}: \mathbb{C} \to \tilde{X}$ be the lifting of f. Applying Griffiths' weak conjecture to \tilde{f} to get $T_{K_{\tilde{Y}},f}(r) \leq_{exc} o(T_{\pi^*A,f}(r))$.

(人間) シスヨン スヨン ヨ

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Grifffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_{x},f}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \ge 2$. Let $\pi : \tilde{X} := BI_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $ilde{f}:\mathbb{C} o ilde{X}$ be the lifting of f. Applying Griffiths' weak conjecture to \tilde{f} to get $T_{K_{\tilde{v}},f}(r) \leq_{exc} o(T_{\pi^*A,f}(r))$. Notice that $K_{\tilde{\mathbf{x}}} = \pi^* K_{\mathbf{X}} + (r-1)E$, we get

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Grifffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_{X,f}}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \ge 2$. Let $\pi : \tilde{X} := Bl_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $ilde{f}:\mathbb{C} o ilde{X}$ be the lifting of f. Applying Griffiths' weak conjecture to \tilde{f} to get $T_{K_{\tilde{x}},f}(r) \leq_{exc} o(T_{\pi^*A,f}(r))$. Notice that $K_{\tilde{\mathbf{x}}} = \pi^* K_{\mathbf{X}} + (r-1)E$, we get $T_{K_{X,f}}(r) + (r-1)T_f(r, Y) \leq_{exc} o(T_{f,A}(r))$. This estimate includes non-trivial information for $T_f(r, Y)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Grifffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_{X,f}}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \ge 2$. Let $\pi : \tilde{X} := BI_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $ilde{f}:\mathbb{C} o ilde{X}$ be the lifting of f. Applying Griffiths' weak conjecture to \tilde{f} to get $T_{K_{\tilde{x}},f}(r) \leq_{exc} o(T_{\pi^*A,f}(r))$. Notice that $K_{\tilde{\mathbf{x}}} = \pi^* K_{\mathbf{X}} + (r-1)E$, we get $T_{K_{X,f}}(r) + (r-1)T_f(r, Y) \leq_{exc} o(T_{f,A}(r))$. This estimate includes non-trivial information for $T_f(r, Y)$. Silverman used this approach to obtain the G.C.D. result assuming Vojta's conjecture.

・ 同 ト ・ ヨ ト ・ ヨ ト

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Grifffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_{X,f}}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \ge 2$. Let $\pi : \tilde{X} := BI_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $ilde{f}:\mathbb{C} o ilde{X}$ be the lifting of f. Applying Griffiths' weak conjecture to \tilde{f} to get $T_{K_{\tilde{x}},f}(r) \leq_{exc} o(T_{\pi^*A,f}(r))$. Notice that $K_{\tilde{\mathbf{x}}} = \pi^* K_{\mathbf{X}} + (r-1)E$, we get $T_{K_{X,f}}(r) + (r-1)T_f(r, Y) \leq_{exc} o(T_{f,A}(r))$. This estimate includes non-trivial information for $T_f(r, Y)$. Silverman used this approach to obtain the G.C.D. result assuming Vojta's conjecture. Wang and Yasufuku, by replacing Griffiths-Vojta conjecture with Ru-Vojta inequality, obtained (unconditional) general result that encompasses almost all known results.

・ロト ・ 雪 ト ・ ヨ ト ・

The method proposed by Silverman (assuming Griffiths conjecture holds (in arithmetic case, assuming Vojta's conjecture)): Consider the special case of Grifffiths conejcture when $D = \emptyset$, i.e. assume the following Weak Griffiths Conjecture: $T_{K_{X,f}}(r) \leq_{exc} o(T_{f,A}(r))$. The counter-part statement in Diophantine approximation is Vojta's conjecture. Let $Y \subset X$ be a closed subscheme with codim $Y \ge 2$. Let $\pi : \tilde{X} := Bl_Y X \to X$ be the blow-up of X along Y with the exceptional divisor E. Let $\tilde{f}: \mathbb{C} \to \tilde{X}$ be the lifting of f. Applying Griffiths' weak conjecture to \tilde{f} to get $T_{K_{\tilde{x}},f}(r) \leq_{exc} o(T_{\pi^*A,f}(r))$. Notice that $K_{\tilde{\mathbf{x}}} = \pi^* K_{\mathbf{X}} + (r-1)E$, we get $T_{K_{X,f}}(r) + (r-1)T_f(r, Y) \leq_{exc} o(T_{f,A}(r))$. This estimate includes non-trivial information for $T_f(r, Y)$. Silverman used this approach to obtain the G.C.D. result assuming Vojta's conjecture. Wang and Yasufuku, by replacing Griffiths-Vojta conjecture with Ru-Vojta inequality, obtained (unconditional) general result that encompasses almost all known results. For example, it gives a new and substantially simpler proof of Levin's recent result (Invent. Math. (2019)).

GCD Theorem by Wang and Yasufuku:

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

GCD Theorem by Wang and Yasufuku: If $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{gcd}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{exc} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{f_i}^{(1)}(0, r)$.

b 4 3 b 4 3 b

э

GCD Theorem by Wang and Yasufuku: If $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{gcd}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{exc} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{f_i}^{(1)}(0, r)$. Outline of Proof:

b 4 3 b 4 3 b

-

GCD Theorem by Wang and Yasufuku: If $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{gcd}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{exc} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{f_i}^{(1)}(0, r)$. Outline of Proof: For the blowing up $Y = \{F = G = 0\}$, the inequality in Ru-Vojta's theorem: For the coordinate hyperplanes $H_i = \{z_i = 0\},$ $\sum_{i=0}^{n} \beta_{L,\pi^*H_i} m_f(\pi^*H_i, r) \leq_{exc} (1 + \epsilon) T_{L,f}(r)$.

伺 ト イヨト イヨト

GCD Theorem by Wang and Yasufuku: If

$$\begin{split} \mathbf{f} &= (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \text{ is algebraic nondegenerate, then for} \\ \epsilon &> 0, \text{ then } N_{gcd}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{exc} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^n N_{f_i}^{(1)}(0, r). \\ \text{Outline of Proof: For the blowing up } Y &= \{F = G = 0\}, \text{ the} \\ \text{inequality in Ru-Vojta's theorem: For the coordinate hyperplanes} \\ H_i &= \{z_i = 0\}, \\ \sum_{i=0}^n \beta_{L,\pi^*H_i} m_f(\pi^*H_i, r) \leq_{exc} (1 + \epsilon) T_{L,f}(r). \text{ Take} \\ L &:= \ell(n+1)\pi^*H - E, \ \ell \text{ large integer, } \beta_{L,\pi^*H_i}^{-1} \leq \frac{1}{\ell} \left(1 + \frac{1}{\ell\sqrt{\ell}}\right) \\ (W.-Yasufuku). \end{split}$$

4 周 ト 4 ヨ ト 4 ヨ ト

-

 $\begin{aligned} \mathbf{f} &= (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \text{ is algebraic nondegenerate, then for} \\ \epsilon &> 0, \text{ then } N_{gcd}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{exc} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^n N_{f_i}^{(1)}(0, r). \end{aligned}$ Outline of Proof: For the blowing up $Y = \{F = G = 0\}$, the inequality in Ru-Vojta's theorem: For the coordinate hyperplanes $H_i = \{z_i = 0\},$ $\sum_{i=0}^n \beta_{L,\pi^*H_i} m_f(\pi^*H_i, r) \leq_{exc} (1 + \epsilon) T_{L,f}(r). \text{ Take} \\ L &:= \ell(n+1)\pi^*H - E, \ \ell \text{ large integer}, \ \beta_{L,\pi^*H_i}^{-1} \leq \frac{1}{\ell} \left(1 + \frac{1}{\ell\sqrt{\ell}}\right) \\ (W.-Yasufuku). \text{ Then} \\ \sum_{i=0}^n m_f(\pi^*H_i, r) + \frac{1}{\ell} T_{E,f}(r) \leq (n+1 + \frac{2n+2}{\ell\sqrt{\ell}}) T_{\pi^*H,f}(r). \end{aligned}$

4 周 ト 4 ヨ ト 4 ヨ ト

-

 $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{\text{gcd}}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{\text{exc}} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{\epsilon}^{(1)}(0, r)$. Outline of Proof: For the blowing up $Y = \{F = G = 0\}$, the inequality in Ru-Vojta's theorem: For the coordinate hyperplanes $H_i = \{z_i = 0\}.$ $\sum_{i=0}^{n} \beta_{L,\pi^*H_i} m_f(\pi^*H_i,r) \leq_{\text{exc}} (1+\epsilon) T_{L,f}(r).$ Take $L := \ell(n+1)\pi^*H - E$, ℓ large integer, $\beta_{L,\pi^*H_i}^{-1} \leq \frac{1}{\ell} \left(1 + \frac{1}{\ell\sqrt{\ell}}\right)$ (W.-Yasufuku). Then $\sum_{i=0}^{n} m_{f}(\pi^{*}H_{i},r) + \frac{1}{\ell} T_{E,f}(r) \leq (n+1+\frac{2n+2}{\ell}) T_{\pi^{*}H,f}(r).$ Cases can be applied:

4 周 ト 4 ヨ ト 4 ヨ ト

-

 $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{\text{gcd}}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{\text{exc}} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{\epsilon}^{(1)}(0, r)$. Outline of Proof: For the blowing up $Y = \{F = G = 0\}$, the inequality in Ru-Vojta's theorem: For the coordinate hyperplanes $H_i = \{z_i = 0\}.$ $\sum_{i=0}^{n} \beta_{L,\pi^*H_i} m_f(\pi^*H_i,r) \leq_{\text{exc}} (1+\epsilon) T_{L,f}(r)$. Take $L := \ell(n+1)\pi^*H - E$, ℓ large integer, $\beta_{L,\pi^*H_i}^{-1} \leq \frac{1}{\ell} \left(1 + \frac{1}{\ell\sqrt{\ell}}\right)$ (W.-Yasufuku). Then $\sum_{i=0}^{n} m_{f}(\pi^{*}H_{i},r) + \frac{1}{\ell} T_{E,f}(r) \leq (n+1+\frac{2n+2}{\ell\sqrt{\ell}}) T_{\pi^{*}H,f}(r).$ Cases can be applied: (i) f_i are units (for example, NWY: $A = (\mathbb{C}^*)^n$.

不同 医不足 医下下的

 $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{\text{gcd}}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{\text{exc}} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{\epsilon}^{(1)}(0, r)$. Outline of Proof: For the blowing up $Y = \{F = G = 0\}$, the inequality in Ru-Vojta's theorem: For the coordinate hyperplanes $H_i = \{z_i = 0\}.$ $\sum_{i=0}^{n} \beta_{L,\pi^*H_i} m_f(\pi^*H_i,r) \leq_{\text{exc}} (1+\epsilon) T_{L,f}(r)$. Take $L := \ell(n+1)\pi^*H - E$, ℓ large integer, $\beta_{L,\pi^*H_i}^{-1} \leq \frac{1}{\ell} \left(1 + \frac{1}{\ell\sqrt{\ell}}\right)$ (W.-Yasufuku). Then $\sum_{i=0}^{n} m_{f}(\pi^{*}H_{i},r) + \frac{1}{\ell} T_{E,f}(r) \leq (n+1+\frac{2n+2}{\ell}) T_{\pi^{*}H,f}(r).$ Cases can be applied: (i) f_i are units (for example, NWY: $A = (\mathbb{C}^*)^n$, (ii) $N_{f_i}(0, r) = o(T_f(r))$,

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\mathbf{f} = (f_0, f_1, ..., f_n) : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is algebraic nondegenerate, then for $\epsilon > 0$, then $N_{\text{gcd}}(F(\mathbf{f}), G(\mathbf{f}), r) \leq_{\text{exc}} \epsilon T_{\mathbf{f}}(r) + C_{\epsilon} \sum_{i=0}^{n} N_{\epsilon}^{(1)}(0, r)$. Outline of Proof: For the blowing up $Y = \{F = G = 0\}$, the inequality in Ru-Vojta's theorem: For the coordinate hyperplanes $H_i = \{z_i = 0\}.$ $\sum_{i=0}^{n} \beta_{L,\pi^*H_i} m_f(\pi^*H_i,r) \leq_{\text{exc}} (1+\epsilon) T_{L,f}(r)$. Take $L := \ell(n+1)\pi^*H - E$, ℓ large integer, $\beta_{L,\pi^*H_i}^{-1} \leq \frac{1}{\ell} \left(1 + \frac{1}{\ell\sqrt{\ell}}\right)$ (W.-Yasufuku). Then $\sum_{i=0}^{n} m_{f}(\pi^{*}H_{i},r) + \frac{1}{\ell} T_{E,f}(r) \leq (n+1+\frac{2n+2}{\ell\sqrt{\ell}}) T_{\pi^{*}H,f}(r).$ Cases can be applied: (i) f_i are units (for example, NWY: $A = (\mathbb{C}^*)^n$, (ii) $N_{f_i}(0, r) = o(T_f(r))$, (iii) each f_i has very high zero multiplicities, say $\geq \ell$. $N_{f_i}^{(1)}(0,r) \leq \frac{1}{\ell} N_{f_i}(0,r) \leq \frac{1}{\ell} T_{f_i}(r)$.

Let $G = 1 + x_1^2 + x_2^2$, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let
$$G = 1 + x_1^2 + x_2^2$$
, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units.
 $G(\mathbf{g})' = (1 + g_1^2 + g_2^2)' = 2g_1'g_1 + 2g_2'g_2 = 2\frac{g_1'}{g_1}g_1^2 + 2\frac{g_2'}{g_2}g_2^2$.

・ロト ・回 ト ・ ヨト ・ ヨト …

æ

Let
$$G = 1 + x_1^2 + x_2^2$$
, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units.
 $G(\mathbf{g})' = (1 + g_1^2 + g_2^2)' = 2g_1'g_1 + 2g_2'g_2 = 2\frac{g_1'}{g_1}g_1^2 + 2\frac{g_2'}{g_2}g_2^2$. Let
 $D_{\mathbf{g}}(G) := 2\frac{g_1'}{g_1}x_1^2 + 2\frac{g_2'}{g_2}x_2^2$.

・ロト ・回ト ・ヨト ・ヨト

æ

Let $G = 1 + x_1^2 + x_2^2$, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units. $G(\mathbf{g})' = (1 + g_1^2 + g_2^2)' = 2g_1'g_1 + 2g_2'g_2 = 2\frac{g_1'}{g_1}g_1^2 + 2\frac{g_2'}{g_2}g_2^2$. Let $D_{\mathbf{g}}(G) := 2\frac{g_1'}{g_1}x_1^2 + 2\frac{g_2'}{g_2}x_2^2$. Then $D_{\mathbf{g}}(G)(\mathbf{g}) = G(\mathbf{g})'$. $\operatorname{ord}_a(G(\mathbf{g})) - \min\{1, \operatorname{ord}_a(G(\mathbf{g}))\} \le \min\{\operatorname{ord}_a(G(\mathbf{g}), \operatorname{ord}_a(G(\mathbf{g})')\}.$ Therefore, $N_{G(\mathbf{g})}(0, r) - N_{G(\mathbf{g})}^{(1)}(0, r) \le N_{\operatorname{gcd}}(G(\mathbf{g}), D_{\mathbf{g}}(G)(\mathbf{g}), r).$

Let $G = 1 + x_1^2 + x_2^2$, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units. $G(\mathbf{g})' = (1 + g_1^2 + g_2^2)' = 2g'_1g_1 + 2g'_2g_2 = 2\frac{g'_1}{g_1}g_1^2 + 2\frac{g'_2}{g_2}g_2^2$. Let $D_{\mathbf{g}}(G) := 2\frac{g'_1}{g_1}x_1^2 + 2\frac{g'_2}{g_2}x_2^2$. Then $D_{\mathbf{g}}(G)(\mathbf{g}) = G(\mathbf{g})'$. $\operatorname{ord}_a(G(\mathbf{g})) - \min\{1, \operatorname{ord}_a(G(\mathbf{g}))\} \le \min\{\operatorname{ord}_a(G(\mathbf{g}), \operatorname{ord}_a(G(\mathbf{g})')\}.$ Therefore, $N_{G(\mathbf{g})}(0, r) - N^{(1)}_{G(\mathbf{g})}(0, r) \le N_{\operatorname{gcd}}(G(\mathbf{g}), D_{\mathbf{g}}(G)(\mathbf{g}), r).$ So the GCD theorem gives the following refinement:

伺 ト イ ヨ ト イ ヨ ト

Let $G = 1 + x_1^2 + x_2^2$, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units. $G(\mathbf{g})' = (1 + g_1^2 + g_2^2)' = 2g'_1g_1 + 2g'_2g_2 = 2\frac{g'_1}{g_1}g_1^2 + 2\frac{g'_2}{g_2}g_2^2$. Let $D_{\mathbf{g}}(G) := 2\frac{g'_1}{g_1}x_1^2 + 2\frac{g'_2}{g_2}x_2^2$. Then $D_{\mathbf{g}}(G)(\mathbf{g}) = G(\mathbf{g})'$. $\operatorname{ord}_a(G(\mathbf{g})) - \min\{1, \operatorname{ord}_a(G(\mathbf{g}))\} \le \min\{\operatorname{ord}_a(G(\mathbf{g}), \operatorname{ord}_a(G(\mathbf{g})')\}$. Therefore, $N_{G(\mathbf{g})}(0, r) - N^{(1)}_{G(\mathbf{g})}(0, r) \le N_{\operatorname{gcd}}(G(\mathbf{g}), D_{\mathbf{g}}(G)(\mathbf{g}), r)$. So the GCD theorem gives the following refinement: Theorem[Guo-Sun-W.]

Let $G = 1 + x_1^2 + x_2^2$, $\mathbf{g} = (g_1, g_2)$ where g_1, g_2 are units. $G(\mathbf{g})' = (1 + g_1^2 + g_2^2)' = 2g_1'g_1 + 2g_2'g_2 = 2\frac{g_1'}{g_1}g_1^2 + 2\frac{g_2'}{g_2}g_2^2.$ Let $D_{\mathbf{g}}(G) := 2 \frac{g_1'}{g_1} x_1^2 + 2 \frac{g_2'}{g_2} x_2^2$. Then $D_{\mathbf{g}}(G)(\mathbf{g}) = G(\mathbf{g})'$. $\operatorname{ord}_{a}(G(\mathbf{g})) - \min\{1, \operatorname{ord}_{a}(G(\mathbf{g}))\} \leq \min\{\operatorname{ord}_{a}(G(\mathbf{g}), \operatorname{ord}_{a}(G(\mathbf{g})')\}\}.$ Therefore, $N_{G(g)}(0, r) - N_{G(g)}^{(1)}(0, r) \le N_{gcd}(G(g), D_g(G)(g), r).$ So the GCD theorem gives the following refinement: Theorem [Guo-Sun-W.] Let g_0, g_1, \ldots, g_n be nonconstant units and $\mathbf{g} = (g_0, \ldots, g_n) : \mathbb{C} \to \mathbb{P}^n$. Let G be a nonconstant homogeneous polynomials in $K_{\mathbf{g}}[x_0, \ldots, x_n]$ with no repeated nonmonomial factors in $K_{\mathbf{g}}[x_0, \ldots, x_n]$. Let $\epsilon > 0$. If g_0, \ldots, g_n are multiplicatively independent modulo K_{g} , then $N_{G(\mathbf{g})}(0,r) - N_{G(\mathbf{g})}^{(1)}(0,r) \leq_{\mathrm{exc}} \epsilon T_{\mathbf{g}}(r).$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Theorem (NWY08): Let D be an effective divisor on $A := (\mathbb{C}^*)^n$. Let $f : \mathbb{C} \to A$ be an algebraically nondegenerate holomorphic map.

• • = • • = •

Theorem (NWY08): Let D be an effective divisor on $A := (\mathbb{C}^*)^n$. Let $f : \mathbb{C} \to A$ be an algebraically nondegenerate holomorphic map. Then there exists a smooth compactification of A independent of f, such that $N_f(D, r) - N_f^{(1)}(D, r) \leq_{exc} \epsilon T_{f,\overline{D}}(r)$ for any $\epsilon > 0$.

• • = • • = •

Theorem (NWY08): Let D be an effective divisor on $A := (\mathbb{C}^*)^n$. Let $f : \mathbb{C} \to A$ be an algebraically nondegenerate holomorphic map. Then there exists a smooth compactification of A independent of f, such that $N_f(D, r) - N_f^{(1)}(D, r) \leq_{exc} \epsilon T_{f,\overline{D}}(r)$ for any $\epsilon > 0$.

• • = • • = •

Noguchi-Winkelmann-Yamanoi gives the following application of their result:

æ

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component:

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic.

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic. Assume that $D_j = \{Q_j = 0\}$ and $f(\mathbb{C})$ omits D_j for $1 \le j \le n+1$.

向下 イヨト イヨト ニヨ

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic. Assume that $D_j = \{Q_j = 0\}$ and $f(\mathbb{C})$ omits D_j for $1 \le j \le n+1$. Consider a morphism $\pi : \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n(\mathbb{C})$ given by $\mathbf{x} \mapsto [Q_1^{a_1}(\mathbf{x}) : \ldots : Q_{n+1}^{a_{n+1}}(\mathbf{x})]$, where $a_i := \operatorname{lcm}(\deg Q_1, \ldots, \deg Q_{n+1})/\deg Q_i)$.

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic. Assume that $D_j = \{Q_j = 0\}$ and $f(\mathbb{C})$ omits D_j for $1 \le j \le n+1$. Consider a morphism $\pi : \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n(\mathbb{C})$ given by $\mathbf{x} \mapsto [Q_1^{a_1}(\mathbf{x}) : \ldots : Q_{n+1}^{a_{n+1}}(\mathbf{x})]$, where $a_i := \operatorname{lcm}(\deg Q_1, \ldots, \deg Q_{n+1})/\deg Q_i)$. Let $G := \det \left(\frac{\partial Q_i}{\partial x_j}\right)_{1 \le i \le n+1, 0 \le j \le n} \in \mathbb{C}[x_0, \ldots, x_n].$

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic. Assume that $D_j = \{Q_j = 0\}$ and $f(\mathbb{C})$ omits D_j for $1 \le j \le n+1$. Consider a morphism $\pi : \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n(\mathbb{C})$ given by $\mathbf{x} \mapsto [Q_1^{a_1}(\mathbf{x}) : \ldots : Q_{n+1}^{a_{n+1}}(\mathbf{x})]$, where $a_i := \operatorname{lcm}(\deg Q_1, \ldots, \deg Q_{n+1})/\deg Q_i)$. Let $G := \det \left(\frac{\partial Q_i}{\partial x_j}\right)_{1 \le i \le n+1, 0 \le j \le n} \in \mathbb{C}[x_0, \ldots, x_n]$. By taking out a nonconstant irreducible factor \tilde{G} of G in $\mathbb{C}[x_0, \ldots, x_n]$, one

produces an additional hypersurface $\tilde{D}_{n+2} = \{\tilde{G} = 0\}$ in $\mathbb{P}^n(\mathbb{C})$.

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic. Assume that $D_i = \{Q_i = 0\}$ and $f(\mathbb{C})$ omits D_i for $1 \leq j \leq n+1$. Consider a morphism $\pi : \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n(\mathbb{C})$ given by $\mathbf{x} \mapsto [Q_1^{a_1}(\mathbf{x}) : \ldots : Q_{n+1}^{a_{n+1}}(\mathbf{x})]$, where $a_i := \operatorname{lcm}(\deg Q_1, \ldots, \deg Q_{n+1}) / \deg Q_i)$. Let $G := \det \left(\frac{\partial Q_i}{\partial x_j} \right)_{1 < i < n+1.0 \le i \le n} \in \mathbb{C}[x_0, \dots, x_n].$ By taking out a nonconstant irreducible factor \tilde{G} of G in $\mathbb{C}[x_0, \ldots, x_n]$, one produces an additional hypersurface $\tilde{D}_{n+2} = \{\tilde{G} = 0\}$ in $\mathbb{P}^n(\mathbb{C})$. Furthermore, one can show that $D_1, \ldots, D_{n+1}, D_{n+2}$ are located in general position, and, one can show that $N_f(\tilde{D}_{n+2}, r) \leq_{exc} \epsilon T_f(r)$ by applying NWY result.

Noguchi-Winkelmann-Yamanoi gives the following application of their result: Remove one-component: Let $f : \mathbb{C} \to \mathbb{P}^n$ be holomorphic. Assume that $D_i = \{Q_i = 0\}$ and $f(\mathbb{C})$ omits D_i for $1 \leq j \leq n+1$. Consider a morphism $\pi : \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n(\mathbb{C})$ given by $\mathbf{x} \mapsto [Q_1^{a_1}(\mathbf{x}) : \ldots : Q_{n-1}^{a_{n+1}}(\mathbf{x})]$, where $a_i := \operatorname{lcm}(\deg Q_1, \ldots, \deg Q_{n+1}) / \deg Q_i)$. Let $G := \det \left(\frac{\partial Q_i}{\partial x_j} \right)_{1 < i < n+1.0 \le i \le n} \in \mathbb{C}[x_0, \dots, x_n].$ By taking out a nonconstant irreducible factor \tilde{G} of G in $\mathbb{C}[x_0, \ldots, x_n]$, one produces an additional hypersurface $\tilde{D}_{n+2} = \{\tilde{G} = 0\}$ in $\mathbb{P}^n(\mathbb{C})$. Furthermore, one can show that $D_1, \ldots, D_{n+1}, \tilde{D}_{n+2}$ are located in general position, and, one can show that $N_f(\tilde{D}_{n+2}, r) \leq_{exc} \epsilon T_f(r)$ by applying NWY result. Thus we can apply the Second Main Theorem obtained by Ru to remove one-component.

(人間) シスヨン スヨン ヨ

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]:

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: Let $\{D_i\}_{i=1}^{n+1}$ be n+1 hypersurfaces with total degrees $\sum_{i=1}^{n+1} \deg(D_i) \ge n+2$ satisfying one precised generic condition.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: Let $\{D_i\}_{i=1}^{n+1}$ be n+1 hypersurfaces with total degrees $\sum_{i=1}^{n+1} \deg(D_i) \ge n+2$ satisfying one precised generic condition. Then, for every algebraically non-degenerate entire holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$, the following defect relation holds: $\sum_{i=1}^{n+1} \delta_f(D_j) < n+1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: Let $\{D_i\}_{i=1}^{n+1}$ be n+1 hypersurfaces with total degrees $\sum_{i=1}^{n+1} \deg(D_i) \ge n+2$ satisfying one precised generic condition. Then, for every algebraically non-degenerate entire holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$, the following defect relation holds: $\sum_{i=1}^{n+1} \delta_f(D_i) < n+1$.

Note that, the condition that $\sum_{i=1}^{n+1} \delta_f(D_j) = n+1$ only implies that $N_f(r, D_i) = o(T_f(r))$ (rather than $f(\mathbb{C})$ omitting D_j).

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: Let $\{D_i\}_{i=1}^{n+1}$ be n+1 hypersurfaces with total degrees $\sum_{i=1}^{n+1} \deg(D_i) \ge n+2$ satisfying one precised generic condition. Then, for every algebraically non-degenerate entire holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$, the following defect relation holds: $\sum_{i=1}^{n+1} \delta_f(D_j) < n+1$. Note that, the condition that $\sum_{i=1}^{n+1} \delta_f(D_j) = n+1$ only implies that $N_f(r, D_i) = o(T_f(r))$ (rather than $f(\mathbb{C})$ omitting D_j). To overcome this difficulty, they used the "parabolic Nevanlinna

theory" developed by M. Păun and N. Sibony, by considering the holomorphic mapping $f: Y \to \mathbb{P}^n(\mathbb{C})$ with $Y := \mathbb{C} \setminus f^{-1}(D)$, which leads to the omitting case after restricting f to Y.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: l et $\{D_i\}_{i=1}^{n+1}$ be n+1 hypersurfaces with total degrees $\sum_{i=1}^{n+1} \deg(D_i) \ge n+2$ satisfying one precised generic condition. Then, for every algebraically non-degenerate entire holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$, the following defect relation holds: $\sum_{i=1}^{n+1} \delta_f(D_i) < n+1.$ Note that, the condition that $\sum_{i=1}^{n+1} \delta_f(D_i) = n+1$ only implies that $N_f(r, D_i) = o(T_f(r))$ (rather than $f(\mathbb{C})$ omitting D_i). To overcome this difficulty, they used the "parabolic Nevanlinna theory" developed by M. Paun and N. Sibony, by considering the holomorphic mapping $f: Y \to \mathbb{P}^n(\mathbb{C})$ with $Y := \mathbb{C} \setminus f^{-1}(D)$, which leads to the omitting case after restricting f to Y. The key ingredient in their paper is to show that Y is an open parabolic Riemann surface with exhaustion function σ satisfying $\limsup_{r\to\infty}\frac{\mathfrak{X}_{\sigma}(r)}{T_{\sigma}(r)}=0.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: l et $\{D_i\}_{i=1}^{n+1}$ be n+1 hypersurfaces with total degrees $\sum_{i=1}^{n+1} \deg(D_i) \ge n+2$ satisfying one precised generic condition. Then, for every algebraically non-degenerate entire holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$, the following defect relation holds: $\sum_{i=1}^{n+1} \delta_f(D_i) < n+1.$ Note that, the condition that $\sum_{i=1}^{n+1} \delta_f(D_i) = n+1$ only implies that $N_f(r, D_i) = o(T_f(r))$ (rather than $f(\mathbb{C})$ omitting D_i). To overcome this difficulty, they used the "parabolic Nevanlinna theory" developed by M. Păun and N. Sibony, by considering the holomorphic mapping $f: Y \to \mathbb{P}^n(\mathbb{C})$ with $Y := \mathbb{C} \setminus f^{-1}(D)$, which leads to the omitting case after restricting f to Y. The key ingredient in their paper is to show that Y is an open parabolic Riemann surface with exhaustion function σ satisfying $\limsup_{r\to\infty} \frac{\mathfrak{X}_{\sigma}(r)}{T_{\sigma}(r)} = 0.$ Note it still relies on the result of NWY, which greatly depends on the geometry of semi-abelian varieties. For example, it is very hard to generalize the result to the moving

target case.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY),

白 マイビット イレー

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem[Ru-Wang, 2024]:

伺 と く ヨ と く ヨ と

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem[Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions.

向下 イヨト イヨト

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem[Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions. Let F_i , $1 \le i \le n+1$, be homogeneous irreducible polynomials of positive degree in $K[x_0, \ldots, x_n]$ such that $\sum_{i=1}^{n+1} \deg F_i \ge n+2$.

(周) () () () () () ()

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem[Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions. Let F_i , $1 \le i \le n+1$, be homogeneous irreducible polynomials of positive degree in $K[x_0, \ldots, x_n]$ such that $\sum_{i=1}^{n+1} \deg F_i \ge n+2$. Assume that there exists $z_0 \in \mathbb{C}$ such that all the coefficients of F_i , $1 \le i \le n+1$, are holomorphic at z_0 and the zero locus of F_i evaluated at z_0 , $1 \le i \le n+1$, intersect transversally.

化口水 化固水 化压水 化压水 一压

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem [Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions. Let F_i , $1 \le i \le n+1$, be homogeneous irreducible polynomials of positive degree in $K[x_0, \ldots, x_n]$ such that $\sum_{i=1}^{n+1} \deg F_i \ge n+2$. Assume that there exists $z_0 \in \mathbb{C}$ such that all the coefficients of F_i , $1 \le i \le n+1$, are holomorphic at z_0 and the zero locus of F_i evaluated at z_0 , $1 \le i \le n+1$, intersect transversally. Then there exists a non-trivial homogeneous polynomial $B \in K[x_0, \ldots, x_n]$ such that for any nonconstant holomorphic map $\mathbf{f}: \mathbb{C} \to \mathbb{P}^n$ with $K \subset K_{\mathbf{f}}$ and $B(\mathbf{f}) \not\equiv 0$, we have

化口水 化固水 化压水 化压水 一压

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem [Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions. Let F_i , $1 \le i \le n+1$, be homogeneous irreducible polynomials of positive degree in $K[x_0, \ldots, x_n]$ such that $\sum_{i=1}^{n+1} \deg F_i \ge n+2$. Assume that there exists $z_0 \in \mathbb{C}$ such that all the coefficients of F_i , $1 \le i \le n+1$, are holomorphic at z_0 and the zero locus of F_i evaluated at z_0 , $1 \le i \le n+1$, intersect transversally. Then there exists a non-trivial homogeneous polynomial $B \in K[x_0, \ldots, x_n]$ such that for any nonconstant holomorphic map $\mathbf{f}: \mathbb{C} \to \mathbb{P}^n$ with $K \subset K_{\mathbf{f}}$ and $B(\mathbf{f}) \not\equiv 0$, we have $\sum_{i=1}^{n+1} \delta_{\mathbf{f}}(D_i) < n+1$, where $D_i = [F_i = 0]$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem [Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions. Let F_i , $1 \le i \le n+1$, be homogeneous irreducible polynomials of positive degree in $K[x_0, \ldots, x_n]$ such that $\sum_{i=1}^{n+1} \deg F_i \ge n+2$. Assume that there exists $z_0 \in \mathbb{C}$ such that all the coefficients of F_i , $1 \le i \le n+1$, are holomorphic at z_0 and the zero locus of F_i evaluated at z_0 , $1 \le i \le n+1$, intersect transversally. Then there exists a non-trivial homogeneous polynomial $B \in K[x_0, \ldots, x_n]$ such that for any nonconstant holomorphic map $\mathbf{f}: \mathbb{C} \to \mathbb{P}^n$ with $K \subset K_{\mathbf{f}}$ and $B(\mathbf{f}) \not\equiv 0$, we have $\sum_{i=1}^{n+1} \delta_{\mathbf{f}}(D_i) < n+1$, where $D_i = [F_i = 0]$. Additionally, if n = 2, then $\sum_{i=1}^{3} \delta_{\mathbf{f}}^{(1)}(D_i) < 3$.

We (Ru-Wang, 2024) can obtain the defect relation through the GCD method (without using the result of NWY), Theorem [Ru-Wang, 2024]: Let K be a subfield of the field of meromorphic functions. Let F_i , $1 \le i \le n+1$, be homogeneous irreducible polynomials of positive degree in $K[x_0, \ldots, x_n]$ such that $\sum_{i=1}^{n+1} \deg F_i \ge n+2$. Assume that there exists $z_0 \in \mathbb{C}$ such that all the coefficients of F_i , $1 \le i \le n+1$, are holomorphic at z_0 and the zero locus of F_i evaluated at z_0 , $1 \le i \le n+1$, intersect transversally. Then there exists a non-trivial homogeneous polynomial $B \in K[x_0, \ldots, x_n]$ such that for any nonconstant holomorphic map $\mathbf{f}: \mathbb{C} \to \mathbb{P}^n$ with $K \subset K_{\mathbf{f}}$ and $B(\mathbf{f}) \not\equiv 0$, we have $\sum_{i=1}^{n+1} \delta_{\mathbf{f}}(D_i) < n+1$, where $D_i = [F_i = 0]$. Additionally, if n = 2, then $\sum_{i=1}^{3} \delta_{\mathbf{f}}^{(1)}(D_i) < 3$, where, for a divisor D with $d = \deg(D)$, $\delta_{\mathbf{f}}^{(1)}(D) = 1 - \limsup_{r \to \infty} \frac{N_{f}^{(1)}(r,D)}{dT_{f}(r)}$.

Other applications of Ru-Vojta's result

• The GCD problem by Julie Tzu-Yueh Wang-etc..

• • = • • = •

э

Other applications of Ru-Vojta's result

• The GCD problem by Julie Tzu-Yueh Wang-etc.. (Levin-Wang: "Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori", J. Reine Angew. Math., 2020, Wang-Yusufuku: "Greatest common divisors of integral points of numerically equivalent divisors", Algebra & Number Theory, 2021).

• (1) • (

• The GCD problem by Julie Tzu-Yueh Wang-etc.. (Levin-Wang: "Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori", J. Reine Angew. Math., 2020, Wang-Yusufuku: "Greatest common divisors of integral points of numerically equivalent divisors", Algebra & Number Theory, 2021).

• Rousseau, Turchet and Wang constructed a family of fibred threefolds $X_m \to (S, \triangle)$ has no étale cover that dominates a variety of general type but it dominates the orbifold (S, \triangle) of general type.

・ 同 ト ・ ヨ ト ・ ヨ ト

• The GCD problem by Julie Tzu-Yueh Wang-etc.. (Levin-Wang: "Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori", J. Reine Angew. Math., 2020, Wang-Yusufuku: "Greatest common divisors of integral points of numerically equivalent divisors", Algebra & Number Theory, 2021).

• Rousseau, Turchet and Wang constructed a family of fibred threefolds $X_m \to (S, \triangle)$ has no étale cover that dominates a variety of general type but it dominates the orbifold (S, \triangle) of general type. In Campana's notion, such threefolds X_m are called *weakly special* but not special. ("Nonspecial varieties and generalized Lang-Vojta conjectures", Forum of Mathematics, 2021.)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

• The GCD problem by Julie Tzu-Yueh Wang-etc.. (Levin-Wang: "Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori", J. Reine Angew. Math., 2020, Wang-Yusufuku: "Greatest common divisors of integral points of numerically equivalent divisors", Algebra & Number Theory, 2021).

• Rousseau, Turchet and Wang constructed a family of fibred threefolds $X_m \to (S, \triangle)$ has no étale cover that dominates a variety of general type but it dominates the orbifold (S, \triangle) of general type. In Campana's notion, such threefolds X_m are called *weakly special* but not special. ("Nonspecial varieties and generalized Lang-Vojta conjectures", Forum of Mathematics, 2021.)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

• Divisibility theorem (Rousseau-Turchet-Wang, Math. Ann., 2023):

向下 イヨト イヨト

Ξ.

何 ト イヨ ト イヨ ト

(i) $r \ge 2n + 1$ and $\frac{G(h_1, \dots, h_n)}{F_i(h_1, \dots, h_n)}$ is holomorphic, for $i = 1, \dots, r$; or

伺い イヨト イヨト

• Divisibility theorem (Rousseau-Turchet-Wang, Math. Ann., 2023): Let $n \ge 2$, F_1, \ldots, F_r , $G \in \mathbb{C}[X_1, \ldots, X_n]$ be polynomials in general position with $\deg(F_i) \ge \deg(G)$ for $i = 1, \ldots, r$. Let h_1, \ldots, h_n be holomorphic functions on \mathbb{C} such that one of the following holds (i) $r \ge 2n + 1$ and $\frac{G(h_1, \ldots, h_n)}{F_i(h_1, \ldots, h_n)}$ is holomorphic, for $i = 1, \ldots, r$; or

(ii)
$$r \ge n+2$$
 and $\frac{G(h_1,...,h_n)}{\prod_{i=1}^r F(h_1,...,h_n)}$ is holomorphic.

4 周 ト 4 三 ト 4 三 ト

 Divisibility theorem (Rousseau-Turchet-Wang, Math. Ann., 2023): Let $n > 2, F_1, \ldots, F_r, G \in \mathbb{C}[X_1, \ldots, X_n]$ be polynomials in general position with deg(F_i) > deg(G) for $i = 1, \ldots, r$. Let $h_1, ..., h_n$ be holomorphic functions on \mathbb{C} such that one of the following holds (i) $r \ge 2n + 1$ and $\frac{G(h_1, \dots, h_n)}{F_i(h_1, \dots, h_n)}$ is holomorphic, for $i = 1, \dots, r$; or (ii) $r \ge n+2$ and $\frac{G(h_1,\ldots,h_n)}{\prod_{i=1}^r F(h_1,\ldots,h_n)}$ is holomorphic. Then h_1,\ldots,h_n

are algebraically dependent.

伺 ト イヨト イヨト

(i) $r \ge 2n + 1$ and $\frac{G(h_1,...,h_n)}{F_i(h_1,...,h_n)}$ is holomorphic, for i = 1, ..., r; or (ii) $r \ge n + 2$ and $\frac{G(h_1,...,h_n)}{\prod_{i=1}^r F(h_1,...,h_n)}$ is holomorphic. Then $h_1, ..., h_n$ are algebraically dependent.

This can be seen as a generalization of Borel's Theorem stating that nowhere vanishing entire functions h_1, \ldots, h_{n+1} satisfying the identity $h_1 + \cdots + h_{n+1} = 1$ are dependent.

・ 同 ト ・ ヨ ト ・ ヨ ト

(i) $r \ge 2n + 1$ and $\frac{G(h_1,...,h_n)}{F_i(h_1,...,h_n)}$ is holomorphic, for i = 1, ..., r; or (ii) $r \ge n + 2$ and $\frac{G(h_1,...,h_n)}{\prod_{i=1}^r F(h_1,...,h_n)}$ is holomorphic. Then $h_1, ..., h_n$ are algebraically dependent.

This can be seen as a generalization of Borel's Theorem stating that nowhere vanishing entire functions h_1, \ldots, h_{n+1} satisfying the identity $h_1 + \cdots + h_{n+1} = 1$ are dependent.

• Corollary. Let h_1, \ldots, h_n be holomorphic functions on \mathbb{C} such that $\frac{1}{(h_1 \cdots h_n) \cdot (1 - \sum_{j=1}^n h_j)}$ is holomorphic. Then h_1, \ldots, h_n are algebraically dependent.