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© compact Riemann surfaces of genus > 2.
@ A torus T\ {a point }
© P!\ {3 points }

Kys=canonical line bundle. Riemann Roth Theorem
deg Km = 2(g(M) — 1), so K;,' ample <= g(M) =0, Ky = Op
< g(M) =1, Ky ample <= g(M) > 2.
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is hyperbolic.  More specifically, an infinite set of k-rational
points in V/(k) corresponds to a non-consant holomorphic curve
f:C— V(C). Paul Vojta complied a dictionary about the
correspondence between Nevanlinna theory and Diophantine
approximation, and gave a new proof of Mordell's conjecture
based on the correspondence.
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[sp = 0] = D) and consider ||s]|? := |sa|?ha. By Poincare-Lelong
formula, —dd<[log ||sp||?] = —D + c1([D]).
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“approximation” form, i.e. applying [/ 4 fz‘<t. By using the
Green-Jensen (Stoke's theorem), we get the First Main Theorem:

T¢p(r) = me(r, D) + N¢(r, D) + O( ).
where Tr p(r) = {%f‘z‘q f*c1([D]), N¢(r, D) fl ng D(t)%,
and m¢(r,D) = — 027T log [|sp(f(re’)||42. The Second Main
Theorem seeks to control the boundary term m¢ p(r) or
equivalently bound T¢ p(r) in terms of N¢(r, D).
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e Nevanlinna 1929: Let f be meromorphic (non-constant) on
C and ay, ...,aq € CU{oo} distinct. Then, for any § > 0,

(g~ 2)Tr(r) <exe 0y N (r, 2)) + log Te(r) + dlog r.
@ S. S. Chern, 1969, Amer. J. Math.: Griffiths Conjecture holds

when dim X = 1.
e H. Cartan, 1933 Let f : C — P"(C) be a linearly
nondegenerate holomorphic map. Let Hy,..., H, be

hyperplanes on P"(C) in general position, then, for § > 0,

(CI (n+1 echN[n] r H
+ <n(n2+1)> (log T¢(r) + dlogr) + O(1).
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e Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a
very ample line bundle over X. Let D € |A™| be a general
smooth hypersurface with m > (n+2)"3(n 4 1)"3. Let
f : C — X be holomorphic with f(C) ¢ D, for § > 0,

Tr.a(r) <exe N&(r, D) + Cllog" Tra(r) + dlog r) + O(1).

e Siu-Yeung, 1997, Noguchi, Winkelmann and Yamanoi,
2002: Let A be an abelian variety and D be an ample divisor
on A. Let f : C — A be holomorphic with f(C) ¢ D. Then

Tf D( ) Sexc N(l)(r D) + C(log Tf D( )+ 5|Og I’) + O(].)
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map with Zariski image. Then, for every € > 0,
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j=1

where

dim HO(X, LN(—=mD
B(L, D) = limsup Lm>1 : ( (=mD))
Nes+00 N dim HO(X, LN)

In the case when Dj ~ A, then (D, D;) =

T where
D=Di+ -+ D,.

n+



Theorem (Ru-Vojta, 2020, Arithmetic Part) Let X be a projective
variety over a number field k, and Dy,..., D, be effective Cartier
divisors intersecting properly on X. Let L be a line bundle on X
with h°(LN) > 1 for N big enough. Let S C M be a finite set of
places. Then, for every € > 0, the inequality

B(L, Dj)ms(x, D;) < (14 €)hi(x)

I M-n

holds for all k-rational points outside a proper Zariski-closed
subset of X.
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(a" —1)[(b" — 1) for Yn >> 0, then ais a power of b. It was
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Note: The GCD problem eventually gets to to estimate N¢(Y,r)

(or T¢y(r) or hy(x) in the arithmetic case) for closed subscheme
Y with codimY > 2.
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Consider the special case of Grifffiths conejcture when D = ), i.e.
assume the following Weak Griffiths Conjecture:
Tiy,£(r) <exc o(Tra(r)). The counter-part statement in
Diophantine approximation is Vojta's conjecture. Let Y C X be a
closed subscheme with codimY >2. Let 7: X := BlyX — X be
the blow-up of X along Y with the exceptional divisor E. Let
f : C — X be the lifting of f. Applying Griffiths’ weak conjecture
to f to get TK)N(’f(r) <exc o(Tr+af(r)). Notice that
Kg = m"Kx + (r — 1)E, we get
Tiy f(r) +(r—=1)T¢(r, Y) <exc o(Tr a(r)). This estimate
includes non-trivial information for T¢(r,Y). Silverman used this
approach to obtain the G.C.D. result assuming Vojta's
conjecture. Wang and Yasufuku, by replacing Griffiths-Vojta
conjecture with Ru-Vojta inequality, obtained (unconditional)
general result that encompasses almost all known results.  For
example, it gives a new and substantially simpler proof of Levin's
recent result (Invent. Math. (2019)).

The Ru-Vojta inequality and its applications
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Let G =1+ x2+x2, g = (g1,82) where g1, & are units.

G(g) = (1+82 +83) = 28le +2g5e = 25 g2 +28g2 et
Dg(G) :=25x2 +2£x3.  Then Dg(G)(g) = G(g).
ord,(G(g))—min{1,ord,(G(g))} < min{orda(G(g),orda(G(g)’)}.
Therefore, Ng(g)(0, r) — N( ) (0 r) < Ngda(G(8), Dg(G)(8), r)-
So the GCD theorem gives tﬁ1e foIIowmg refinement:
Theorem[Guo-Sun-W.] Let go, g1, -.,8n be nonconstant units
and g = (go,--.,&4n) : C — P". Let G be a nonconstant
homogeneous polynomials in Kg[x, . .., Xa] with no repeated
nonmonomial factors in Kg[xp,...,X,]. Let € > 0. If go,..., g, are
multiplicatively independent modulo Kg, then

No(g)(0, ) = NGy (0, 1) <exe €Tg(r).
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holomorphic. Assume that D; = {Q; = 0} and f(C) omits D; for
1<j<n+1. Consider a morphism 7 : P"(C) — P"(C) given

by x = [Q7*(x) : ... : Q7 (x)], where

= lcm(deg Q1,...,deg Qn+1)/ deg Q;). Let
G = det (%S" LiemiL0<i<n € C[xp,...,xn]. By taking out a
nonconstant irreducible factor G of G in C[xo, ..., X,], one
produces an additional hypersurface D, » = {G = 0} in P"(C).
Furthermore, one can show that Dy, ... Dn+1~a D,,+2 are located in

general position, and, one can show that N¢(Dpi2,r) <exc € T¢(r)
by applying NWY result. Thus we can apply the Second Main
Theorem obtained by Ru to remove one-component.
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Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]: Let
{D; }"+1 be n+ 1 hypersurfaces with total degrees

S "1 deg(D;) > n + 2 satisfying one precised generic condition.
Then, for every algebraically non-degenerate entire holomorphic
curve f : C — P"(C), the following defect relation holds:
SML6e(D) < n+ 1.

Note that, the condition that 711§ £(D;j) = n+ 1 only implies
that N¢(r, Di) = o(T¢(r)) (rather than f(C) omitting D;). To
overcome this difficulty, they used the “parabolic Nevanlinna
theory” developed by M. Paun and N. Sibony, by considering the
holomorphic mapping f : Y — P"(C) with Y := C\f~*(D), which
leads to the omitting case after restricting f to Y. The key
ingredient in their paper is to show that Y is an open parabolic
Riemann surface with exhaustion function o satisfying

limsup,_, 3%((:) = 0. Note it still relies on the result of NWY,
which greatly depends on the geometry of semi-abelian varieties.
For example, it is very hard to generalize the result to the moving
target case.
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Theorem[Ru-Wang, 2024]: Let K be a subfield of the field of
meromorphic functions. Let F;, 1 </ < n+ 1, be homogeneous
irreducible polynomials of positive degree in K|[xg, ..., xs] such
that Z"H deg F; > n+4 2. Assume that there exists zy € C such
that all the coefficients of F;, 1 < i < n+ 1, are holomorphic at zg
and the zero locus of F; evaluated at z5, 1 </ < n+ 1, intersect
transversally. Then there exists a non-trivial homogeneous
polynomial B € K|xp, ..., xs] such that for any nonconstant
holomorphic map f : C — P” with K C K¢ and B(f) # 0, we have
S L6e(D;) < n+ 1, where D; = [F; = 0].

Additionally, if n = 2, then Z‘?’:l 5(1)(D,') < 3, where, for a divisor

o
D with d = deg(D), 5§1)(D) — limsup,_, NdT,(rE I)D)'
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e Divisibility theorem (Rousseau-Turchet-Wang, Math. Ann.,
2023): Letn>2, Fy,...,F, G € C[X,...,X,] be polynomials in
general position with deg( i) >deg(G) fori=1,...,r. Let

h1, ..., h, be holomorphic functions on C such that one of the
following holds

(i) r>2n+1and H is holomorphic, for i =1,...,r; or
(i) r>n+2and % is holomorphic.  Then hy,..., h,
are algebraically dependent.

This can be seen as a generalization of Borel's Theorem stating
that nowhere vanishing entire functions hy, ..., h,y1 satisfying the
identity hy + - - - + h,yr1 = 1 are dependent.

e Corollary. Let hy,..., h, be holomorphic functions on C such
that (hlmhn).(ll—zj:l 7y is holomorphic. Then hy, ... h, are
algebraically dependent.




