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Introduction

Let X be an algebraic variety.
• An algebraic curve in X is a holomorphic map f : S → X where
S is a compact Riemann surface. A non-constant algebraic curve
always intersects D when D is an ample divisor. For example,
P(z) = a always have roots, where P is a polynomial.
• For a holomorphic curve f : C → X , (i) f (C), the Zariski
closure of f , can be equal to X , (ii) f (C) may omit divisors in X .
for example, the value of f (z) = ez omits 0 and ∞.

• Question: When f : C → X\D is algebraic degenerate (i.e. f (C)
is a proper subvariety of X )?

• Guideline (Griffiths-Lang’s conjecture): If KX + D is big, then
f : C → X\D is algebraic degenerate.
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One-dimensional case:

1 compact Riemann surfaces of genus ≥ 2.

2 A torus T \ {a point }
3 P1 \ {3 points }

KM=canonical line bundle. Riemann Roth Theorem
degKM = 2(g(M)− 1), so

K−1
M ample ⇐⇒ g(M) = 0, KM = OM

⇐⇒ g(M) = 1, KM ample ⇐⇒ g(M) ≥ 2.
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Arithmetic:

Lang’s conjecture: Let V be a projective variety
defined over a number field, then #V (k) < ∞ if and only if V (C)
is hyperbolic. More specifically, an infinite set of k-rational
points in V (k) corresponds to a non-consant holomorphic curve
f : C → V (C). Paul Vojta complied a dictionary about the
correspondence between Nevanlinna theory and Diophantine
approximation, and gave a new proof of Mordell’s conjecture
based on the correspondence.
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Quantitative Version: Nevanlinna theory

Let X be an algebraic variety and D be an effective Cartier
divisor. Let sD be the canonical section of [D] (i.e.
[sD = 0] = D) and consider ∥s∥2 := |sα|2hα. By Poincare-Lelong
formula, −ddc [log ∥sD∥2] = −D + c1([D]).
Algebraic case: For holomorphic map f : S → X where S is a
compact Riemann surface, we have

∫
S f

∗c1([D]) = nf (D).
Analytic case: For holomorphic map f : C → X . Note∫
C f ∗c1([D]) doesn’t make sense. We need take the

“approximation” form, i.e. applying
∫ r
1

dt
t

∫
|z|<t . By using the

Green-Jensen (Stoke’s theorem), we get the First Main Theorem:

Tf ,D(r) = mf (r ,D) + Nf (r ,D) + O(1).

where Tf ,D(r) :=
∫ r
1

dt
t

∫
|z|<t f

∗c1([D]), Nf (r ,D) :=
∫ r
1 nf ,D(t)

dt
t ,

and mf (r ,D) = −
∫ 2π
0 log ∥sD(f (re iθ)∥dθ

2π . The Second Main
Theorem seeks to control the boundary term mf ,D(r) or
equivalently bound Tf ,D(r) in terms of Nf (r ,D).
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Guideline(Griffiths Conjecture).

Let X be a smooth projective
variety with an ample line bundle L. Let D be a simple normal
crossing divisor. Then for a holomorphic curve f : C → X with
Zariski dense image, we have

TKX+D,f (r) ≤exc N
(1)
f (r ,D) + o(Tf ,L(r)),

where ≤exc means the inequality holds for all r ∈ (0,∞) except
for a set E of finite measure.

As a consequence, we have
Guideline (Griffiths-Lang’s conjecture): If KX + D is big, then
f : C → X\D is algebraic degenerate.
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Known results about the Second Main Theorem:

Nevanlinna 1929: Let f be meromorphic (non-constant) on
C and a1, ..., aq ∈ C ∪ {∞} distinct. Then, for any δ > 0,

(q − 2)Tf (r) ≤exc
∑q

j=1N
(1)
f (r , aj) + logTf (r) + δ log r .

S. S. Chern, 1969, Amer. J. Math.: Griffiths Conjecture holds
when dimX = 1.

H. Cartan, 1933 Let f : C → Pn(C) be a linearly
nondegenerate holomorphic map. Let H1, . . . ,Hq be
hyperplanes on Pn(C) in general position, then, for δ > 0,

(q − (n + 1))Tf (r) ≤exc

q∑
j=1

N
[n]
f (r ,Hj)

+

(
n(n + 1)

2

)
(logTf (r) + δ log r) + O(1).
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Ru, 2004 (Amer. J. Math.): Extend H. Cartan’s result
(without truncation) by replacing the hyperplanes to
hypersurfaces for f : C → Pn(C).

Ru, 2009 (Annals of Math.): Let f : C → X be holo with
Zariski dense image, D1, . . . ,Dq be divisors in general position
in X . Assume that Dj ∼ djA (A being ample). Then, for ∀
ϵ > 0,

∑q
j=1

1
dj
mf (r ,Dj) ≤exc (n + 1 + ϵ)Tf ,A(r).

Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a
very ample line bundle over X . Let D ∈ |Am| be a general
smooth hypersurface with m ≥ (n + 2)n+3(n + 1)n+3. Let
f : C → X be holomorphic with f (C) ̸⊂ D, for δ > 0,

Tf ,A(r) ≤exc N
(1)
f (r ,D) + C (log+ Tf ,A(r) + δ log r) + O(1).

Siu-Yeung, 1997, Noguchi, Winkelmann and Yamanoi,
2002: Let A be an abelian variety and D be an ample divisor
on A. Let f : C → A be holomorphic with f (C) ̸⊂ D. Then

Tf ,D(r) ≤exc N
(1)
f (r ,D) + C (log+ Tf ,D(r) + δ log r) + O(1).
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Theorem (Ru-Vojta, Amer. J. Math., 2020).

Let X be a smooth
complex projective variety and let D1, . . . ,Dq be effective Cartier
divisors in general position. Let L be a line sheaf on X with
h0(LN) ≥ 1 for N big enough. Let f : C → X be a holomorphic
map with Zariski image. Then, for every ϵ > 0,

q∑
j=1

βj(L,Dj)mf (r ,Dj) ≤exc (1 + ϵ)Tf ,L(r)

where

β(L,D) = lim sup
N→+∞

∑
m≥1 dimH0(X , LN(−mD))

N dimH0(X , LN)
.

In the case when Dj ∼ A, then β(D,Dj) =
q

n+1 , where
D = D1 + · · ·+ Dq.
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Theorem (Ru-Vojta, 2020, Arithmetic Part) Let X be a projective
variety over a number field k, and D1, . . . ,Dq be effective Cartier
divisors intersecting properly on X . Let L be a line bundle on X
with h0(LN) ≥ 1 for N big enough. Let S ⊂ Mk be a finite set of
places. Then, for every ϵ > 0, the inequality

q∑
i=1

β(L,Dj)mS(x ,Dj) ≤ (1 + ϵ)hL(x)

holds for all k-rational points outside a proper Zariski-closed
subset of X .
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The GCD problem

As a special case of Pisot’s conjecure,

Given integers a, b > 1, if
(an − 1)|(bn − 1) for ∀n >> 0, then a is a power of b. It was
solved by Van den Porteen in 1988. Corvaja-Zannier later proved,
with weaker condition that “for only an infinite set of integers
n”, then a, b are multiplicatively dependent, i.e. am = bn for some
integers m, n. Instead considering the condition (an − 1)|(bn − 1),
one considers gcd(an − 1, bn − 1).
Theorem (Bugeaud, Corvaja, Zannier, 2003). Let a, b be
multiplicatively independent integers ≥ 2. Then, for ϵ > 0, there
is N(a, b, ϵ) such that for n > N,

gcd(an − 1, bn − 1) < 2ϵn.
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Corvaja and Zannier later replaced an and bn with arbitrary
elements from a fixed finitely generated subgroup Γ ⊂ Q̄∗ × Q̄∗

(also replaced u − 1 and v − 1 by other pairs of polynomials of two
variables).

For simplicity, we only state their result over Q.
Theorem (Corvaja-Zannier, 2004). Let S = {∞, p1, . . . , pt} be a
finite set of primes, and ϵ > 0. There is a finite set Z (S , ϵ) ⊂ Z2

such that

log gcd(u − 1, v − 1) ≤ ϵ logmax{|u|, |v |}

for all (u, v) ̸∈ Z (S , ϵ) with u, v being S-units and multiplicatively
independent. Here a is a S-unit means that a = ±pa11 · · · patt .
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The analogy result of Corvaja and Zannier in Nevanlinna theory is
as follows:

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f , g be
entire functions without zeros (i.e., units of entire functions), and
suppose that f , g are multiplicatively independent(i.e., for
∀(m, n) ∈ Z× Z\(0, 0), we have f m · gn ̸∈ C). Then, for every
ϵ > 0, N(f − 1, g − 1, r) ≤exc ϵmax{Tf (r),Tg (r)}, where
n(f , g , r) :=

∑
|z|≤r min{ord+

z (f ), ord+
z (g)} and

N(f , g , r) =
∫ r
1 n(f , g , t)dtt .

Their full -statement is as follows.
Let f : C → A be a holomorphic map to a semi-abelian variety A
with Zariski-dense image. Let Y be a closed subscheme of A
with codimY ≥ 2. Then, for any ϵ > 0, we have

Nf (r ,Y ) ≤exc ϵTf (r).

Note: The GCD problem eventually gets to to estimate Nf (Y , r)
(or Tf ,Y (r) or hY (x) in the arithmetic case) for closed subscheme
Y with codimY ≥ 2.
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The method proposed by Silverman (assuming Griffiths conjecture
holds (in arithmetic case, assuming Vojta’s conjecture)):

Consider the special case of Grifffiths conejcture when D = ∅, i.e.
assume the following Weak Griffiths Conjecture:
TKX ,f (r) ≤exc o(Tf ,A(r)). The counter-part statement in
Diophantine approximation is Vojta’s conjecture. Let Y ⊂ X be a
closed subscheme with codimY ≥ 2. Let π : X̃ := BlYX → X be
the blow-up of X along Y with the exceptional divisor E . Let
f̃ : C → X̃ be the lifting of f . Applying Griffiths’ weak conjecture
to f̃ to get TKX̃ ,f

(r) ≤exc o(Tπ∗A,f (r)). Notice that
KX̃ = π∗KX + (r − 1)E , we get
TKX ,f (r) + (r − 1)Tf (r ,Y ) ≤exc o(Tf ,A(r)). This estimate
includes non-trivial information for Tf (r ,Y ). Silverman used this
approach to obtain the G.C.D. result assuming Vojta’s
conjecture. Wang and Yasufuku, by replacing Griffiths-Vojta
conjecture with Ru-Vojta inequality, obtained (unconditional)
general result that encompasses almost all known results. For
example, it gives a new and substantially simpler proof of Levin’s
recent result (Invent. Math. (2019)).
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GCD Theorem by Wang and Yasufuku:

If
f = (f0, f1, ..., fn) : C → Pn(C) is algebraic nondegenerate, then for

ϵ > 0, then Ngcd(F (f),G (f), r) ≤exc ϵTf(r) + Cϵ
∑n

i=0N
(1)
fi

(0, r).
Outline of Proof: For the blowing up Y = {F = G = 0}, the
inequality in Ru-Vojta’s theorem: For the coordinate hyperplanes
Hi = {zi = 0},∑n

i=0 βL,π∗Hi
mf (π

∗Hi , r) ≤exc (1 + ϵ)TL,f (r). Take

L := ℓ(n + 1)π∗H − E , ℓ large integer, β−1
L,π∗Hi

≤ 1
ℓ

(
1 + 1

ℓ
√
ℓ

)
(W.-Yasufuku). Then∑n

i=0mf (π
∗Hi , r) +

1
ℓTE ,f (r) ≤ (n + 1 + 2n+2

ℓ
√
ℓ
)Tπ∗H,f (r).

Cases can be applied: (i) fi are units (for example, NWY:
A = (C∗)n), (ii) Nfi (0, r) = o(Tf(r)), (iii) each fi has very high

zero multiplicities, say ≥ ℓ. N
(1)
fi

(0, r) ≤ 1
ℓNfi (0, r) ≤ 1

ℓTfi (r).
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The use of the GCD theorem (producing F and G )

Let G = 1 + x21 + x22 , g = (g1, g2) where g1, g2 are units.

G (g)′ = (1 + g2
1 + g2

2 )
′ = 2g ′

1g1 + 2g ′
2g2 = 2

g ′
1

g1
g2
1 + 2

g ′
2

g2
g2
2 . Let

Dg(G ) := 2
g ′
1

g1
x21 + 2

g ′
2

g2
x22 . Then Dg(G )(g) = G (g)′.

orda(G (g))−min{1, orda(G (g))} ≤ min{orda(G (g), orda(G (g)′)}.
Therefore, NG(g)(0, r)− N

(1)
G(g)(0, r) ≤ Ngcd(G (g),Dg(G )(g), r).

So the GCD theorem gives the following refinement:
Theorem[Guo-Sun-W.] Let g0, g1, . . . , gn be nonconstant units
and g = (g0, . . . , gn) : C → Pn. Let G be a nonconstant
homogeneous polynomials in Kg[x0, . . . , xn] with no repeated
nonmonomial factors in Kg[x0, . . . , xn]. Let ϵ > 0. If g0, . . . , gn are
multiplicatively independent modulo Kg, then

NG(g)(0, r)− N
(1)
G(g)(0, r) ≤exc ϵTg(r).
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Theorem (NWY08): Let D be an effective divisor on A := (C∗)n.
Let f : C → A be an algebraically nondegenerate holomorphic map.

Then there exists a smooth compactification of A independent of

f , such that Nf (D, r)− N
(1)
f (D, r) ≤exc ϵTf ,D(r) for any ϵ > 0.
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Noguchi-Winkelmann-Yamanoi gives the following application of
their result:

Remove one-component: Let f : C → Pn be
holomorphic. Assume that Dj = {Qj = 0} and f (C) omits Dj for
1 ≤ j ≤ n + 1. Consider a morphism π : Pn(C) → Pn(C) given
by x 7→ [Qa1

1 (x) : . . . : Qan+1

n+1 (x)], where
ai := lcm(degQ1, . . . , degQn+1)/ degQi ). Let

G := det
(
∂Qi
∂xj

)
1≤i≤n+1,0≤j≤n

∈ C[x0, . . . , xn]. By taking out a

nonconstant irreducible factor G̃ of G in C[x0, . . . , xn], one
produces an additional hypersurface D̃n+2 = {G̃ = 0} in Pn(C).
Furthermore, one can show that D1, . . . ,Dn+1, D̃n+2 are located in
general position, and, one can show that Nf (D̃n+2, r) ≤exc ϵTf (r)
by applying NWY result. Thus we can apply the Second Main
Theorem obtained by Ru to remove one-component.
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Theorem [Z. Chen, D.T. Huynh, R. Sun and S.Y. Xie, 2024]:

Let
{Di}n+1

i=1 be n + 1 hypersurfaces with total degrees∑n+1
i=1 deg(Di ) ≥ n + 2 satisfying one precised generic condition.

Then, for every algebraically non-degenerate entire holomorphic
curve f : C → Pn(C), the following defect relation holds:∑n+1

i=1 δf (Dj) < n + 1.
Note that, the condition that

∑n+1
i=1 δf (Dj) = n + 1 only implies

that Nf (r ,Di ) = o(Tf (r)) (rather than f (C) omitting Dj). To
overcome this difficulty, they used the “parabolic Nevanlinna
theory” developed by M. Păun and N. Sibony, by considering the
holomorphic mapping f : Y → Pn(C) with Y := C\f −1(D), which
leads to the omitting case after restricting f to Y . The key
ingredient in their paper is to show that Y is an open parabolic
Riemann surface with exhaustion function σ satisfying
lim supr→∞

Xσ(r)
Tf (r)

= 0. Note it still relies on the result of NWY,
which greatly depends on the geometry of semi-abelian varieties.
For example, it is very hard to generalize the result to the moving
target case.
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We (Ru-Wang, 2024) can obtain the defect relation through the
GCD method (without using the result of NWY),

Theorem[Ru-Wang, 2024]: Let K be a subfield of the field of
meromorphic functions. Let Fi , 1 ≤ i ≤ n + 1, be homogeneous
irreducible polynomials of positive degree in K [x0, . . . , xn] such
that

∑n+1
i=1 deg Fi ≥ n + 2. Assume that there exists z0 ∈ C such

that all the coefficients of Fi , 1 ≤ i ≤ n + 1, are holomorphic at z0
and the zero locus of Fi evaluated at z0, 1 ≤ i ≤ n + 1, intersect
transversally. Then there exists a non-trivial homogeneous
polynomial B ∈ K [x0, . . . , xn] such that for any nonconstant
holomorphic map f : C → Pn with K ⊂ Kf and B(f) ̸≡ 0, we have∑n+1

i=1 δf(Di ) < n + 1, where Di = [Fi = 0].

Additionally, if n = 2, then
∑3

i=1 δ
(1)
f (Di ) < 3, where, for a divisor

D with d = deg(D), δ
(1)
f (D) = 1− lim supr→∞

N
(1)
f (r ,D)

dTf (r)
.
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Other applications of Ru-Vojta’s result

• The GCD problem by Julie Tzu-Yueh Wang-etc..

(Levin-Wang: “Greatest common divisors of analytic functions and
Nevanlinna theory on algebraic tori”, J. Reine Angew. Math.,
2020, Wang-Yusufuku: “Greatest common divisors of integral
points of numerically equivalent divisors”, Algebra & Number
Theory, 2021).
• Rousseau, Turchet and Wang constructed a family of fibred
threefolds Xm → (S ,△) has no étale cover that dominates a
variety of general type but it dominates the orbifold (S ,△) of
general type. In Campana’s notion, such threefolds Xm are called
weakly special but not special. (“Nonspecial varieties and
generalized Lang-Vojta conjectures”, Forum of Mathematics,
2021.)
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2020, Wang-Yusufuku: “Greatest common divisors of integral
points of numerically equivalent divisors”, Algebra & Number
Theory, 2021).
• Rousseau, Turchet and Wang constructed a family of fibred
threefolds Xm → (S ,△) has no étale cover that dominates a
variety of general type but it dominates the orbifold (S ,△) of
general type. In Campana’s notion, such threefolds Xm are called
weakly special but not special. (“Nonspecial varieties and
generalized Lang-Vojta conjectures”, Forum of Mathematics,
2021.)
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• Divisibility theorem (Rousseau-Turchet-Wang, Math. Ann.,
2023):

Let n ≥ 2, F1, . . . ,Fr ,G ∈ C[X1, . . . ,Xn] be polynomials in
general position with deg(Fi ) ≥ deg(G ) for i = 1, . . . , r . Let
h1, ..., hn be holomorphic functions on C such that one of the
following holds
(i) r ≥ 2n + 1 and G(h1,...,hn)

Fi (h1,...,hn)
is holomorphic, for i = 1, . . . , r ; or

(ii) r ≥ n + 2 and G(h1,...,hn)∏r
i=1 F (h1,...,hn)

is holomorphic. Then h1, . . . , hn
are algebraically dependent.
This can be seen as a generalization of Borel’s Theorem stating
that nowhere vanishing entire functions h1, . . . , hn+1 satisfying the
identity h1 + · · ·+ hn+1 = 1 are dependent.
• Corollary. Let h1, . . . , hn be holomorphic functions on C such
that 1

(h1···hn)·(1−
∑n

j=1 hi )
is holomorphic. Then h1, . . . , hn are

algebraically dependent.
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