Geometric topology of complex domains

Stefan Nemirovski^{1,2}

¹Ruhr-Universität Bochum

²Steklov Institute, Moscow

Complex Analysis, Geometry, and Dynamics III Portorož, 10–14 June 2024

Strictly pseudoconvex domains

A relatively compact connected open subset D in a complex manifold X is a strictly pseudoconvex domain if there is an open neighbourhood U of the boundary $\partial D \neq \emptyset$ and a smooth strictly plurisubharmonic function φ on Usuch that $D \cap U = \{\varphi < 0\}$ and $d\varphi(x) \neq 0$ for all $x \in \partial D$.

If dim_C X = 1, then every smoothly bounded domain $D \subset X$ is strictly pseudoconvex; so this case is often excluded.

The following are equivalent for a SPC domain:

- (a) D is Stein.
- (b) D has no compact analytic subsets of positive dimension.
- (c) φ extends to a stictly plurisubharmonic function on \overline{D} .

Morse theory

A C^2 -generic strictly plurisubharmonic function is Morse and the Morse indices of its critical points are $\leq \dim_{\mathbb{C}} X$.

A Stein strictly pseudoconvex domain D is the interior of a finite handlebody with handles of index $\leq \dim_{\mathbb{C}} D$. $\Rightarrow \quad H^p(D, \mathbb{A}) = 0$ for all $p > \dim_{\mathbb{C}} D = \frac{1}{2} \dim_{\mathbb{R}} D$ (cohomology with arbitrary constant coefficients \mathbb{A})

Relative version: If $r \in (-\infty, 0)$ is a regular value of φ , then D is obtained from $D^{\leq r} := \{x \in D \mid \varphi(x) \leq r\}$ by attaching handles of index $\leq \dim_{\mathbb{C}} D$.

$$\Rightarrow \begin{cases} H^p(D, \mathbb{A}) = H^p(D^{\leq r}, \mathbb{A}) & \text{for } p > \dim_{\mathbb{C}} D \\ H^p(D, \mathbb{A}) & \twoheadrightarrow & H^p(D^{\leq r}, \mathbb{A}) & \text{for } p = \dim_{\mathbb{C}} D \end{cases}$$

Example: If $D \cong \mathbb{B}$, then $H^p(D^{\leq r}, \mathbb{A}) = 0$ for $p \geq \dim_{\mathbb{C}} D$.

Stein compact subsets

A compact subset $K \subseteq X$ in a complex manifold is called Stein if it has a basis of Stein neighbourhoods.

Example: $K = \overline{D}$ for a Stein strictly pseudoconvex D($\stackrel{\text{def}}{=}$ "strictly pseudoconvex Stein subset")

Beware: Stein compact subsets can be quite 'wild'. Stein neighbourhoods can be chosen strictly pseudoconvex but may become increasingly complicated.

If $K \subseteq X$ is a Stein compact subset, then

$$H^{p}(K, \mathbb{A}) = 0$$
 for all $p > \dim_{\mathbb{C}} X$

(Using sheaf cohomology or any other theory in which the cohomology of a compact subset is the direct limit of the cohomology of its open neighbourhoods.)

Making smoothly bounded domains Stein

Let $H \subseteq X$ be the closure of a smoothly bounded domain without handles of index $> \dim_{\mathbb{C}} X$ in a complex manifold X.

Eliashberg (1990):

If dim_C $X \ge 3$, there exists an *isotopy* $\psi_t : X \times [0,1] \to X$ such that $\psi_0 = Id_X$ and $\psi_1(H)$ is a *strictly pseudoconvex* Stein compact subset of X.

Gompf (2023):

If dim_C X = 2, there exists a homeotopy $\psi_t : X \times [0, 1] \to X$ such that $\psi_0 = \text{Id}_X$ and $\psi_1(H)$ is a Stein compact subset of X.

Gompf's compact sets have Stein interiors and no 'Nebenhülle' ~> topological analogue of strict pseudoconvexity.

Very special case: There exists a Stein compact subset in \mathbb{C}^2 homeomorphic to a (smooth) tube around $S^2 \hookrightarrow \mathbb{C}^2$.

Smooth obstructions for dim_{\mathbb{C}} *X* = 2

Example 1 (Lisca & Matić (1998), N. (1998, 2002)) A tube H around any smoothly embedded $S^2 \hookrightarrow \mathbb{C}^2$ is not diffeomorphic to a Stein compact subset in any X. Reason: The core S^2 must become contractible in any Stein neighbourhood of H. Example 2 (N. (2002)): A tube H around any smooth $\mathbb{R}P^2 \hookrightarrow \mathbb{C}^2$ with $\nu = +2$ is not diffeomorphic to a Stein compact subset in any X. Reason: The non-trivial loop in $\mathbb{R}P^2$ must become contractible in any Stein neighbourhood of H.

Gompf (2013):

 $H \subseteq X$ is isotopic to a strictly pseudoconvex Stein subset of $X \iff$ the complex structure on H is homotopic to a strictly pseudoconvex Stein one through *almost* complex structures.

Details and methods

• Differential topology of Stein manifolds:

K. Cieliebak, Y. Eliashberg, *From Stein to Weinstein and back*. Symplectic geometry of affine complex manifolds. American Mathematical Society, Providence, RI, 2012.

F. Forstnerič, *Stein manifolds and holomorphic mappings*. The homotopy principle in complex analysis. Second edition. Springer, Cham, 2017.

• Topological 4-manifolds after Freedman (~> Gompf):

The disc embedding theorem. Edited by Stefan Behrens, Boldizsár Kalmár, Min Hoon Kim, Mark Powell and Arunima Ray. Oxford University Press, Oxford, 2021.

Rational convexity in \mathbb{C}^n

A compact subset $K \Subset \mathbb{C}^n$ is called rationally convex if for every $z \notin K$ there is a rational function R on \mathbb{C}^n such that $|R(z)| > \max_{\zeta \in K} |R(\zeta)|$.

Duval & Sibony (1995):

K is rationally convex if and only if it has a basis of strictly pseudoconvex neighbourhoods $U_{\varphi} = \{\varphi < 0\}$ such that $dd^{c}\varphi$ extends to a Kähler form on \mathbb{C}^{n} .

Note: K must be a Stein compact set.

Cieliebak & Eliashberg (2015):

Let $H \Subset \mathbb{C}^n$, $\mathbf{n} \ge \mathbf{3}$, be the closure of a smoothly bounded domain without handles of index > n. Then H is ambiently isotopic to a *rationally convex* strictly pseudoconvex compact subset of \mathbb{C}^n .

← Crucial new ingredient provided by **Murphy** (2012).

Rational convexity in \mathbb{C}^2

Examples 1 & 2 (**N. & Siegel** (2016)):

Tubes around either a totally real Klein bottle in \mathbb{C}^2 or an $\mathbb{R}P^2$ with one hyperbolic complex tangency in \mathbb{C}^2 are strictly pseudoconvex subsets which are *not* diffeomorphic to rationally convex strictly pseudoconvex subsets of \mathbb{C}^2 .

Question 1:

Are those examples diffeomorphic to rationally convex subsets which are *not* strictly pseudoconvex?

Question 2:

Can Gompf (2023) be improved to 'rationally convex' as well, i.e. is the closure of every smoothly bounded domain without handles of index > 2 in \mathbb{C}^2 ambiently *homeotopic* to a rationally convex subset in \mathbb{C}^2 ?

Polynomial convexity in \mathbb{C}^n

A compact subset $K \Subset \mathbb{C}^n$ is called polynomially convex if for every $z \notin K$ there is a polynomial function P on \mathbb{C}^n such that $|P(z)| > \max_{\zeta \in K} |P(\zeta)|$.

Oka (1953):

K is polynomially convex if and only if it has a basis of strictly pseudoconvex neighbourhoods $U_{\varphi} = \{\varphi < 0\}$ with φ a strictly plurisubharmonic exhaustion function on \mathbb{C}^n . φ can be made $\equiv ||z||^2$ at $\infty \Longrightarrow H^p(K, \mathbb{A}) = 0$ for $p \ge n$

Cieliebak & Eliashberg (2015):

Let $H \Subset \mathbb{C}^n$, $\mathbf{n} \ge \mathbf{3}$, be a smoothly bounded compact subset without handles of index > n and $H^n(K, \mathbb{A}) = 0$ for any \mathbb{A} . Then H is ambiently isotopic to a *polynomially convex* strictly pseudoconvex compact subset of \mathbb{C}^n .

Note: H may have handles of index n.

Polynomial convexity in \mathbb{C}^2

Examples: Contractible strictly pseudoconvex subsets in \mathbb{C}^2 constructed by Gompf (2013) *cannot* be polynomially convex. **Mark & Tosun** (2022):

A *contractible* polynomially convex strictly pseudoconvex subset $K \Subset \mathbb{C}^2$ is diffeomorphic to the 4-ball.

Sketch:

- ∂K is a homology sphere
- Oka (1953): cobordism without 3-, 4-handles from ∂K to S^3
- Gordon (1981): ∂K is simply connected
- Perelman (2003): ∂K is the 3-sphere
- Eliashberg (1991): ∂K has the standard contact structure
- Gromov (1985): K is (symplectomorphic to) the 4-ball

Question:

Is every polynomially convex strictly pseudoconvex $K \Subset \mathbb{C}^2$ diffeomorphic to the 4-ball with **only** 1-handles attached?