A variational problem in Kähler geometry

László Lempert
Purdue University

A construction in geometry

Given a holomorphic vector bundle $F \rightarrow B \quad \rightsquigarrow$ line bundle.

A construction in geometry

Given a holomorphic vector bundle $F \rightarrow B \quad \rightsquigarrow \quad$ line bundle.

1. If $B=\{b\}, F$ vector space $/ \mathbb{C}$
\rightsquigarrow
$\mathbb{P} F=\{\ell \subset F$ one dimensional subspace $\} ;$

A construction in geometry

Given a holomorphic vector bundle $F \rightarrow B \quad \rightsquigarrow \quad$ line bundle.

1. If $B=\{b\}, F$ vector space $/ \mathbb{C}$
$\mathbb{P} F=\{\ell \subset F$ one dimensional subspace $\} ;$
$\mathcal{O}_{\mathbb{P} F}(-1) \rightarrow \mathbb{P} F$,

A construction in geometry

Given a holomorphic vector bundle $F \rightarrow B \quad \rightsquigarrow \quad$ line bundle.

1. If $B=\{b\}, F$ vector space $/ \mathbb{C}$
$\mathbb{P} F=\{\ell \subset F$ one dimensional subspace $\} ;$
$\mathcal{O}_{\mathbb{P} F}(-1) \rightarrow \mathbb{P} F$, where
$\mathcal{O}_{\mathbb{P} F}(-1)=\{(\ell, \zeta) \in \mathbb{P} F \times F: \zeta \in \ell\}$.

A construction in geometry

Given a holomorphic vector bundle $F \rightarrow B \quad \rightsquigarrow \quad$ line bundle.

1. If $B=\{b\}, F$ vector space $/ \mathbb{C}$ \rightsquigarrow
$\mathbb{P} F=\{\ell \subset F$ one dimensional subspace $\} ;$
$\mathcal{O}_{\mathbb{P} F}(-1) \rightarrow \mathbb{P} F$, where
$\mathcal{O}_{\mathbb{P} F}(-1)=\{(\ell, \zeta) \in \mathbb{P} F \times F: \zeta \in \ell\}$.
2. General $F \rightarrow B \quad \rightsquigarrow \quad \mathbb{P} F=\coprod_{b \in B} \mathbb{P} F_{b}$,

$$
\mathcal{O}_{\mathbb{P} F}(-1)=\coprod_{b \in B} \mathcal{O}_{\mathbb{P} F_{b}}(-1) \rightarrow \mathbb{P} F
$$

Vector bundle $F \rightarrow B \rightsquigarrow$ line bundle $\mathcal{O}_{\mathbb{P} F}(-1) \rightarrow \mathbb{P} F$.
To objects associated with F correspond objects associated with $\mathcal{O}_{\mathbb{P} F}(-1)$.

Vector bundle $F \rightarrow B \rightsquigarrow$ line bundle $\mathcal{O}_{\mathbb{P} F}(-1) \rightarrow \mathbb{P} F$.
To objects associated with F correspond objects associated with $\mathcal{O}_{\mathbb{P F}}(-1)$.
E.g., h (hermitian) metric on $F \leadsto h_{\mathbb{P}}$ metric on $\mathcal{O}_{\mathbb{P} F}(-1)$: $h_{\mathbb{P}}(\ell, \zeta)=h(\zeta)$.

Vector bundle $F \rightarrow B \rightsquigarrow$ line bundle $\mathcal{O}_{\mathbb{P} F}(-1) \rightarrow \mathbb{P} F$.
To objects associated with F correspond objects associated with $\mathcal{O}_{\mathbb{P F}}(-1)$.
E.g., h (hermitian) metric on $F \rightsquigarrow h_{\mathbb{P}}$ metric on $\mathcal{O}_{\mathbb{P} F}(-1)$: $h_{\mathbb{P}}(\ell, \zeta)=h(\zeta)$.

Question: Is there a converse construction? Given metric k on $\mathcal{O}_{\mathbb{P} F}(-1)$ $\rightsquigarrow \quad$ metric k^{F} on F (hermitian!)?

Given metric k on $\mathcal{O}_{\mathbb{P} F}(-1) \rightsquigarrow$ metric k^{F} on F (hermitian!)?

If for each $b \in B$
(*)

$$
\left\{\zeta \in F_{b}: k([\zeta], \zeta)<1\right\}
$$

is a hermitian ellipsoid (i.e., \mathbb{C}-linear image of the unit ball in \mathbb{C}^{n}), then take k^{F} the metric for which $(*)$ is $\left\{k^{F}<1\right\}$.

Given metric k on $\mathcal{O}_{\mathbb{P} F}(-1) \rightsquigarrow$ metric k^{F} on F (hermitian!)?
If for each $b \in B$
(*)

$$
\left\{\zeta \in F_{b}: k([\zeta], \zeta)<1\right\}
$$

is a hermitian ellipsoid (i.e., \mathbb{C}-linear image of the unit ball in \mathbb{C}^{n}), then take k^{F} the metric for which $(*)$ is $\left\{k^{F}<1\right\}$.

Otherwise for each $b \in B$ take the largest (by volume) hermitian ellipsoid contained in $(*)$; choose k^{F} whose unit ball bundle consists of these ellipsoids.

Real version:
Finding the largest inscribed ellipsoid in a convex $S \subset \mathbb{R}^{N}$ (Fritz John 1948).

Complex version:
Metrics on $\mathcal{O}_{\mathbb{P}_{n}}(-1) \rightarrow \mathbb{P}_{n} \rightsquigarrow$ hermitian norms on \mathbb{C}^{n+1}.

Point of talk:
Generalization of complex version to Kähler manifolds.

A variational problem on Kähler manifolds

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow \quad\left(M^{n}, \omega\right)$ connected compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow ??

A variational problem on Kähler manifolds

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow\left(M^{n}, \omega\right)$ connected compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow ??
G connected compact Lie group, acts on M by holomorphic isometries. Complexification $G^{\mathbb{C}}$ acts holomorphically:

$$
G^{\mathbb{C}} \times M \ni(g, x) \mapsto g x \in M
$$

E.g.: $(M, \omega)=\left(\mathbb{P}_{n}, \omega_{\mathrm{FS}}\right)$ and $G=\operatorname{SU}(n+1), G^{\mathbb{C}}=\operatorname{SL}(n+1, \mathbb{C})$.

Definition

$u \in \mathcal{H}$ is admissible if $\omega_{u}=g^{*} \omega$ with some $g \in G^{\mathbb{C}}$.

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow\left(M^{n}, \omega\right)$ compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow admissible $u \in \mathcal{H}$ (i.e., $\exists g \in G^{\mathbb{C}}$ s.t. $\omega_{u}=g^{*} \omega$)

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow \quad\left(M^{n}, \omega\right)$ compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow admissible $u \in \mathcal{H}$ (i.e., $\exists g \in G^{\mathbb{C}}$ s.t. $\omega_{u}=g^{*} \omega$);
Volume of ellipsoids \rightsquigarrow Monge-Ampère energy $E: \mathcal{H} \rightarrow \mathbb{R}$.

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow \quad\left(M^{n}, \omega\right)$ compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow admissible $u \in \mathcal{H}$ (i.e., $\exists g \in G^{\mathbb{C}}$ s.t. $\omega_{u}=g^{*} \omega$);
Volume of ellipsoids \rightsquigarrow Monge-Ampère energy $E: \mathcal{H} \rightarrow \mathbb{R}$.
$\mathcal{H} \subset C^{\infty}(M)$ is open $\Longrightarrow T \mathcal{H} \simeq \mathcal{H} \times C^{\infty}(M)$ canonically.
Mabuchi defined a closed 1-form α on \mathcal{H} : If $\xi \in T_{u} \mathcal{H} \simeq C^{\infty}(M)$,

$$
\alpha(\xi)=\int_{M} \xi \omega_{u}^{n} .
$$

But $\mathcal{H} \subset C^{\infty}(M)$ is convex, hence α is exact, and E is defined by

$$
d E=\alpha, \quad E(0)=0
$$

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow(M, \omega)$ compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow admissible $u \in \mathcal{H}$ (i.e., $\exists g \in G^{\mathbb{C}}$ s.t. $\omega_{u}=g^{*} \omega$);
Volume of ellipsoids \rightsquigarrow Monge-Ampère energy $E: \mathcal{H} \rightarrow \mathbb{R}$.

The protagonists:
$\mathbb{P}_{n} \rightsquigarrow(M, \omega)$ compact Kähler manifold;
Metrics $\rightsquigarrow \quad\left\{u \in C^{\infty}(M): \omega_{u} \stackrel{\text { def }}{=} \omega+i \partial \bar{\partial} u>0\right\}=\mathcal{H}$;
Ellipsoids \rightsquigarrow admissible $u \in \mathcal{H}$ (i.e., $\exists g \in G^{\mathbb{C}}$ s.t. $\omega_{u}=g^{*} \omega$);
Volume of ellipsoids \rightsquigarrow Monge-Ampère energy $E: \mathcal{H} \rightarrow \mathbb{R}$.

The problem: Given $v_{0} \in \mathcal{H}$, find/characterize the minimizer in $\min \left\{E(v): v \in \mathcal{H}\right.$ admissible, $\left.v \geqslant v_{0}\right\}$.

The moment map

Let $X \in \mathfrak{g}$ (Lie algebra of $G)$. Then $g_{t}=\exp t X \in G(t \in \mathbb{R}) \longleftrightarrow$ 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on M, denoted X_{M}. (WLOG: $X_{M}=0 \Longrightarrow X=0$.) Now

$$
g_{t}^{*} \omega=\omega \quad \Longrightarrow \quad 0=\mathcal{L}_{X_{M}} \omega=d \iota{X_{M}} \omega+\overbrace{\iota X_{M} d \omega}^{0} .
$$

The moment map

Let $X \in \mathfrak{g}$ (Lie algebra of $G)$. Then $g_{t}=\exp t X \in G(t \in \mathbb{R}) \longleftrightarrow$ 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on M, denoted X_{M}. (WLOG: $X_{M}=0 \Longrightarrow X=0$.) Now

$$
g_{t}^{*} \omega=\omega \quad \Longrightarrow \quad 0=\mathcal{L}_{X_{M}} \omega=d \iota{\chi_{M}} \omega+\overbrace{\iota X_{M} d \omega}^{0} .
$$

Suppose $\forall X \in \mathfrak{g}$ the 1 -form $\iota_{X_{M}} \omega$ is even exact: $\iota_{X_{M}} \omega=d h_{X}$,

The moment map

Let $X \in \mathfrak{g}$ (Lie algebra of $G)$. Then $g_{t}=\exp t X \in G(t \in \mathbb{R}) \longleftrightarrow$ 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on M, denoted X_{M}. (WLOG: $X_{M}=0 \Longrightarrow X=0$.) Now

$$
g_{t}^{*} \omega=\omega \quad \Longrightarrow \quad 0=\mathcal{L}_{X_{M}} \omega=d \iota{X_{M}} \omega+\overbrace{\iota X_{M} d \omega}^{0} \text {. }
$$

Suppose $\forall X \in \mathfrak{g}$ the 1 -form $\iota_{X_{M}} \omega$ is even exact: $\iota_{X_{M}} \omega=d h_{X}$, with $\int_{M} h_{X} \omega^{n}=0$. As $\mathfrak{g} \ni X \mapsto h_{X}(x) \in \mathbb{R}$ is linear $\forall x \in M \Longrightarrow \exists \mu: M \rightarrow \mathfrak{g}^{*}$ such that $\langle\mu, X\rangle=h_{X}$.
μ is the moment map of the G-action.

The moment map

Let $X \in \mathfrak{g}$ (Lie algebra of $G)$. Then $g_{t}=\exp t X \in G(t \in \mathbb{R}) \longleftrightarrow$ 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on M, denoted X_{M}. (WLOG: $X_{M}=0 \Longrightarrow X=0$.) Now

$$
g_{t}^{*} \omega=\omega \quad \Longrightarrow \quad 0=\mathcal{L}_{X_{M}} \omega=d \iota_{X_{M}} \omega+\overbrace{\chi_{X_{M}} d \omega}^{0} .
$$

Suppose $\forall X \in \mathfrak{g}$ the 1 -form $\iota_{X_{M}} \omega$ is even exact: $\iota_{X_{M}} \omega=d h_{X}$, with $\int_{M} h_{X} \omega^{n}=0$. As $\mathfrak{g} \ni X \mapsto h_{X}(x) \in \mathbb{R}$ is linear $\forall x \in M \Longrightarrow \exists \mu: M \rightarrow \mathfrak{g}^{*}$ such that $\langle\mu, X\rangle=h_{X}$.
μ is the moment map of the G-action.
Example: $(M, \omega)=\left(\mathbb{P}_{n}, \omega_{\mathrm{FS}}\right), G=\mathrm{SU}(n+1) \Longrightarrow$

$$
\begin{gathered}
\mathfrak{g}=\left\{X \in \operatorname{Mat}^{(n+1) \times(n+1)}: X^{\dagger}=-X, \operatorname{tr} X=0\right\} \\
\langle\mu(x), X\rangle=i \frac{x^{\dagger} X x}{x^{\dagger} x}, \quad x=\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{n}
\end{array}\right)
\end{gathered}
$$

The problem was: Given $v_{0} \in \mathcal{H}$,
(P) $\quad \min \left\{E(v): v \in \mathcal{H}\right.$ admissible, $\left.v \geqslant v_{0}\right\}$.

If $u \in \mathcal{H}$, let $C_{u}=\left\{x \in M: u(x)=v_{0}(x)\right\}$.
Theorem (1)
(P) has a minimizer. Let $u \geqslant v_{0}$ be admissible: $\omega_{u}=g^{*} \omega$, with $g \in G^{\mathbb{C}}$. This u is minimizer in $(P) \Longleftrightarrow 0 \in$ convex hull of $\mu\left(g C_{u}\right) \subset \mathfrak{g}^{*}$.

The problem was: Given $v_{0} \in \mathcal{H}$,
(P) $\quad \min \left\{E(v): v \in \mathcal{H}\right.$ admissible, $\left.v \geqslant v_{0}\right\}$.

If $u \in \mathcal{H}$, let $C_{u}=\left\{x \in M: u(x)=v_{0}(x)\right\}$.

Theorem (1)

(P) has a minimizer. Let $u \geqslant v_{0}$ be admissible: $\omega_{u}=g^{*} \omega$, with $g \in G^{\mathbb{C}}$. This u is minimizer in $(P) \Longleftrightarrow 0 \in$ convex hull of $\mu\left(g C_{u}\right) \subset \mathfrak{g}^{*}$.

If $X \in \mathfrak{g}$, let $N_{X}=\{x \in M:\langle\mu, X\rangle$ vanishes to 2 nd order at $x\}$.

Theorem (2)

Suppose $\forall X \in \mathfrak{g} \backslash\{0\}, 0 \notin$ convex hull of $\mu\left(N_{X}\right) \subset \mathfrak{g}^{*}$. Then (P) has unique minimizer.
(If $\exists X \in \mathfrak{g} \backslash\{0\}$ such that $0 \in$ convex hull of $\mu\left(N_{X}\right)$, then for some v_{0} the minimizer is not unique.)

Theorem (1 , special case: $u=0, g=\mathrm{id}$)
0 minimizes $E(v)$ over admissible $v \geqslant v_{0} \Longleftrightarrow 0 \in$ convex hull of $\mu\left(C_{0}\right)$.

Idea of proof, necessity (\Rightarrow) : If $0 \notin$ convex hull of $\mu\left(C_{0}\right) \Longrightarrow \exists X \in \mathfrak{g}$ such that $\langle\mu, X\rangle>0$ on $C_{0} \rightsquigarrow$ get variation $u_{t} \geqslant v_{0}$ such that $E\left(u_{t}\right)<E(0)$ for $0<t<\varepsilon$, contradiction.

Theorem (1 , special case: $u=0, g=\mathrm{id}$) 0 minimizes $E(v)$ over admissible $v \geqslant v_{0} \Longleftrightarrow 0 \in$ convex hull of $\mu\left(C_{0}\right)$.

Idea of proof, necessity (\Rightarrow) : If $0 \notin$ convex hull of $\mu\left(C_{0}\right) \Longrightarrow \exists X \in \mathfrak{g}$ such that $\langle\mu, X\rangle>0$ on $C_{0} \rightsquigarrow$ get variation $u_{t} \geqslant v_{0}$ such that $E\left(u_{t}\right)<E(0)$ for $0<t<\varepsilon$, contradiction.

Sufficiency (\Leftarrow) : Convex hull condition $\stackrel{\text { approx }}{\Longleftrightarrow}$ some derivative $=0 \xlongequal{?}$ minimum?

Theorem (1 , special case: $u=0, g=\mathrm{id}$) 0 minimizes $E(v)$ over admissible $v \geqslant v_{0} \Longleftrightarrow 0 \in$ convex hull of $\mu\left(C_{0}\right)$.

Idea of proof, necessity (\Rightarrow) : If $0 \notin$ convex hull of $\mu\left(C_{0}\right) \Longrightarrow \exists X \in \mathfrak{g}$ such that $\langle\mu, X\rangle>0$ on $C_{0} \rightsquigarrow$ get variation $u_{t} \geqslant v_{0}$ such that $E\left(u_{t}\right)<E(0)$ for $0<t<\varepsilon$, contradiction.

Sufficiency (\Leftarrow) : Convex hull condition $\stackrel{\text { approx }}{\Longleftrightarrow}$ some derivative $=0 \xlongequal{?}$ minimum? Yes, if function involved is convex.

So this part of the proof depends on intrinsic convexity in \mathcal{H}, framed in terms of Mabuchi's Riemannian metric on \mathcal{H} : If $\xi, \eta \in T_{u} \mathcal{H} \simeq C^{\infty}(M)$,

$$
g_{\text {Mabuchi }}(\xi, \eta)=\int_{M} \xi \eta \omega_{u}^{n} .
$$

Theorem (1, special case: $u=0, g=\mathrm{id}$)

 0 minimizes $E(v)$ over admissible $v \geqslant v_{0} \Longleftrightarrow 0 \in$ convex hull of $\mu\left(C_{0}\right)$.Proof of sufficiency (\Leftarrow) : Convex hull condition $\Longleftrightarrow \exists$ probability measure m on C_{0} such that $\int_{C_{0}} \mu d m=0$.

Theorem (1 , special case: $u=0, g=\mathrm{id}$)

0 minimizes $E(v)$ over admissible $v \geqslant v_{0} \Longleftrightarrow 0 \in$ convex hull of $\mu\left(C_{0}\right)$.

Proof of sufficiency (\Leftarrow) : Convex hull condition $\Longleftrightarrow \exists$ probability measure m on C_{0} such that $\int_{C_{0}} \mu d m=0$.

Suppose $v \geqslant v_{0}$ is admissible: $\omega_{v}=\gamma^{*} \omega$, with $\gamma \in G^{\mathbb{C}}$. WLOG $\gamma=\exp i X, X \in \mathfrak{g}$. Connect $u=0$ and v by geodesic in Mabuchi's metric.

Theorem (1 , special case: $u=0, g=\mathrm{id}$)

0 minimizes $E(v)$ over admissible $v \geqslant v_{0} \Longleftrightarrow 0 \in$ convex hull of $\mu\left(C_{0}\right)$.

Proof of sufficiency (\Leftarrow) : Convex hull condition $\Longleftrightarrow \exists$ probability measure m on C_{0} such that $\int_{C_{0}} \mu d m=0$.

Suppose $v \geqslant v_{0}$ is admissible: $\omega_{v}=\gamma^{*} \omega$, with $\gamma \in G^{\mathbb{C}}$. WLOG $\gamma=\exp i X, X \in \mathfrak{g}$. Connect $u=0$ and v by geodesic in Mabuchi's metric.

Lemma

$\psi(t)=2 \int_{0}^{t}(\exp i \tau X)^{*}\langle\mu, X\rangle d \tau+t E(v), 0 \leqslant t \leqslant 1$, is geodesic in \mathcal{H}, connects $u=0$ and v, and $\psi(t) \geqslant v_{0} \forall t$.

If $x \in C_{0}$, then $0=v_{0}(x) \leqslant \psi(t)(x)$; and $=$ holds for $t=0$. Hence $0 \leqslant \dot{\psi}(0)(x)$ and

$$
E(0)=0 \leqslant \int_{C_{0}} \dot{\psi}(0) d m=\int_{C_{0}}(2\langle\mu, X\rangle+E(v)) d m=0+E(v)
$$

Summary:

We considered a Kähler analog of a variational problem, posed by Fritz John in convex geometry. We formulated theorems concerning the existence, uniqueness, and characterization of a solution. The Kähler problem involved a group action; our results were framed in terms of the associated moment map.

The proofs use the geometry of the space of Kähler potentials, first introduced by Mabuchi.

