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A construction in geometry

Given a holomorphic vector bundle F — B ~ line bundle.

1. If B ={b}, F vector space/C ~
PF = {¢ C F one dimensional subspace};

Opr(—1) — PF, where
Opr(—1) = {(¢,{) € PF x F: { € (}.

2. General F —+ B ~ PF = [],c5 PFb,
Opr(—1) = Lpep Opr,(=1) — PF.
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Vector bundle F — B~ line bundle Opg(—1) — PF.

To objects associated with F correspond objects associated with
Ope(—1).
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Vector bundle F — B~ line bundle Opg(—1) — PF.

To objects associated with F correspond objects associated with
Ope(—1).

E.g., h (hermitian) metricon F ~»  hp metric on Opg(—1):

h]P’(gv C) = h(()

Question: |s there a converse construction? Given metric k on Opg(—1)
~  metric k on F (hermitian!)?
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Given metric k on Opg(—1) ~» metric kF on F (hermitian!)?
If for each be B

(%) {¢eFyik(c]¢) <1}

is a hermitian ellipsoid (i.e., C—linear image of the unit ball in C"), then
take kF the metric for which (x) is {kf < 1}.

4/1



Given metric k on Opg(—1) ~» metric kF on F (hermitian!)?

If for each be B

(%) {¢eFyik(c]¢) <1}

is a hermitian ellipsoid (i.e., C—linear image of the unit ball in C"), then
take k' the metric for which (x) is {kF < 1}.

Otherwise for each b € B take the largest (by volume) hermitian
ellipsoid contained in (x); choose k' whose unit ball bundle consists of
these ellipsoids.
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Real version:
Finding the largest inscribed ellipsoid in a convex S C RN (Fritz John
1948).

Complex version:
Metrics on Op,(—1) — P, ~ hermitian norms on C"+1.

Point of talk:
Generalization of complex version to Kahler manifolds.
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A variational problem on Kahler manifolds

The protagonists:

P, ~ (M" w) connected compact Kihler manifold;

Metrics ~» {ue C®(M): w, © o+ i00u > 0} =H,;

Ellipsoids  ~» 77
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A variational problem on Kahler manifolds

The protagonists:

P, ~ (M" w) connected compact Kahler manifold;
Metrics ~ {u€ C(M):w, € w+iddu >0} = H;
Ellipsoids ~» 77

G connected compact Lie group, acts on M by holomorphic isometries.
Complexification G acts holomorphically:

GCXMB(g,x)r—)gXGI\/I.
Eg.: (M,w) = (Ps,wrs) and G =SU(n+ 1), G* =SL(n+1,C).
Definition J

u € H is admissible if w, = g*w with some g € GC.
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The protagonists:

P, ~» (M" w) compact Kdhler manifold;
Metrics ~» {ue C®(M):w, dﬁfw—i—iagu>0} =*H,;
Ellipsoids ~» admissible u € H (i.e., 3g € G* sit. w, = g*w) ;

Volume of ellipsoids ~» Monge—Ampere energy E : H — R.

H C C®(M)isopen = TH ~H x C>*(M) canonically.
Mabuchi defined a closed 1-form a on H: If { € T,H ~ C>®(M),

o(6) = | e,

But H C C°°(M) is convex, hence « is exact, and E is defined by

dE =a,  E(0)=0.
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The protagonists:

P, ~» (M,w) compact Kahler manifold;
Metrics ~ {u€ C®(M): w, © o+ 90y > 0} =H,;
Ellipsoids ~ admissible u € #H (i.e., 3g € G* s.t. w, = g*w);

Volume of ellipsoids ~» Monge—Ampere energy E : H — R.

The problem: Given vy € H, find/characterize the minimizer in

(P) min{E(v) : v € H admissible, v > v}.
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The moment map

Let X € g (Lie algebra of G). Then gt =exptX € G (t € R) «—
1-parameter subgroup of diffeomorphisms «— flow of a vector field on
M, denoted Xp;. (WLOG: Xy =0 = X =0.) Now

—N
giw=w = 0=~Lx,w=dix,w+ tx,dw.
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The moment map

Let X € g (Lie algebra of G). Then gt =exptX € G (t € R) «—
1-parameter subgroup of diffeomorphisms «— flow of a vector field on
M, denoted Xp;. (WLOG: Xpy = 0= X =10.) Now

—N
giw=w = 0=~Lx,w=dix,w+ tx,dw.

Suppose VX € g the 1-form 1x,,w is even exact: 1x,,w = dhx, with
Sy hxw™ =0. As g > X — hx(x) € Ris linear ¥x € M = 3 : M — g*
such that (u, X) = hx.

1 is the moment map of the G—action.
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The moment map

Let X € g (Lie algebra of G). Then gt =exptX € G (t € R) «—
1-parameter subgroup of diffeomorphisms «— flow of a vector field on
M, denoted Xp;. (WLOG: Xpy = 0= X =10.) Now

—N
giw=w = 0=~Lx,w=dix,w+ tx,dw.

Suppose VX € g the 1-form 1x,,w is even exact: 1x,,w = dhx, with
Sy hxw™ =0. As g > X — hx(x) € Ris linear ¥x € M = 3 : M — g*
such that (u, X) = hx.

1 is the moment map of the G—action.

Example: (M,w) = (Pp,wrs), G =SU(n+1) =

g ={X € Mat(mDx(n+1) . T — _ X tr X =0}

X
xtXx 0

xtx "’

(u(x), X) =i

Xn
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The problem was: Given vy € H,
(P) min{E(v) : v € H admissible, v > v}.

If ue M, let Cy={xe M:u(x)=v(x)}
Theorem (1)

(P) has a minimizer. Let u > vo be admissible: w, = g*w, with g € G©.
This u is minimizer in (P) <= 0 € convex hull of u(gC,) C g*.

] 10/1



The problem was: Given vy € H,
(P) min{E(v) : v € H admissible, v > vp}.

If ue M, let Cy={xe M:u(x)=v(x)}
Theorem (1)

(P) has a minimizer. Let u > vy be admissible: w, = g*w, with g e GC.
This u is minimizer in (P) <= 0 € convex hull of u(gC,) C

If X €g, let Nx ={x & M: (u, X) vanishes to 2nd order at x}.

Theorem (2)

Suppose VX € g\ {0}, 0 ¢ convex hull of (Nx) C g*. Then (P) has
unique minimizer.

(If 3X € g\ {0} such that 0 € convex hull of (Nx), then for some vy
the minimizer is not unique.)
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Theorem (1, special case: v =0, g = id) J

0 minimizes E(v) over admissible v > vy <= 0 € convex hull of 11(Cp).

Idea of proof, necessity (=): If 0 ¢ convex hull of u(Gy) = IX € g
such that (u, X) >0on ¢y ~» get variation u; > vy such that
E(u) < E(0) for 0 < t < ¢, contradiction.
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Theorem (1, special case: u =0, g = id)
0 minimizes E(v) over admissible v > vy <= 0 € convex hull of 11(Cp). J

Idea of proof, necessity (=): If 0 ¢ convex hull of u(Cy) = IX € g
such that (u, X) >0on ¢y ~» get variation u; > vy such that
E(u) < E(0) for 0 < t < ¢, contradiction.

Sufficiency («=): Convex hull condition “222° some derivative = 0 =
minimum? Yes, if function involved is convex.

So this part of the proof depends on intrinsic convexity in H, framed in
terms of Mabuchi’'s Riemannian metric on H: If £,n € T,H ~ C*(M),

8Mabuchi 57 / 577("}
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Theorem (1, special case: u =0, g = id)

0 minimizes E(v) over admissible v > vy <= 0 € convex hull of 11( ().

Proof of sufficiency («<): Convex hull condition <= 3 probability
measure m on Cp such that fCo wdm = 0.

Suppose v > vy is admissible: w, = v*w, with v € G&. WLOG
v =-expiX, X € g. Connect u =0 and v by geodesic in Mabuchi's metric.

Lemma

P(t) =2 [ (exp iTX)*(u, X) dT + tE(v), 0 < t < 1, is geodesic in H,
connects u =0 and v, and ¢(t) > vy Vt.

If x € Co, then 0 = vp(x) < ¢¥(t)(x); and = holds for t = 0. Hence
0 < ¢(0)(x) and

E(0)=0< [ 4(0)dm= / (201, X) + E(v)) dm = 0+ E(v).
G G
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Summary:

We considered a Kahler analog of a variational problem, posed by
Fritz John in convex geometry. We formulated theorems concerning the
existence, uniqueness, and characterization of a solution. The Kahler
problem involved a group action; our results were framed in terms of the
associated moment map.

The proofs use the geometry of the space of Kahler potentials, first
introduced by Mabuchi.

] 13/1



