A variational problem in Kähler geometry

László Lempert Purdue University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Given a holomorphic vector bundle $F \rightarrow B$ \rightsquigarrow line bundle.

Given a holomorphic vector bundle $F \rightarrow B$ \rightsquigarrow line bundle.

1. If $B = \{b\}$, F vector space/ $\mathbb{C} \longrightarrow \mathbb{P}F = \{\ell \subset F \text{ one dimensional subspace}\};$

Given a holomorphic vector bundle $F \rightarrow B$ \rightsquigarrow line bundle.

1. If
$$B = \{b\}$$
, F vector space/ $\mathbb{C} \longrightarrow \mathbb{P}F = \{\ell \subset F \text{ one dimensional subspace}\};$
 $\mathcal{O}_{\mathbb{P}F}(-1) \rightarrow \mathbb{P}F,$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Given a holomorphic vector bundle $F \rightarrow B$ \rightsquigarrow line bundle.

1. If
$$B = \{b\}$$
, F vector space/ $\mathbb{C} \longrightarrow \mathbb{P}F = \{\ell \subset F \text{ one dimensional subspace}\};$
 $\mathcal{O}_{\mathbb{P}F}(-1) \rightarrow \mathbb{P}F$, where
 $\mathcal{O}_{\mathbb{P}F}(-1) = \{(\ell, \zeta) \in \mathbb{P}F \times F : \zeta \in \ell\}.$

э

イロト イポト イヨト イヨト

Given a holomorphic vector bundle $F \rightarrow B$ \rightsquigarrow line bundle.

1. If
$$B = \{b\}$$
, F vector space/ $\mathbb{C} \longrightarrow \mathbb{P}F = \{\ell \subset F \text{ one dimensional subspace}\};$
 $\mathcal{O}_{\mathbb{P}F}(-1) \to \mathbb{P}F, \text{ where}$
 $\mathcal{O}_{\mathbb{P}F}(-1) = \{(\ell, \zeta) \in \mathbb{P}F \times F : \zeta \in \ell\}.$

2. General
$$F \to B$$
 \rightsquigarrow $\mathbb{P}F = \coprod_{b \in B} \mathbb{P}F_b$,
 $\mathcal{O}_{\mathbb{P}F}(-1) = \coprod_{b \in B} \mathcal{O}_{\mathbb{P}F_b}(-1) \to \mathbb{P}F.$

Vector bundle $F \to B \quad \rightsquigarrow \quad \text{line bundle } \mathcal{O}_{\mathbb{P}F}(-1) \to \mathbb{P}F.$

To objects associated with F correspond objects associated with $\mathcal{O}_{\mathbb{P}F}(-1)$.

Vector bundle $F \to B \quad \rightsquigarrow \quad \text{line bundle } \mathcal{O}_{\mathbb{P}F}(-1) \to \mathbb{P}F.$

To objects associated with F correspond objects associated with $\mathcal{O}_{\mathbb{P}F}(-1)$.

E.g., h (hermitian) metric on $F \rightsquigarrow h_{\mathbb{P}}$ metric on $\mathcal{O}_{\mathbb{P}F}(-1)$: $h_{\mathbb{P}}(\ell,\zeta) = h(\zeta)$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへ⊙

Vector bundle $F \to B \quad \rightsquigarrow \quad \text{line bundle } \mathcal{O}_{\mathbb{P}F}(-1) \to \mathbb{P}F.$

To objects associated with F correspond objects associated with $\mathcal{O}_{\mathbb{P}F}(-1)$.

E.g., h (hermitian) metric on $F \rightsquigarrow h_{\mathbb{P}}$ metric on $\mathcal{O}_{\mathbb{P}F}(-1)$: $h_{\mathbb{P}}(\ell,\zeta) = h(\zeta)$.

Question: Is there a converse construction? Given metric k on $\mathcal{O}_{\mathbb{P}F}(-1)$ \rightarrow metric k^F on F (hermitian!)?

3/1

Given metric k on $\mathcal{O}_{\mathbb{P}F}(-1) \rightsquigarrow \text{metric } k^F$ on F (hermitian!)?

If for each $b \in B$

(*)
$$\left\{\zeta \in F_b : k([\zeta], \zeta) < 1\right\}$$

is a hermitian ellipsoid (i.e., \mathbb{C} -linear image of the unit ball in \mathbb{C}^n), then take k^F the metric for which (*) is $\{k^F < 1\}$.

4/1

Given metric k on $\mathcal{O}_{\mathbb{P}F}(-1) \rightsquigarrow \text{metric } k^F$ on F (hermitian!)?

If for each $b \in B$

(*)
$$\left\{\zeta \in F_b : k([\zeta], \zeta) < 1\right\}$$

is a hermitian ellipsoid (i.e., \mathbb{C} -linear image of the unit ball in \mathbb{C}^n), then take k^F the metric for which (*) is $\{k^F < 1\}$.

Otherwise for each $b \in B$ take the largest (by volume) hermitian ellipsoid contained in (*); choose k^F whose unit ball bundle consists of these ellipsoids.

(本部) (本語) (本語) (二語)

Real version: Finding the largest inscribed ellipsoid in a convex $S \subset \mathbb{R}^N$ (Fritz John 1948).

Complex version: Metrics on $\mathcal{O}_{\mathbb{P}_n}(-1) \to \mathbb{P}_n \quad \rightsquigarrow \quad \text{hermitian norms on } \mathbb{C}^{n+1}.$

Point of talk: Generalization of complex version to Kähler manifolds.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

A variational problem on Kähler manifolds

The protagonists:

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M^n, \omega) \text{ connected compact Kähler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{ u \in C^{\infty}(M) : \omega_u \stackrel{\text{def}}{=} \omega + i \partial \overline{\partial} u > 0 \} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow & ?? \end{split}$$

A variational problem on Kähler manifolds

The protagonists:

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M^n, \omega) \text{ connected compact K\"ahler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{ u \in C^{\infty}(M) : \omega_u \stackrel{\text{def}}{=} \omega + i \partial \overline{\partial} u > 0 \} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow & ?? \end{split}$$

G connected compact Lie group, acts on *M* by holomorphic isometries. Complexification $G^{\mathbb{C}}$ acts holomorphically:

$$G^{\mathbb{C}} \times M \ni (g, x) \mapsto gx \in M.$$

E.g.: $(M, \omega) = (\mathbb{P}_n, \omega_{\mathsf{FS}})$ and $G = \mathsf{SU}(n+1)$, $G^{\mathbb{C}} = \mathsf{SL}(n+1, \mathbb{C})$.

Definition

$$u \in \mathcal{H}$$
 is *admissible* if $\omega_u = g^* \omega$ with some $g \in G^{\mathbb{C}}$.

イロン イヨン イヨン

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M^n, \omega) \text{ compact K\"ahler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{u \in C^\infty(M) : \omega_u \stackrel{\text{def}}{=} \omega + i \partial \overline{\partial} u > 0\} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow \text{ admissible } u \in \mathcal{H} \text{ (i.e., } \exists g \in G^\mathbb{C} \text{ s.t. } \omega_u = g^* \omega) \end{split}$$

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M^n, \omega) \text{ compact K\"ahler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{u \in C^\infty(M) : \omega_u \stackrel{\text{def}}{=} \omega + i \partial \overline{\partial} u > 0\} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow \text{ admissible } u \in \mathcal{H} \text{ (i.e., } \exists g \in G^\mathbb{C} \text{ s.t. } \omega_u = g^* \omega) \text{ ;} \\ \text{Volume of ellipsoids} & \rightsquigarrow & \text{Monge-Ampère energy } E : \mathcal{H} \to \mathbb{R}. \end{split}$$

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M^n, \omega) \text{ compact K\"ahler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{u \in C^\infty(M) : \omega_u \stackrel{\text{def}}{=} \omega + i\partial \overline{\partial} u > 0\} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow \text{ admissible } u \in \mathcal{H} \text{ (i.e., } \exists g \in G^\mathbb{C} \text{ s.t. } \omega_u = g^* \omega) \text{ ;} \\ \text{Volume of ellipsoids} & \rightsquigarrow & \text{Monge-Ampère energy } E : \mathcal{H} \to \mathbb{R}. \end{split}$$

 $\mathcal{H} \subset C^{\infty}(M)$ is open $\implies T\mathcal{H} \simeq \mathcal{H} \times C^{\infty}(M)$ canonically. Mabuchi defined a closed 1-form α on \mathcal{H} : If $\xi \in T_u\mathcal{H} \simeq C^{\infty}(M)$,

$$\alpha(\xi) = \int_M \xi \omega_u^n$$

But $\mathcal{H} \subset C^{\infty}(M)$ is convex, hence α is exact, and E is defined by

$$dE = \alpha, \qquad E(0) = 0.$$

イロト 不得 トイヨト イヨト 二日

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M, \omega) \text{ compact K\"ahler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{u \in C^{\infty}(M) : \omega_u \stackrel{\text{def}}{=} \omega + i \partial \overline{\partial} u > 0\} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow \text{ admissible } u \in \mathcal{H} \text{ (i.e., } \exists g \in G^{\mathbb{C}} \text{ s.t. } \omega_u = g^* \omega); \\ \text{Volume of ellipsoids} & \rightsquigarrow & \text{Monge-Ampère energy } E : \mathcal{H} \to \mathbb{R}. \end{split}$$

$$\begin{split} \mathbb{P}_n & \rightsquigarrow & (M, \omega) \text{ compact K\"ahler manifold;} \\ \text{Metrics} & \rightsquigarrow & \{u \in C^{\infty}(M) : \omega_u \stackrel{\text{def}}{=} \omega + i \partial \overline{\partial} u > 0\} = \mathcal{H}; \\ \text{Ellipsoids} & \rightsquigarrow \text{ admissible } u \in \mathcal{H} \text{ (i.e., } \exists g \in G^{\mathbb{C}} \text{ s.t. } \omega_u = g^* \omega); \\ \text{Volume of ellipsoids} & \rightsquigarrow & \text{Monge-Ampère energy } E : \mathcal{H} \to \mathbb{R}. \end{split}$$

The problem: Given $v_0 \in \mathcal{H}$, find/characterize the minimizer in

(P)
$$\min\{E(v) : v \in \mathcal{H} \text{ admissible, } v \ge v_0\}.$$

- 本間 ト イヨ ト イヨ ト 三 ヨ

Let $X \in \mathfrak{g}$ (Lie algebra of G). Then $g_t = \exp tX \in G$ $(t \in \mathbb{R}) \leftrightarrow$ 1-parameter subgroup of diffeomorphisms \leftrightarrow flow of a vector field on M, denoted X_M . (WLOG: $X_M = 0 \Longrightarrow X = 0$.) Now

$$g_t^*\omega = \omega \implies 0 = \mathcal{L}_{X_M}\omega = d\iota_{X_M}\omega + \widetilde{\iota_{X_M}d\omega}.$$

Let $X \in \mathfrak{g}$ (Lie algebra of *G*). Then $g_t = \exp tX \in G$ ($t \in \mathbb{R}$) \longleftrightarrow 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on *M*, denoted X_M . (WLOG: $X_M = 0 \Longrightarrow X = 0$.) Now

$$g_t^*\omega = \omega \implies 0 = \mathcal{L}_{X_M}\omega = d\iota_{X_M}\omega + \widetilde{\iota_{X_M}d\omega}.$$

Suppose $\forall X \in \mathfrak{g}$ the 1-form $\iota_{X_M} \omega$ is even exact: $\iota_{X_M} \omega = dh_X$,

Let $X \in \mathfrak{g}$ (Lie algebra of *G*). Then $g_t = \exp tX \in G$ ($t \in \mathbb{R}$) \longleftrightarrow 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on *M*, denoted X_M . (WLOG: $X_M = 0 \Longrightarrow X = 0$.) Now

$$g_t^*\omega=\omega \quad \Longrightarrow \quad 0=\mathcal{L}_{X_M}\omega=d\iota_{X_M}\omega+\widetilde{\iota_{X_M}d\omega}\,.$$

Suppose $\forall X \in \mathfrak{g}$ the 1-form $\iota_{X_M}\omega$ is even exact: $\iota_{X_M}\omega = dh_X$, with $\int_M h_X \omega^n = 0$. As $\mathfrak{g} \ni X \mapsto h_X(x) \in \mathbb{R}$ is linear $\forall x \in M \Longrightarrow \exists \mu : M \to \mathfrak{g}^*$ such that $\langle \mu, X \rangle = h_X$.

 μ is the *moment map* of the *G*-action.

Let $X \in \mathfrak{g}$ (Lie algebra of *G*). Then $g_t = \exp tX \in G$ ($t \in \mathbb{R}$) \longleftrightarrow 1-parameter subgroup of diffeomorphisms \longleftrightarrow flow of a vector field on *M*, denoted X_M . (WLOG: $X_M = 0 \Longrightarrow X = 0$.) Now

$$g_t^*\omega=\omega \quad \Longrightarrow \quad 0=\mathcal{L}_{X_M}\omega=d\iota_{X_M}\omega+\widetilde{\iota_{X_M}d\omega}\,.$$

Suppose $\forall X \in \mathfrak{g}$ the 1-form $\iota_{X_M}\omega$ is even exact: $\iota_{X_M}\omega = dh_X$, with $\int_M h_X \omega^n = 0$. As $\mathfrak{g} \ni X \mapsto h_X(x) \in \mathbb{R}$ is linear $\forall x \in M \Longrightarrow \exists \mu : M \to \mathfrak{g}^*$ such that $\langle \mu, X \rangle = h_X$.

 μ is the *moment map* of the *G*-action.

Example: $(M, \omega) = (\mathbb{P}_n, \omega_{\mathsf{FS}}), \ G = \mathsf{SU}(n+1) \Longrightarrow$

$$\mathfrak{g} = \{X \in \mathsf{Mat}^{(n+1)\times(n+1)} : X^{\dagger} = -X, \operatorname{tr} X = 0\}$$
$$\langle \mu(x), X \rangle = i \frac{x^{\dagger} X x}{x^{\dagger} x}, \qquad x = \begin{pmatrix} x_{0} \\ \vdots \\ x_{n} \end{pmatrix}.$$

《曰》《聞》《臣》《臣》 三臣

The problem was: Given $v_0 \in \mathcal{H}$,

(P) $\min\{E(v) : v \in \mathcal{H} \text{ admissible, } v \ge v_0\}.$

If $u \in \mathcal{H}$, let $C_u = \{x \in M : u(x) = v_0(x)\}.$

Theorem (1)

(P) has a minimizer. Let $u \ge v_0$ be admissible: $\omega_u = g^* \omega$, with $g \in G^{\mathbb{C}}$. This u is minimizer in (P) $\iff 0 \in \text{convex hull of } \mu(gC_u) \subset \mathfrak{g}^*$.

10/1

The problem was: Given $v_0 \in \mathcal{H}$,

(P) $\min\{E(v) : v \in \mathcal{H} \text{ admissible, } v \ge v_0\}.$

If $u \in \mathcal{H}$, let $C_u = \{x \in M : u(x) = v_0(x)\}.$

Theorem (1)

(P) has a minimizer. Let $u \ge v_0$ be admissible: $\omega_u = g^* \omega$, with $g \in G^{\mathbb{C}}$. This u is minimizer in (P) $\iff 0 \in \text{convex hull of } \mu(gC_u) \subset \mathfrak{g}^*$.

If
$$X \in \mathfrak{g}$$
, let $N_X = \{x \in M : \langle \mu, X \rangle \text{ vanishes to 2nd order at } x\}$.

Theorem (2)

Suppose $\forall X \in \mathfrak{g} \setminus \{0\}$, $0 \notin convex$ hull of $\mu(N_X) \subset \mathfrak{g}^*$. Then (P) has unique minimizer.

(If $\exists X \in \mathfrak{g} \setminus \{0\}$ such that $0 \in \text{convex hull of } \mu(N_X)$, then for some v_0 the minimizer is not unique.)

イロト 不得 トイヨト イヨト 二日

0 minimizes E(v) over admissible $v \ge v_0 \iff 0 \in \text{convex hull of } \mu(C_0)$.

Idea of proof, necessity (\Rightarrow): If $0 \notin \text{convex hull of } \mu(C_0) \Longrightarrow \exists X \in \mathfrak{g}$ such that $\langle \mu, X \rangle > 0$ on $C_0 \rightsquigarrow \text{get variation } u_t \ge v_0$ such that $E(u_t) < E(0)$ for $0 < t < \varepsilon$, contradiction.

11/1

0 minimizes E(v) over admissible $v \ge v_0 \iff 0 \in \text{convex hull of } \mu(C_0)$.

Idea of proof, necessity (\Rightarrow): If $0 \notin \text{convex hull of } \mu(C_0) \Longrightarrow \exists X \in \mathfrak{g}$ such that $\langle \mu, X \rangle > 0$ on $C_0 \rightsquigarrow \text{get variation } u_t \ge v_0$ such that $E(u_t) < E(0)$ for $0 < t < \varepsilon$, contradiction.

Sufficiency (\Leftarrow): Convex hull condition $\stackrel{\text{approx}}{\iff}$ some derivative = 0 $\stackrel{?}{\Longrightarrow}$ minimum?

- 本間下 本臣下 本臣下 三臣

0 minimizes E(v) over admissible $v \ge v_0 \iff 0 \in \text{convex hull of } \mu(C_0)$.

Idea of proof, necessity (\Rightarrow): If $0 \notin \text{convex hull of } \mu(C_0) \Longrightarrow \exists X \in \mathfrak{g}$ such that $\langle \mu, X \rangle > 0$ on $C_0 \rightsquigarrow \text{get variation } u_t \ge v_0$ such that $E(u_t) < E(0)$ for $0 < t < \varepsilon$, contradiction.

Sufficiency (\Leftarrow): Convex hull condition $\stackrel{\text{approx}}{\iff}$ some derivative = 0 $\stackrel{?}{\Longrightarrow}$ minimum? Yes, if function involved is convex.

So this part of the proof depends on intrinsic convexity in \mathcal{H} , framed in terms of Mabuchi's Riemannian metric on \mathcal{H} : If $\xi, \eta \in T_u \mathcal{H} \simeq C^{\infty}(M)$,

$$g_{\text{Mabuchi}}(\xi,\eta) = \int_M \xi\eta\,\omega_u^n.$$

11/1

0 minimizes E(v) over admissible $v \ge v_0 \iff 0 \in \text{convex hull of } \mu(C_0)$.

Proof of sufficiency (\Leftarrow): Convex hull condition $\iff \exists$ probability measure m on C_0 such that $\int_{C_0} \mu \, dm = 0$.

0 minimizes E(v) over admissible $v \ge v_0 \iff 0 \in \text{convex hull of } \mu(C_0)$.

Proof of sufficiency (\Leftarrow): Convex hull condition $\iff \exists$ probability measure *m* on C_0 such that $\int_{C_0} \mu \, dm = 0$.

Suppose $v \ge v_0$ is admissible: $\omega_v = \gamma^* \omega$, with $\gamma \in G^{\mathbb{C}}$. WLOG

 $\gamma = \exp iX$, $X \in \mathfrak{g}$. Connect u = 0 and v by geodesic in Mabuchi's metric.

0 minimizes E(v) over admissible $v \ge v_0 \iff 0 \in \text{convex hull of } \mu(C_0)$.

Proof of sufficiency (\Leftarrow): Convex hull condition $\iff \exists$ probability measure *m* on C_0 such that $\int_{C_0} \mu \, dm = 0$.

Suppose $v \geqslant v_0$ is admissible: $\omega_v = \gamma^* \omega$, with $\gamma \in G^{\mathbb{C}}$. WLOG

 $\gamma = \exp iX$, $X \in \mathfrak{g}$. Connect u = 0 and v by geodesic in Mabuchi's metric.

Lemma

 $\psi(t) = 2 \int_0^t (\exp i\tau X)^* \langle \mu, X \rangle \, d\tau + t E(v), \, 0 \leq t \leq 1, \text{ is geodesic in } \mathcal{H},$ connects u = 0 and v, and $\psi(t) \geq v_0 \, \forall t$.

If $x \in C_0$, then $0 = v_0(x) \le \psi(t)(x)$; and = holds for t = 0. Hence $0 \le \dot{\psi}(0)(x)$ and

$$E(0)=0\leqslant \int_{C_0}\dot{\psi}(0)\,dm=\int_{C_0}\left(2\langle\mu,X\rangle+E(\nu)\right)\,dm=0+E(\nu).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary:

We considered a Kähler analog of a variational problem, posed by Fritz John in convex geometry. We formulated theorems concerning the existence, uniqueness, and characterization of a solution. The Kähler problem involved a group action; our results were framed in terms of the associated moment map.

The proofs use the geometry of the space of Kähler potentials, first introduced by Mabuchi.

13/1