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A construction in geometry

Given a holomorphic vector bundle F → B ⇝ line bundle.

1. If B = {b}, F vector space/C ⇝
PF = {ℓ ⊂ F one dimensional subspace};

OPF (−1)→ PF , where
OPF (−1) =

{
(ℓ, ζ) ∈ PF × F : ζ ∈ ℓ

}
.

2. General F → B ⇝ PF =
∐

b∈B PFb,
OPF (−1) =

∐
b∈B OPFb

(−1)→ PF .
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Vector bundle F → B ⇝ line bundle OPF (−1)→ PF .

To objects associated with F correspond objects associated with
OPF (−1).

E.g., h (hermitian) metric on F ⇝ hP metric on OPF (−1):
hP(ℓ, ζ) = h(ζ).

Question: Is there a converse construction? Given metric k on OPF (−1)
⇝ metric kF on F (hermitian!)?
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Given metric k on OPF (−1) ⇝ metric kF on F (hermitian!)?

If for each b ∈ B

(∗)
{
ζ ∈ Fb : k([ζ], ζ) < 1

}
is a hermitian ellipsoid (i.e., C–linear image of the unit ball in Cn), then
take kF the metric for which (∗) is {kF < 1}.

Otherwise for each b ∈ B take the largest (by volume) hermitian
ellipsoid contained in (∗); choose kF whose unit ball bundle consists of
these ellipsoids.
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Real version:
Finding the largest inscribed ellipsoid in a convex S ⊂ RN (Fritz John
1948).

Complex version:
Metrics on OPn(−1)→ Pn ⇝ hermitian norms on Cn+1.

Point of talk:
Generalization of complex version to Kähler manifolds.
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A variational problem on Kähler manifolds

The protagonists:

Pn ⇝ (Mn, ω) connected compact Kähler manifold;

Metrics ⇝ {u ∈ C∞(M) : ωu
def
= ω + i∂∂u > 0} = H;

Ellipsoids ⇝ ??

G connected compact Lie group, acts on M by holomorphic isometries.
Complexification GC acts holomorphically:

GC ×M ∋ (g , x) 7→ gx ∈ M.

E.g.: (M, ω) = (Pn, ωFS) and G = SU(n + 1), GC = SL(n + 1,C).

Definition

u ∈ H is admissible if ωu = g∗ω with some g ∈ GC.
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The protagonists:

Pn ⇝ (Mn, ω) compact Kähler manifold;

Metrics ⇝ {u ∈ C∞(M) : ωu
def
= ω + i∂∂u > 0} = H;

Ellipsoids ⇝ admissible u ∈ H (i.e., ∃g ∈ GC s.t. ωu = g∗ω)

;

Volume of ellipsoids ⇝ Monge–Ampère energy E : H → R.

H ⊂ C∞(M) is open =⇒ TH ≃ H× C∞(M) canonically.
Mabuchi defined a closed 1–form α on H: If ξ ∈ TuH ≃ C∞(M),

α(ξ) =

∫
M
ξωn

u .

But H ⊂ C∞(M) is convex, hence α is exact, and E is defined by

dE = α, E (0) = 0.
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The moment map
Let X ∈ g (Lie algebra of G ). Then gt = exp tX ∈ G (t ∈ R) ←→

1–parameter subgroup of diffeomorphisms ←→ flow of a vector field on
M, denoted XM . (WLOG: XM = 0 =⇒ X = 0.) Now

g∗
t ω = ω =⇒ 0 = LXM

ω = dιXM
ω +

0︷ ︸︸ ︷
ιXM

dω .

Suppose ∀X ∈ g the 1–form ιXM
ω is even exact: ιXM

ω = dhX , with∫
M hXω

n = 0. As g ∋ X 7→ hX (x) ∈ R is linear ∀x ∈ M =⇒ ∃µ : M → g∗

such that ⟨µ,X ⟩ = hX .
µ is the moment map of the G–action.

Example: (M, ω) = (Pn, ωFS), G = SU(n + 1) =⇒

g = {X ∈ Mat(n+1)×(n+1) : X † = −X , trX = 0}

⟨µ(x),X ⟩ = i
x†Xx

x†x
, x =

x0
...
xn

 .
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The problem was: Given v0 ∈ H,
(P) min{E (v) : v ∈ H admissible, v ⩾ v0}.

If u ∈ H, let Cu = {x ∈ M : u(x) = v0(x)}.

Theorem (1)

(P) has a minimizer. Let u ⩾ v0 be admissible: ωu = g∗ω, with g ∈ GC.
This u is minimizer in (P) ⇐⇒ 0 ∈ convex hull of µ(gCu) ⊂ g∗.

If X ∈ g, let NX = {x ∈ M : ⟨µ,X ⟩ vanishes to 2nd order at x}.

Theorem (2)

Suppose ∀X ∈ g \ {0}, 0 /∈ convex hull of µ(NX ) ⊂ g∗. Then (P) has
unique minimizer.

(If ∃X ∈ g \ {0} such that 0 ∈ convex hull of µ(NX ), then for some v0
the minimizer is not unique.)
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Theorem (1, special case: u = 0, g = id)

0 minimizes E (v) over admissible v ⩾ v0 ⇐⇒ 0 ∈ convex hull of µ(C0).

Idea of proof, necessity (⇒): If 0 /∈ convex hull of µ(C0) =⇒ ∃X ∈ g
such that ⟨µ,X ⟩ > 0 on C0 ⇝ get variation ut ⩾ v0 such that
E (ut) < E (0) for 0 < t < ε, contradiction.

Sufficiency (⇐): Convex hull condition
approx⇐⇒ some derivative = 0

?
=⇒

minimum? Yes, if function involved is convex.

So this part of the proof depends on intrinsic convexity in H, framed in
terms of Mabuchi’s Riemannian metric on H: If ξ, η ∈ TuH ≃ C∞(M),

gMabuchi(ξ, η) =

∫
M
ξη ωn

u .
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Theorem (1, special case: u = 0, g = id)

0 minimizes E (v) over admissible v ⩾ v0 ⇐⇒ 0 ∈ convex hull of µ(C0).

Proof of sufficiency (⇐): Convex hull condition ⇐⇒ ∃ probability
measure m on C0 such that

∫
C0
µ dm = 0.

Suppose v ⩾ v0 is admissible: ωv = γ∗ω, with γ ∈ GC. WLOG
γ = exp iX , X ∈ g. Connect u = 0 and v by geodesic in Mabuchi’s metric.

Lemma

ψ(t) = 2
∫ t
0 (exp iτX )∗⟨µ,X ⟩ dτ + tE (v), 0 ⩽ t ⩽ 1, is geodesic in H,

connects u = 0 and v , and ψ(t) ⩾ v0 ∀t.

If x ∈ C0, then 0 = v0(x) ⩽ ψ(t)(x); and = holds for t = 0. Hence
0 ⩽ ψ̇(0)(x) and

E (0) = 0 ⩽
∫
C0

ψ̇(0) dm =

∫
C0

(
2⟨µ,X ⟩+ E (v)

)
dm = 0 + E (v).

12 / 1



Theorem (1, special case: u = 0, g = id)

0 minimizes E (v) over admissible v ⩾ v0 ⇐⇒ 0 ∈ convex hull of µ(C0).

Proof of sufficiency (⇐): Convex hull condition ⇐⇒ ∃ probability
measure m on C0 such that

∫
C0
µ dm = 0.

Suppose v ⩾ v0 is admissible: ωv = γ∗ω, with γ ∈ GC. WLOG
γ = exp iX , X ∈ g. Connect u = 0 and v by geodesic in Mabuchi’s metric.

Lemma

ψ(t) = 2
∫ t
0 (exp iτX )∗⟨µ,X ⟩ dτ + tE (v), 0 ⩽ t ⩽ 1, is geodesic in H,

connects u = 0 and v , and ψ(t) ⩾ v0 ∀t.

If x ∈ C0, then 0 = v0(x) ⩽ ψ(t)(x); and = holds for t = 0. Hence
0 ⩽ ψ̇(0)(x) and

E (0) = 0 ⩽
∫
C0

ψ̇(0) dm =

∫
C0

(
2⟨µ,X ⟩+ E (v)

)
dm = 0 + E (v).

12 / 1



Theorem (1, special case: u = 0, g = id)

0 minimizes E (v) over admissible v ⩾ v0 ⇐⇒ 0 ∈ convex hull of µ(C0).

Proof of sufficiency (⇐): Convex hull condition ⇐⇒ ∃ probability
measure m on C0 such that

∫
C0
µ dm = 0.

Suppose v ⩾ v0 is admissible: ωv = γ∗ω, with γ ∈ GC. WLOG
γ = exp iX , X ∈ g. Connect u = 0 and v by geodesic in Mabuchi’s metric.

Lemma

ψ(t) = 2
∫ t
0 (exp iτX )∗⟨µ,X ⟩ dτ + tE (v), 0 ⩽ t ⩽ 1, is geodesic in H,

connects u = 0 and v , and ψ(t) ⩾ v0 ∀t.

If x ∈ C0, then 0 = v0(x) ⩽ ψ(t)(x); and = holds for t = 0. Hence
0 ⩽ ψ̇(0)(x) and

E (0) = 0 ⩽
∫
C0

ψ̇(0) dm =

∫
C0

(
2⟨µ,X ⟩+ E (v)

)
dm = 0 + E (v).

12 / 1



Summary:

We considered a Kähler analog of a variational problem, posed by
Fritz John in convex geometry. We formulated theorems concerning the
existence, uniqueness, and characterization of a solution. The Kähler
problem involved a group action; our results were framed in terms of the
associated moment map.

The proofs use the geometry of the space of Kähler potentials, first
introduced by Mabuchi.
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