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Surfaces and manifolds of negative curvature
M closed orientable surface of genus d > 2.

g complete Riemannian metric of negative (Gaussian) curvature K (g) < 0

� closed geodesic on (M, g) (can self intersect)

|�|g the length of � in metric g .

K (g) < 0 ) every closed curve on M can be free homotoped to a unique geodesic.

The same holds if (M, g) is a closed Riemannian manifold of negative (sectional) curvature sec(g) < 0.
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Length spectrum for metrics
C set of all free-homotopy classes of closed curves on (M, g).
8c 2 C, let �c be the unique geodesic in the class c .

Lg := {|�c |g : c 2 C} length spectrum

MLg : C 3 c 7! |�c |g marked length spectrum

Main Rigidity Question

Does (marked) length spectrum define the metric uniquely?

For (M, g1), (M, g2) with
either Lg1 = Lg2

or MLg1 = MLg2

?) g1 = g2

0

B@
up to coordinate changes,

i.e., '⇤g1 = g2 for some ' : M ! M

orientation-preserving di↵eomorphism

1

CA
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Why do we expect length spectral rigidity (morally)?
(M, g), dim(M) = 2, K (g) = �1, |�|g = 10 · diam(M, g)
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Marked length spectral rigidity for metrics

Conjecture (Burns–Katok’85)

For dim(M) > 2 and a pair (M, g1), (M, g2) of negatively curved Riemannian metrics on M,

if MLg1 = MLg2 , then g1 = g2 (up to change of coordinates)

Wide open!

dim(M) = 2: Otal’90 (using theory of geodesic flows), Croke’90; Guillarmou–Lefeuvre’19,
Guillarmou–Lefeuvre–Paternain’23 (for Anosov geodesic flows)

dim(M) > 2: Katok’88 (for fixed conformal classes, using ergodic theory), Hamenstädt’99 (for

locally symmetric spaces, using rigidity of entropy due to Besson–Courtois–Gallot’95),
Guillarmou–Lefeuvre’19 (local rigidity, using X-ray transforms)

Theorem (Guillarmou–Lefeuvre’19)

Let (M, g) be a closed Riemannian manifold of dimension n > 3 with sec(g) < 0. Then there exist
" > 0, N = N(n) so that if g0 is another smooth metric on M with sec(g0) < 0 and such that

MLg0 = MLg , kg0 � gkCN (M) < ", then g0 = g (up to change of coordinates).
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Length spectral rigidity for metrics (Lg1 = Lg2
?) g1 = g2)

In general, this is not true (examples of Sunada and Vigneras).

However, the following local length spectral rigidity question (analogous to Guillarmou–Lefeuvre’s

result) is completely open!

Question/Conjecture (Sarnak)

Are metrics of negative curvature locally rigid with respect to their length spectra?

I.e., given (M, g) with sec(g) < 0, there exist " > 0 and N > 0 such that if g0 is another smooth metric
on M with sec(g0) < 0 and such that

Lg0 = Lg , kg0 � gkCN (M) < ", then g0 = g (up to change of coordinates).

... Related to Laplace spectral rigidity question (Kac’s famous ‘Can you hear the shape of the drum?’)

A simpler question?
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Moral 2-step reduction

Geodesic flows

(3-dimensional)

Periodic trajectories =

closed geodesics

�!

Anosov di↵eomorphisms

(2-dimensional)

Periodic points

�!

Expanding maps on the

circle

(1-dimensional)

Periodic points
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Expanding circle maps
S1 = R/Z

For today, f : S1 ! S1 is expanding circle map if f is a C s
-smooth (s > 1) degree d > 2 orientation

preserving covering of S1 such that f 0(x) > ⇤ > 1, 8x 2 S1, normalized as f (0) = 0.

Examples:

Fd : x 7! dx mod 1 (degree d 2 N, d > 2) x 7! 3x + sin(2⇡x) mod 1
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Combinatorics of expanding circle maps

Theorem (Shub’69)

Every degree d > 2 expanding circle map f is topologically conjugate to Fd : x 7! dx mod 1 via an
orientation-preserving homeomorphism ' : S1 ! S1, '(0) = 0:

'�1 � f � ' = Fd

Up to a topological change of coordinates, all expanding circle maps of degree d are the same ) all

maps have the same combinatorics of periodic orbits!

Theorem (Sullivan’88)

' is quasisymmetric, and hence Hölder continuous.

It follows that any two expanding circle maps f , g of the same degree are topologically conjugate via

some quasisymmetric homeomorphism  . However,  cannot be better than that (usually, it is nowhere

di↵erentiable)!
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It follows that any two expanding circle maps f , g of the same degree are topologically conjugate via

some quasisymmetric homeomorphism  . However,  cannot be better than that (usually, it is nowhere

di↵erentiable)!

9 / 17



Periodic cycles and length spectrum

Fd : x ! dx mod 1

C ⇢ S1 is a periodic cycle, with period per(C ) = n,
if |C | = n, Fd(C ) = C , and Fd |C is a cyclic permutation.

every x 2 C has period per(x) = n

, x =
p

dn�1 , p 2 N.
C = the set of all periodic cycles of Fd .

Example:

f

for C 2 C, '(C ) is the corresponding periodic cycle for f , per('(C )) = per(C ).

|C |f :=
X

x2C

log f 0('(x)) the length of '(C )

(in fact, e|C |f is the multiplier (f n)0(x), x 2 '(C ), n = per(C ))

Lf := {|C |f : C 2 C} length spectrum of f

MLf : C 3 C 7! |C |f marked length spectrum of f

Note: a) LFd = {n · log d : n 2 N}; b) if h : S1 ! S1 is a di↵eomorphism, then Lf = Lh�1�f �h.
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Why ‘length’ spectrum? (A digression, due to McMullen)

Bd =

(
f (z) = z

d�1Y

1

z � ai
1� aiz

: |ai | < 1

)

�! 8f 2 Bd , f |S1 is a degree d > 2 expanding

circle map

Hyperbolic surfaces X = (S , g) of genus d > 1

(with curvature K (g) = �1)

All periodic cycles with |C |f < log 2 are simple and

‘disjoint’

All closed geodesics with |�|g < log(3 + 2
p
2) are

simple and disjoint

9 simple cycle C with |C |f = O(d) 9 simple closed geodesic � with |�|g = O(log d)

If (Ci )
n
1 is a binding collection of cycles, then 8M,

the closure of

(
f 2 Bd :

nX

1

|Ci |f 6 M

)

is cpt in the moduli space of degree d rational maps

If (�i )n1 is a binding collection of closed geodesics,

then 8M,

(
X = (S , g) 2 Teich(S) :

nX

1

|�i |g 6 M

)

is compact in Teich(S)
11 / 17



Length spectral rigidity for expanding circle maps

Main Rigidity Question

Does (marked) length spectrum define the expanding circle map uniquely?

Theorem (Shub–Sullivan’85)

Let f , g be two C s -smooth (s > 2; s = 1; s = !) expanding circle maps of degree d > 2.

If MLf = MLg , then f = g up to a C s -smooth change of coordinates

(i.e., there exists a C s -smooth di↵eo  such that  �1 � f �  = g)

(Later was generalized to higher dimensions in the works of de la Llave, Marco, Moriyón, Gogolev,
Kalinin, Sadovskaya,...)

What about (unmarked) length spectrum?

12 / 17



Length spectral rigidity for expanding circle maps

Main Rigidity Question

Does (marked) length spectrum define the expanding circle map uniquely?

Theorem (Shub–Sullivan’85)

Let f , g be two C s -smooth (s > 2; s = 1; s = !) expanding circle maps of degree d > 2.

If MLf = MLg , then f = g up to a C s -smooth change of coordinates

(i.e., there exists a C s -smooth di↵eo  such that  �1 � f �  = g)

(Later was generalized to higher dimensions in the works of de la Llave, Marco, Moriyón, Gogolev,
Kalinin, Sadovskaya,...)

What about (unmarked) length spectrum?

12 / 17



Length spectral rigidity for expanding circle maps

Main Rigidity Question

Does (marked) length spectrum define the expanding circle map uniquely?

Theorem (Shub–Sullivan’85)

Let f , g be two C s -smooth (s > 2; s = 1; s = !) expanding circle maps of degree d > 2.

If MLf = MLg , then f = g up to a C s -smooth change of coordinates

(i.e., there exists a C s -smooth di↵eo  such that  �1 � f �  = g)

(Later was generalized to higher dimensions in the works of de la Llave, Marco, Moriyón, Gogolev,
Kalinin, Sadovskaya,...)

What about (unmarked) length spectrum?

12 / 17



Length spectral rigidity for expanding circle maps

Main Rigidity Question

Does (marked) length spectrum define the expanding circle map uniquely?

Theorem (Shub–Sullivan’85)

Let f , g be two C s -smooth (s > 2; s = 1; s = !) expanding circle maps of degree d > 2.

If MLf = MLg , then f = g up to a C s -smooth change of coordinates

(i.e., there exists a C s -smooth di↵eo  such that  �1 � f �  = g)

(Later was generalized to higher dimensions in the works of de la Llave, Marco, Moriyón, Gogolev,
Kalinin, Sadovskaya,...)

What about (unmarked) length spectrum?

12 / 17



Length spectral rigidity for expanding circle maps: negative result

Lf ,n = {|C |f : C 2 C, per(C ) = n} length spectrum for period n

Theorem (D.-Kaloshin’23)

Given " > 0, d 2 N, d > 2 and s > 1,
there exist C s -smooth non-linear expanding circle maps f , g : S1 ! S1 of degree d such that

Lf ,n = Lf ,n, 8n 2 N,
kf � gkCs 6 ",

but f and g are not conjugate by any orientation-preserving di↵eomorphism.

Are expanding circle maps locally rigid with respect to their length spectra?

13 / 17



Length spectral rigidity for expanding circle maps: negative result

Lf ,n = {|C |f : C 2 C, per(C ) = n} length spectrum for period n

Theorem (D.-Kaloshin’23)

Given " > 0, d 2 N, d > 2 and s > 1,
there exist C s -smooth non-linear expanding circle maps f , g : S1 ! S1 of degree d such that

Lf ,n = Lf ,n, 8n 2 N,
kf � gkCs 6 ",

but f and g are not conjugate by any orientation-preserving di↵eomorphism.

Are expanding circle maps locally rigid with respect to their length spectra?

13 / 17



Length spectral rigidity for expanding circle maps: positive result

Conjecture

Let g : S1 ! S1 be a C s -smooth, s > 1, expanding circle map of degree d > 2. Then there exists
" = "(g) such that: If f is another such map with

kf � gkCs 6 ", Lf ,n = Lg ,n 8n 2 N,

then f and g are C s -conjugate.

We establish this conjecture under some additional assumption:

The length spectrum Lf is �-sparse if

9� > 0,A > 0 such that
��|C |f � |C 0|f

�� > Ad��·n 8 cycles C 6= C 0
with per(C ) = per(C 0

) = n.

[McMullen’24] Smooth �-sparse maps exist. (A similar condition was studied for hyperbolic metrics by

Dolgopyat–Jakobson)

Theorem (D.-Kaloshin’24)

9�0 > 0 such that the conjecture above is true for all g with �-sparse spectrum with � < �0.
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�� > Ad��·n 8 cycles C 6= C 0
with per(C ) = per(C 0

) = n.

[McMullen’24] Smooth �-sparse maps exist. (A similar condition was studied for hyperbolic metrics by

Dolgopyat–Jakobson)

Theorem (D.-Kaloshin’24)

9�0 > 0 such that the conjecture above is true for all g with �-sparse spectrum with � < �0.

14 / 17



Negative result: idea of proof
.
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Positive result: idea of proof
.
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Thank you for your attention!



Surfaces and manifolds of negative curvature

S closed orientable surface of genue g : 2

g complete metric of negative curvature : k(g)o

(5
, g)

I-⑳X ·W
V closed geodesic on (5 .g) (can self-intersect)

How do we account for

IU1g length off in metric
g

all closed geodesic ?



Surfaces and manifolds of negative curvature

M closed orientable surface of genue g : 2

g complete metric of negative curvature : K(g) < o

X
Any simple (M

, g)curve

I 2---- L

Free homotopy--
L

-G↑ L⑳- ~ unique geodesic
-- -Wj &

↓

a

ga adh

V closed geodesic on (M .g) (can self-intersect)
How do we account forIU1g length off in metric

g
all closed geodesic ?

↓ (g) <0 = Any closed curve can be free homotoped to a unique geodenc

Similarly ,
if (M

, g) is a closed Riemanian manifold w/sec(g) o



Length Spectra for metrics

2 = set of free homotopy classed Dof closed curves on (M
, g)

F c = 2
,
U

,

is the unique
geodetic in the clan c

(M , g)

Eg = Elklg : ce2) length spectrum

MLg : c ++ 10
, 1 ,

ee2 marked length spectrum
g

Main Question :) Rigidity /
Does (macked) length spectrum define
the metric uniquely ?

&

(M
, gi) ,

(M , gc)
· MLg ,

= MLgc ?
up
to change of coord ,=> g, gz/

& Lg, = Lgz 7 9 : M + M differ st . 4
*

g=gn)



Why do we expect rigidity ? /morally
Check isodiametric

D
(M , g) dimM = 2

diam M = 1

181g = 10



Why do we expect rigidity ? /morally)
Check isodiametric

I

-

&

&

·mmmm- -- =
----

-

/

- j

(M , g) dire M = 2

diam M = 1

181g = 10100 e nidistribution of closed geodesics.a



Marked Length Spectral Rigidity (M(g ,

= MLgz= g ,

=g)
-

Conjecture (Burns-Katok) : dim M2
_
z

↳LachagetMLg, = Mlgz = g ,
=

gz

Wide open

Rigidity for geodesic

I Asampleery + instruments flows

Thm /Guillarmon - Le feuvre 19) (Local rigidity)
MLg

,

= MLgz + instruments

18
.

- 82(, + E
=> G

,=9



Length Spectral Rigidity /(
.

= (g# g .

= 92)
In general ,

the answer is No
: the counter examples

/Examples of Sanada , Vignersa are global

&

Quation (Saruach) : /Local Length Spectral Rigidity]
Conjecture

Are metrics of negative curvature locally rigid
writ .

their length spectra ?

L # (M
, g .
) , seag .

/07 2 = z (M , g 1 )

st
. if g2 /sea (g) o

Lg, = Lgz Y

19 . -821 > [
=> g. =92

Completely open
! Related to Laplace spectral rigidity question
Can you hear the shape of the drive



Moral 2-step reduction

A simplier question ?

Poincare
section Unstable

red

Geoderic flow Es Aneror differ -> Expand,ing
3-dim 2-dim map of

the circle

Any Wilkinson Cat Map X +2X
DiL

mod1

Groderich Periodic points $/2
& Periodic points



Expanding circle maps A simplest example

$ = R/2
of hyperbolic dya , syst

mienta
· A C-smooth

, U21 ,
circle endomorphism f : $-$' is

expanding iff(x) = 12 Axe $ ?

& flige is covering ,

and hence have a degree ,
&22

Examples:

Foixre dx mode (degree deN , ds2) x reex + sinix mode

·
degree 2 degree 3



Expanding circle maps : periodic cycles and length spectrum

Fact : Every degree d : 2 expanding circle map of is

topologically conjugate to Fd : x redy mod e

via some orientation - preserving homeomorphism G:

i
.
e. go fo = Fa

↓
p
to topologicalchangeof perdinateallexpandina b

maper of the

combinatoria
.



Expanding circle maps : periodic cycles and length spectrum

Fact : Every degree d : 2 expanding circle map of is

topologically conjugate to Fd : x redy mod e

via some orientation - preserving homeomorphism G:

i
.
e. go fo = Fa

↓
p
to topologicalchangeof perdinateallexpandina b

maper of the

combinatoria
.

Foi CC$' is a periodic cycle /periodn, if IC1 = n
,7

F(c) = C
,

F IC cyclic permutation
X = C has period n X= ,

P-
per (x) = per (C) = n

10

Example 6. ·R d = 2
,

n =

3
O 2

Exponentially dense



Expanding circle maps : periodic cycles and length spectrum
Fact : Every degree d : 2 expanding circle map of is

topologically conjugate to Fd : x &dy mode

via some orientation - preserving homeomorphism G :$
, 9(0) = 0

i
.
e. go fo = F

Up to topological changes of coordinates ,

all expanding
maps of the circle are the same !- have the same

combinatoria
.

Fact [Sullivan] ; 9 is quasisymmetric ,

and in particular Holder

However in general , cannot
be better than that Weierghtras

-

I nowhere differentiable !
Ther: If y is differentable at at least 1 point ,

then

Ret & is smooth /and hence Fi = f'l)
,

which need not

be the case)



Expanding circle maps : periodic cycles and length spectrum

Foi CC$' is a periodic cycle ~/period if IC1 = u

7 &
>

Fn(c) = C F IC cyclic permutation
3

X = C has period n X= ,
P-

&-
&Example - ·2 d = 2

,

n =32 - 1 = 7·
& ⑧6 ⑧ a 11 I

· 2



Expanding circle maps : periodic cycles and length spectrum

Foi CC$' is a periodic cycle
, /periodn,

if IC1 = n
,

Fn(c) = C # IC cyclic permutation
3

X -> C has perid n X= ,
P-

per (x) = per (C) = n
10

Example 6. ·R d = 2, n =

3
O 2

Exponentially dense

3 = the set of all periodic cycles of Fd

= 3) (2) is the corresponding periodic cycle for F
,

per (6(4) = n

/Cl : = [log +
'

(p(x) length of 2) e
12If

is the multiplier
F (fY)'(x) , x = y())

Xe C

2) = [1C1 : (e3] length spectrum logslog,
f --- 3

to Froh = gn S

M2 : Cre 1C1 marke length spectrum
* : Smooth conjugacies preserve multipliers => presereM2f = Ulifoh



Why ' length' spectrum ? (Digression) There are several motiv

C
.

McMullen showed the following analogy to lengths of
Simp le

closed geodesich
on hyperbolic surfaces

d
- 1

=

Be = ( F(z) = z1z
- a

: DeD(laik 13 Hyperbolic surfaces XSens do,1 1- aiz

-> Fift Be
, fligt is a degreed expanding circle map (k(g) = - 1)

All periodic cyclee w//Ck < log 2 All closed geodesic 10/ < log(3 +2)
f

are simple and 'disjointF are simple and disjoint

7 simple cycle w/ (C) = O(d) 7 simple closed geodesics with
2g (v) = 0 (legg)-

5

Let (Ci)" is a binding Let (Wil" Finding collection of
collection of cycles. # M closed curves

,
then M

[7-Blzkilf -
> M3 ↑

& XeTeichis)) [IV : 1* MY compact
apt in the moduli space o
rational maps

in Teich(5)



Jength spectral rigidity for expanding
circle

maps

Main Rigidity Question :

Doel (marked) length spectrum define
the expanding circle map uniquely ?

Them : /Shub - Sullivan's] Fig ("-smooth (51 ; U = 0 ; 0
= 2)

expanding degree & -2.

MLy = MLg = f = g (up to C
smooth change

of coordinates
,

i.e
., F4 &"smooth S

.

%
. 40 for =g)

Generalizations by de la Llave
,
Marco

, Moriyon , Gogoler , Kalinin , Sadovskaya .

tralWhat about unmarked length spec rigidity ?

In general , the answer is I no



Unmarked L
.

S
.

R.: Negative results

[fn = ((((((( + 2 , pr(a) = n] lengthspeca
2 = Isin

Ther (D-Kaloshin) :

Given Eso
,

deN
,
da2 and 871

7 fig : $ + $ C
J

- smooth non-linear expanding circle
maps

of degree o s
.

t.

In = Ig in

#neN

1) f-glle" E
but 7 andg are not smoothly sonjugate by

an

orientation - preserving
homeo

.



Unmarked L
.

S
.

R .: Negative results (idea of proof

Assume d = 2 (for simplicity)
Recall : For F2

, every X-C , per (2) 1 ,

can be coded

using Os and Is

S 5/72 * = (001)
,
E = (10)

X X I↳ 1 1
C = [001 - = [110] (all cychiactation)

-> by topological conjugacy ,
the same is true for any expanding circle map of

degree

Proof by example :

f(x) = 2x + 0
.

1 . sim2 (ix) g(x) = 2x - 0
.

1 sin2 (ix)

190013/ = 2
.
31 150003 ! = 2 15001 1g = 1

.91100031g = 2

1[1 10]) + = 1 .
9 1[0]1g = 2

. 31



Unmarked L
.

S
.

R .: Negative results (idea of proof

Assume d = 2 (for simplicity)
Recall : For F2

, every X-C , per (2) 1 ,

can be coded

using Os and Is

S 5/72 * = (001)
,
E = (10)

X X I↳ 1 1
C = [001 - = [110] (all cychiactation)

-> by topological conjugacy ,
the same is true for any expanding circle map of

degree

Proof by example :

f(x) = 2x + 0
.

1 . Sim2 (ix) g(x) = 2x - 0
.
1 sin (+x)

g(x) = - f(- x) g
= rofor

r(x) = - X

↓
fin

= Lg . n

In because smooth conjugace
Corient , preserving or not)
preserve length spectrum

120013/ = 2
.
31

T

150003 ! = 2
7

150011g = 1
. 9 15000]1g = 2

/[027 .

-2311[110]/- = 1 .
9

Not smoothly Conjugate by an orientation preserving homeo
.



Unmarked L
.

S
.

R .: Negative results (idea of proof
Assume d = 2 for simplicity

Pick - (in the clase described
,
non-lineart,

· IIf-Fello -E (small)

·
- f(x) = f( x)

Take w : X-X
and define gi

= ro for

In this
way f + g

11 f-gllu & E
C

& n

= Ign Un &

o can be chosen so that 7 C
,
I (w/ reversed coding) sit .

ICI + 1C) = 1
.

Then Idlg = d
, 151M .M f

*-



Unmarked L
.

S
.

R
.

: positive results

Question : Are expanding circle maps

locally rigid
w

.

r
.

t
.

their length spectra ?

Conjecture : Let
g

: $-

'

be a
C"-smooth

,
831 ,

expanding
circle map of degree d22

.

Then

72 = <(g) s
.

t
.

If If is anothe such map w/

11 f -gll,
= E

, It
,

n

= Ign ne
↓

then f and
g
are CV-conjugate



Unmarked L
.

S
.

R
.

: positive results

Question : Are expanding circle maps

locally rigid
w

.

r
.

t
.

their length spectra ?

Conjecture : Let
g

: $-

'

be a
C"-smooth

,
831 ,

expanding
circle map of degree d22

.

Then

72 = <(g) s
.

t
.

IfI is
another such map so that

11 f -gll,
= E

, It
,

n

= Ign ne
↓

then f and
g
are CV-conjugate

We establish this conjecture y some additional assumptions



Length spectral rigidity : main result

The length spectrum Ig is :

· B-sparse if Epso ,
Aso s

.

t.

1141-14) = Ad B" Vaycles C = C

per (C) = per (C) = n

[McMullen] &- sparse maps
exist

Similar condition was studied for hyperbolic metrics by Dolgopyat-Jakobson.
holds

Thu [D-K] E Boso s
.

t
.

the fellowing
-

r = 1
,

every (v1_

smooth
,

degree d : 2 expanding circle

map with B-sparse length spectrum , B2Bo,

is locally spectrally rigid.



Ideas of proof
· We want to conclude that ML = MLg if
& is sufficiently close to

g.

·
Cannot do it in one step :

marked length
MLfin : 1 1/2

,
por (C) =n spectrum up

to period n

Lemma : Fig
Peering 11f-gll, 1 Ex , 117-glly = &, %

Lin = Lg .
n

ne N

Length spectrum isB sparse

=> Mr
,
N

=

Myn For N =1-
B



Iterative recovering : Fix & (reference map)

Construct a sequence & hm) of C"-smooth
Ko

coordinate adjustments sit
. for

fir] = 200 %o be

1) FIk]-gllgr * So
,

11 tre-id Il
gris

Eo

11 FIR3-g1lg >Etk] , 11hr-idIIg < &[R]

1-k] <
Ko

Then 4
: his hi .... is a smooth conjugacy

2 = 2
. (g) is chosen so that this scheme starts to word



How to construct te ? (ideal

1)7 Per Extend the discrete map
t

te : Perf Per

g1 & · 6 & I Perso in [11 fasion using

Whitney extension /Check divideddifferences)
Why do we need this ? 17 Per? = Perf ,

then -g vanishes on

exponentially dense set of points S

then 11f-gl, A . 1
**

118-glg, X >1

-> can recover marking using sparsity



How to construct te ? (ideal

()
I Per Extend the discrete map

71% t

te : Perf Per

g1 oo6 I Perso in [11 fasion using

Whitney extension /Check divideddifferences)
Why do we need this ? 17 Per? = Perf ,

then -g vanishes on

exponentially dense set of points, then 11f-gl, A . 1
**

118-glg, X >1

-> can recover marking using sparsity
(2) Control on distortion of intervals ? -> Finite Liusic theorem

/quantitative solution to co-homological equation S
.

Kator's
, Gouzel-Lefeurre on

-
- 1

The [D-K . ) : Assume f, g preserve
Leb

,
measure on $'

-
and let

↑ be the d Holder conjugacy
between f and g. .

Then 7 & 1 with

the following property: if MLf
,

n

= MLg, then

If'(x) - g'((x)) : 1117-gl/ce



The Sno


