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Introduction

Joint work with Leandro Arosio, Università di Roma Tor Vergata

Our topic: Iteration of endomorphisms of Oka-Stein manifolds
and of automorphisms of Stein manifolds with the density property

• For a Stein manifold, the Oka property and the density
property naturally fit into dynamical arguments

• Aim: to reconcile two fundamental dichotomies in dynamics:
calm vs wild and attracted vs recurrent

Plan of the talk
1. The two dichotomies
2. Previous work that we build on
3. Our main results
4. Some sketches of proofs
5. Open questions
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Fatou vs Julia

Key features of the dynamics of an endomorphism f of a Stein
manifold X :

Fatou set Ff : points with a nbhd U such that every subsequence
of the sequence of iterates of f has a subsequence that converges
locally uniformly on U to a holomorphic map into X or to ∞X

For an automorphism f , set F+
f = Ff and F−

f = Ff −1

rne(f ) ⊂ Ff : open set of points p ∈ X for which there are nbhds U
of p in X and V of f in EndX or AutX and a compact subset K
of X such that g j(U) ⊂ K for all g ∈ V and j ≥ 0

Julia set: Jf = X \ Ff for an endomorphism
Jf = J+f ∩ J−f = X \ (F+

f ∪ F−
f ) for an automorphism
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Notions of recurrence

periodic ⇒ recurrent ⇒ non-wandering ⇒ chain-recurrent

p ∈ X is recurrent if there are nk → ∞ with f nk (p) → p (Poincaré)

p ∈ X is non-wandering if for every nbhd U of p, there is n ≥ 1
with f n(U) ∩ U ̸= ∅ (Birkhoff). Non-wandering set Ωf is closed

p ∈ X is chain-recurrent if for every continuous ϵ : X → (0,∞)
there is an ϵ-chain (pseudo-orbit) from p to p (Conley, Hurley)

x0, . . . , xn is an ϵ-chain if d(f (xj), xj+1) < ϵ(f (xj)), 0 ≤ j < n

Equivalence relation on chain-recurrent set Cf : p ∼ q if for all ϵ,
there is an ϵ-chain from p to q and an ϵ-chain from q to p

Chain-recurrence is the weakest reasonable notion of recurrence
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Conley theory

Conley’s first fundamental theorem for a continuous endomorphism
f of a locally compact second-countable metric space X (1978):

X \ Cf =
⋃

attractors A of f

B(A) \ A

Open subset U ⊂ X is absorbing if f (U) ⊂ U
Attractor determined by U: A =

⋂
n≥0

f n(U) (closed)

Basin of A relative to U: B(A,U) =
⋃
n≥0

f −n(U) ⊃ A (open)

Basin of A: B(A) =
⋃

U abs, det A

B(A,U) (open)

So Cf is closed, invariant under top conjugacy, independent of d

We want to relate the Conley and Fatou-Julia decompositions
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Closing lemmas, following Fornæss-Sibony

Poincaré’s question: Can the orbit of a recurrent point be closed
by an arbitrarily small perturbation of the system?

Fornæss-Sibony (1997) proved closing lemmas for endomorphisms
and automorphisms of Cn. We generalised them:

Arosio-L (2020) • The tame closing lemma holds for
automorphisms of a Stein manifold with the density property

• The closing lemma holds for endomorphisms of a homogeneous
Oka-Stein manifold

• The weak closing lemma holds for endomorphisms of an
Oka-Stein manifold

The tameness requirement for automorphisms was an obstacle that
we partly overcame by exploiting stable and unstable manifolds
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Theorem of Peters, Vivas, Wold (2008)

A generic volume-preserving automorphism of Cn, n ≥ 2, has a
hyperbolic fixed point whose stable manifold is dense in Cn

This is one of a number of results saying that “chaos” is generic

We generalised it to a Stein manifold with the volume density
property w.r.t. an exact holomorphic volume form (2019)

Let p be a saddle fixed point of an automorphism f of a Stein
manifold X . The stable manifold of f through p is

W s
f (p) = {x ∈ X : f j(x) → p as j → ∞}

W s
f (p) ⊂ J+f is an immersed submanifold, biholomorphic to Ck

p and W s
f (p) vary continuously with f
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Main results

Let f be a generic endomorphism of an Oka-Stein manifold X or a
generic automorphism of a Stein manifold with the density property

endomorphism automorphism

Ff = rne(f ) F+
f = rne(f )

Ωf = Jf ∪ att(f ) Ωf = Jf ∪ att(f ) ∪ rep(f )

Jf = sad(f ) (dimX ≥ 2) J∗f = sad(f ) ⊂ Jf is the closure of the
set of transverse homoclinic points

f is chaotic on Jf J∗f is the largest forward invariant
subset of X on which f is chaotic

Open question for generic autos (to do with tameness): Is J∗f = Jf ?



Main results

Let f be a generic endomorphism of an Oka-Stein manifold X or a
generic automorphism of a Stein manifold with the density property

endomorphism automorphism

Ff = rne(f ) F+
f = rne(f )

Ωf = Jf ∪ att(f ) Ωf = Jf ∪ att(f ) ∪ rep(f )

Jf = sad(f ) (dimX ≥ 2) J∗f = sad(f ) ⊂ Jf is the closure of the
set of transverse homoclinic points

f is chaotic on Jf J∗f is the largest forward invariant
subset of X on which f is chaotic

Open question for generic autos (to do with tameness): Is J∗f = Jf ?



Main results

Let f be a generic endomorphism of an Oka-Stein manifold X or a
generic automorphism of a Stein manifold with the density property

endomorphism automorphism

Ff = rne(f ) F+
f = rne(f )

Ωf = Jf ∪ att(f ) Ωf = Jf ∪ att(f ) ∪ rep(f )

Jf = sad(f ) (dimX ≥ 2) J∗f = sad(f ) ⊂ Jf is the closure of the
set of transverse homoclinic points

f is chaotic on Jf J∗f is the largest forward invariant
subset of X on which f is chaotic

Open question for generic autos (to do with tameness): Is J∗f = Jf ?



Holomorphic Conley theory

Let f be a generic endomorphism of an Oka-Stein manifold X or a
generic automorphism of a Stein manifold with the density property

X \ Cf is the union of the proper basins of attraction of the
attracting (and, for an automorphism, the repelling) cycles of f

Cf is partitioned into the following chain-recurrence classes:

• The attracting cycles and, for an auto, the repelling cycles

• Jf ∪ “other stuff”(that we describe precisely)

There is no “other stuff” iff Cf = Ωf

For a generic C 1 diffeomorphism f of a compact smooth manifold,
Cf = Ωf (Bonatti-Crovisier 2004). Relies on a connecting lemma
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Additional results

The Kupka-Smale theorem holds for both endos and autos
(proved by Buzzard (1998) for automorphisms of Cn, n ≥ 2)

1-dimensional result, using Baker (1975), but not the classification
of Fatou components of transcendental entire functions:

For generic f ∈ EndC, a point in Ff is attracted to an attracting
cycle or lies in a dynamically bounded wandering domain
Every Fatou component of f is a disc
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Sample proof sketch

Our key technical result for a Stein X with the density property:

Generic f ∈ AutX has a saddle fixed point q such that

X \ rne(f ) = W s
f (q) and X \ rne(f −1) = W u

f (q)

Hence

Jf = X \
(
rne(f ) ∪ rne(f −1)

)
= W s

f (q) ∩W u
f (q)

We would really like this to equal W s
f (q) ∩W u

f (q)!

Proof that Ωf = Jf ∪ att(f ) ∪ rep(f ):

Key technical result and lambda lemma give Jf ⊂ Ωf

Conversely, let x ∈ Ωf \ Jf . By key technical result, x ∈ rne(f ) or
x ∈ rne(f −1). If x ∈ rne(f ), then x ∈ att(f ) by closing lemma.
Similarly, if x ∈ rne(f −1), then x ∈ att(f −1) = rep(f )
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Open questions

For endomorphisms Are all Fatou components of a generic
endomorphism f pre-recurrent? Equivalently (not trivially), is the
Fatou set of f the union of the basins of attraction?

Weak closing lemma for chain-recurrent points ⇒ yes

If yes, then periodic points are dense in Cf = Ωf

However, we have proved that endomorphisms with a
non-pre-recurrent Fatou component are dense in EndX !

For automorphisms If a certain strong closing lemma holds
and if a generic auto has no non-recurrent Fatou components,
then for a generic auto f , Jf = J∗f is the complement of the union
of the basins of attraction of the attracting and repelling cycles of f
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