Generic dynamics on Oka-Stein manifolds and Stein manifolds with the density property

Finnur Lárusson

University of Adelaide

June 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Joint work with Leandro Arosio, Università di Roma Tor Vergata

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Joint work with Leandro Arosio, Università di Roma Tor Vergata

Our topic: Iteration of endomorphisms of Oka-Stein manifolds and of automorphisms of Stein manifolds with the density property

Joint work with Leandro Arosio, Università di Roma Tor Vergata

Our topic: Iteration of endomorphisms of Oka-Stein manifolds and of automorphisms of Stein manifolds with the density property

- For a Stein manifold, the Oka property and the density property naturally fit into dynamical arguments
- Aim: to reconcile two fundamental dichotomies in dynamics: calm vs wild and attracted vs recurrent

Joint work with Leandro Arosio, Università di Roma Tor Vergata

Our topic: Iteration of endomorphisms of Oka-Stein manifolds and of automorphisms of Stein manifolds with the density property

- For a Stein manifold, the Oka property and the density property naturally fit into dynamical arguments
- Aim: to reconcile two fundamental dichotomies in dynamics: calm vs wild and attracted vs recurrent

Plan of the talk

- 1. The two dichotomies
- 2. Previous work that we build on
- 3. Our main results
- 4. Some sketches of proofs
- 5. Open questions

Key features of the dynamics of an endomorphism f of a Stein manifold X:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Key features of the dynamics of an endomorphism f of a Stein manifold X:

Fatou set F_f : points with a nbhd U such that every subsequence of the sequence of iterates of f has a subsequence that converges locally uniformly on U to a holomorphic map into X or to ∞_X

For an automorphism f, set $F_f^+ = F_f$ and $F_f^- = F_{f^{-1}}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Key features of the dynamics of an endomorphism f of a Stein manifold X:

Fatou set F_f : points with a nbhd U such that every subsequence of the sequence of iterates of f has a subsequence that converges locally uniformly on U to a holomorphic map into X or to ∞_X For an automorphism f, set $F_f^+ = F_f$ and $F_f^- = F_{f^{-1}}$ $\operatorname{rne}(f) \subset F_f$: open set of points $p \in X$ for which there are nbhds Uof p in X and V of f in End X or Aut X and a compact subset Kof X such that $g^j(U) \subset K$ for all $g \in V$ and $j \ge 0$

Key features of the dynamics of an endomorphism f of a Stein manifold X:

Fatou set F_f : points with a nbhd U such that every subsequence of the sequence of iterates of f has a subsequence that converges locally uniformly on U to a holomorphic map into X or to ∞_X

For an automorphism f, set $F_f^+ = F_f$ and $F_f^- = F_{f^{-1}}$

rne $(f) \subset F_f$: open set of points $p \in X$ for which there are nbhds Uof p in X and V of f in End X or Aut X and a compact subset Kof X such that $g^j(U) \subset K$ for all $g \in V$ and $j \ge 0$

Julia set: $J_f = X \setminus F_f$ for an endomorphism $J_f = J_f^+ \cap J_f^- = X \setminus (F_f^+ \cup F_f^-)$ for an automorphism

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 $\mathsf{periodic} \Rightarrow \mathsf{recurrent} \Rightarrow \mathsf{non-wandering} \Rightarrow \mathsf{chain-recurrent}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathsf{periodic} \Rightarrow \mathsf{recurrent} \Rightarrow \mathsf{non-wandering} \Rightarrow \mathsf{chain-recurrent}$

 $p \in X$ is recurrent if there are $n_k \to \infty$ with $f^{n_k}(p) \to p$ (Poincaré)

 $\mathsf{periodic} \Rightarrow \mathsf{recurrent} \Rightarrow \mathsf{non-wandering} \Rightarrow \mathsf{chain-recurrent}$

 $p \in X$ is recurrent if there are $n_k \to \infty$ with $f^{n_k}(p) \to p$ (Poincaré)

 $p \in X$ is non-wandering if for every nbhd U of p, there is $n \ge 1$ with $f^n(U) \cap U \neq \emptyset$ (Birkhoff). Non-wandering set Ω_f is closed

 $\mathsf{periodic} \Rightarrow \mathsf{recurrent} \Rightarrow \mathsf{non-wandering} \Rightarrow \mathsf{chain-recurrent}$

 $p \in X$ is recurrent if there are $n_k \to \infty$ with $f^{n_k}(p) \to p$ (Poincaré)

 $p \in X$ is non-wandering if for every nbhd U of p, there is $n \ge 1$ with $f^n(U) \cap U \neq \emptyset$ (Birkhoff). Non-wandering set Ω_f is closed

 $p \in X$ is chain-recurrent if for every continuous $\epsilon : X \to (0, \infty)$ there is an ϵ -chain (pseudo-orbit) from p to p (Conley, Hurley)

 x_0, \ldots, x_n is an ϵ -chain if $d(f(x_j), x_{j+1}) < \epsilon(f(x_j)), \ 0 \le j < n$

- ロ ト - 4 回 ト - 4 □

 $\mathsf{periodic} \Rightarrow \mathsf{recurrent} \Rightarrow \mathsf{non-wandering} \Rightarrow \mathsf{chain-recurrent}$

 $p \in X$ is recurrent if there are $n_k \to \infty$ with $f^{n_k}(p) \to p$ (Poincaré)

 $p \in X$ is non-wandering if for every nbhd U of p, there is $n \ge 1$ with $f^n(U) \cap U \neq \emptyset$ (Birkhoff). Non-wandering set Ω_f is closed

 $p \in X$ is chain-recurrent if for every continuous $\epsilon : X \to (0, \infty)$ there is an ϵ -chain (pseudo-orbit) from p to p (Conley, Hurley)

 x_0, \ldots, x_n is an ϵ -chain if $d(f(x_j), x_{j+1}) < \epsilon(f(x_j)), \ 0 \le j < n$

Equivalence relation on chain-recurrent set C_f : $p \sim q$ if for all ϵ , there is an ϵ -chain from p to q and an ϵ -chain from q to p

 $\mathsf{periodic} \Rightarrow \mathsf{recurrent} \Rightarrow \mathsf{non-wandering} \Rightarrow \mathsf{chain-recurrent}$

 $p \in X$ is recurrent if there are $n_k \to \infty$ with $f^{n_k}(p) \to p$ (Poincaré)

 $p \in X$ is non-wandering if for every nbhd U of p, there is $n \ge 1$ with $f^n(U) \cap U \neq \emptyset$ (Birkhoff). Non-wandering set Ω_f is closed

 $p \in X$ is chain-recurrent if for every continuous $\epsilon : X \to (0, \infty)$ there is an ϵ -chain (pseudo-orbit) from p to p (Conley, Hurley)

 x_0, \ldots, x_n is an ϵ -chain if $d(f(x_j), x_{j+1}) < \epsilon(f(x_j)), \ 0 \le j < n$

Equivalence relation on chain-recurrent set C_f : $p \sim q$ if for all ϵ , there is an ϵ -chain from p to q and an ϵ -chain from q to pChain-recurrence is the weakest reasonable notion of recurrence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conley's first fundamental theorem for a continuous endomorphism f of a locally compact second-countable metric space X (1978):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conley's first fundamental theorem for a continuous endomorphism f of a locally compact second-countable metric space X (1978):

$$X \setminus C_f = \bigcup_{\text{attractors } A \text{ of } f} B(A) \setminus A$$

A D N A 目 N A E N A E N A B N A C N

Conley's first fundamental theorem for a continuous endomorphism f of a locally compact second-countable metric space X (1978):

$$X \setminus C_f = \bigcup_{\text{attractors } A \text{ of } f} B(A) \setminus A$$

Open subset $U \subset X$ is absorbing if $\overline{f(U)} \subset U$ Attractor determined by $U: A = \bigcap_{n \ge 0} \overline{f^n(U)}$ (closed) Basin of A relative to U: $B(A, U) = \bigcup_{n \ge 0} f^{-n}(U) \supset A$ (open) Basin of A: $B(A) = \bigcup_{\substack{U \text{ abs, det } A}} B(A, U)$ (open)

A D N A 目 N A E N A E N A B N A C N

Conley's first fundamental theorem for a continuous endomorphism f of a locally compact second-countable metric space X (1978):

$$X \setminus C_f = \bigcup_{\text{attractors } A \text{ of } f} B(A) \setminus A$$

Open subset $U \subset X$ is absorbing if $\overline{f(U)} \subset U$ Attractor determined by $U: A = \bigcap_{n \ge 0} \overline{f^n(U)}$ (closed) Basin of A relative to U: $B(A, U) = \bigcup_{n \ge 0} f^{-n}(U) \supset A$ (open) Basin of A: $B(A) = \bigcup_{\substack{U \text{ abs, det } A}} B(A, U)$ (open)

So C_f is closed, invariant under top conjugacy, independent of d

Conley's first fundamental theorem for a continuous endomorphism f of a locally compact second-countable metric space X (1978):

$$X \setminus C_f = \bigcup_{\text{attractors } A \text{ of } f} B(A) \setminus A$$

Open subset $U \subset X$ is absorbing if $\overline{f(U)} \subset U$ Attractor determined by $U: A = \bigcap_{n \ge 0} \overline{f^n(U)}$ (closed) Basin of A relative to U: $B(A, U) = \bigcup_{n \ge 0} f^{-n}(U) \supset A$ (open) Basin of A: $B(A) = \bigcup_{\substack{U \text{ abs, det } A}} B(A, U)$ (open)

So C_f is closed, invariant under top conjugacy, independent of dWe want to relate the Conley and Fatou-Julia decompositions

Poincaré's question: Can the orbit of a recurrent point be closed by an arbitrarily small perturbation of the system?

Poincaré's question: Can the orbit of a recurrent point be closed by an arbitrarily small perturbation of the system?

Fornæss-Sibony (1997) proved closing lemmas for endomorphisms and automorphisms of \mathbb{C}^n . We generalised them:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Poincaré's question: Can the orbit of a recurrent point be closed by an arbitrarily small perturbation of the system?

Fornæss-Sibony (1997) proved closing lemmas for endomorphisms and automorphisms of \mathbb{C}^n . We generalised them:

Arosio-L (2020) • The tame closing lemma holds for automorphisms of a Stein manifold with the density property

• The closing lemma holds for endomorphisms of a homogeneous Oka-Stein manifold

• The weak closing lemma holds for endomorphisms of an Oka-Stein manifold

Poincaré's question: Can the orbit of a recurrent point be closed by an arbitrarily small perturbation of the system?

Fornæss-Sibony (1997) proved closing lemmas for endomorphisms and automorphisms of \mathbb{C}^n . We generalised them:

Arosio-L (2020) • The tame closing lemma holds for automorphisms of a Stein manifold with the density property

• The closing lemma holds for endomorphisms of a homogeneous Oka-Stein manifold

• The weak closing lemma holds for endomorphisms of an Oka-Stein manifold

The tameness requirement for automorphisms was an obstacle that we partly overcame by exploiting stable and unstable manifolds

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A generic volume-preserving automorphism of \mathbb{C}^n , $n \ge 2$, has a hyperbolic fixed point whose stable manifold is dense in \mathbb{C}^n

A generic volume-preserving automorphism of \mathbb{C}^n , $n \ge 2$, has a hyperbolic fixed point whose stable manifold is dense in \mathbb{C}^n

This is one of a number of results saying that "chaos" is generic We generalised it to a Stein manifold with the volume density property w.r.t. an exact holomorphic volume form (2019)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A generic volume-preserving automorphism of \mathbb{C}^n , $n \ge 2$, has a hyperbolic fixed point whose stable manifold is dense in \mathbb{C}^n

This is one of a number of results saying that "chaos" is generic We generalised it to a Stein manifold with the volume density property w.r.t. an exact holomorphic volume form (2019)

Let p be a saddle fixed point of an automorphism f of a Stein manifold X. The stable manifold of f through p is

$$W^s_f(p) = \{x \in X : f^j(x) \to p \text{ as } j \to \infty\}$$

 $W_f^s(p) \subset J_f^+$ is an immersed submanifold, biholomorphic to \mathbb{C}^k p and $W_f^s(p)$ vary continuously with f

Main results

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

Main results

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

endomorphism	automorphism
$F_f = rne(f)$	$F_f^+ = \operatorname{rne}(f)$
$\Omega_f = J_f \cup att(f)$	$\Omega_f = J_f \cup att(f) \cup rep(f)$
$J_f = \overline{\mathrm{sad}(f)} \ (\dim X \ge 2)$	$J_f^* = \overline{\operatorname{sad}(f)} \subset J_f$ is the closure of the set of transverse homoclinic points
f is chaotic on J_f	J_f^* is the largest forward invariant subset of X on which f is chaotic

Main results

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

endomorphism	automorphism
$F_f = rne(f)$	$F_f^+ = \operatorname{rne}(f)$
$\Omega_f = J_f \cup att(f)$	$\Omega_f = J_f \cup att(f) \cup rep(f)$
$J_f = \overline{\mathrm{sad}(f)} \ (\dim X \ge 2)$	$J_f^* = \overline{\operatorname{sad}(f)} \subset J_f$ is the closure of the set of transverse homoclinic points
f is chaotic on J_f	J_f^* is the largest forward invariant subset of X on which f is chaotic

Open question for generic autos (to do with tameness): Is $J_f^* = J_f$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

 $X \setminus C_f$ is the union of the proper basins of attraction of the attracting (and, for an automorphism, the repelling) cycles of f

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

 $X \setminus C_f$ is the union of the proper basins of attraction of the attracting (and, for an automorphism, the repelling) cycles of f

 C_f is partitioned into the following chain-recurrence classes:

- The attracting cycles and, for an auto, the repelling cycles
- $J_f \cup$ "other stuff" (that we describe precisely)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

 $X \setminus C_f$ is the union of the proper basins of attraction of the attracting (and, for an automorphism, the repelling) cycles of f

 C_f is partitioned into the following chain-recurrence classes:

- The attracting cycles and, for an auto, the repelling cycles
- $J_f \cup$ "other stuff" (that we describe precisely)

There is no "other stuff" iff $C_f = \Omega_f$

Let f be a generic endomorphism of an Oka-Stein manifold X or a generic automorphism of a Stein manifold with the density property

 $X \setminus C_f$ is the union of the proper basins of attraction of the attracting (and, for an automorphism, the repelling) cycles of f

 C_f is partitioned into the following chain-recurrence classes:

- The attracting cycles and, for an auto, the repelling cycles
- $J_f \cup$ "other stuff" (that we describe precisely)

There is no "other stuff" iff $C_f = \Omega_f$

For a generic C^1 diffeomorphism f of a compact smooth manifold, $C_f = \Omega_f$ (Bonatti-Crovisier 2004). Relies on a *connecting lemma*

Additional results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Kupka-Smale theorem holds for both endos and autos (proved by Buzzard (1998) for automorphisms of \mathbb{C}^n , $n \ge 2$)

Additional results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Kupka-Smale theorem holds for both endos and autos (proved by Buzzard (1998) for automorphisms of \mathbb{C}^n , $n \ge 2$)

1-dimensional result, using Baker (1975), but not the classification of Fatou components of transcendental entire functions:

For generic $f \in \text{End } \mathbb{C}$, a point in F_f is attracted to an attracting cycle or lies in a dynamically bounded wandering domain Every Fatou component of f is a disc

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Our key technical result for a Stein X with the density property:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our key technical result for a Stein X with the density property: Generic $f \in Aut X$ has a saddle fixed point q such that

$$X \setminus \operatorname{rne}(f) = \overline{W_f^s(q)}$$
 and $X \setminus \operatorname{rne}(f^{-1}) = \overline{W_f^u(q)}$
Hence

$$J_f = X \setminus \left(\operatorname{rne}(f) \cup \operatorname{rne}(f^{-1}) \right) = \overline{W_f^s(q)} \cap \overline{W_f^u(q)}$$

Our key technical result for a Stein X with the density property: Generic $f \in Aut X$ has a saddle fixed point q such that

 $X\setminus \operatorname{rne}(f)=\overline{W^s_f(q)}$ and $X\setminus \operatorname{rne}(f^{-1})=\overline{W^u_f(q)}$ Hence

$$J_f = X \setminus \left(\operatorname{rne}(f) \cup \operatorname{rne}(f^{-1}) \right) = \overline{W^s_f(q)} \cap \overline{W^u_f(q)}$$

We would really like this to equal $\overline{W_f^s(q) \cap W_f^u(q)}!$

Our key technical result for a Stein X with the density property: Generic $f \in Aut X$ has a saddle fixed point q such that

 $X\setminus \operatorname{rne}(f)=\overline{W^s_f(q)}$ and $X\setminus \operatorname{rne}(f^{-1})=\overline{W^u_f(q)}$ Hence

$$J_f = X \setminus \left(\operatorname{rne}(f) \cup \operatorname{rne}(f^{-1}) \right) = \overline{W^s_f(q)} \cap \overline{W^u_f(q)}$$

We would really like this to equal $\overline{W_f^s(q) \cap W_f^u(q)}!$

Proof that $\Omega_f = J_f \cup \operatorname{att}(f) \cup \operatorname{rep}(f)$:

Key technical result and lambda lemma give $J_f \subset \Omega_f$

Our key technical result for a Stein X with the density property: Generic $f \in Aut X$ has a saddle fixed point q such that

 $X\setminus \operatorname{rne}(f)=\overline{W^s_f(q)}$ and $X\setminus \operatorname{rne}(f^{-1})=\overline{W^u_f(q)}$ Hence

$$J_f = X \setminus \left(\mathsf{rne}(f) \cup \mathsf{rne}(f^{-1}) \right) = \overline{W^s_f(q)} \cap \overline{W^u_f(q)}$$

We would really like this to equal $\overline{W_f^s(q) \cap W_f^u(q)}!$

Proof that $\Omega_f = J_f \cup \operatorname{att}(f) \cup \operatorname{rep}(f)$:

Key technical result and lambda lemma give $J_f \subset \Omega_f$

Conversely, let $x \in \Omega_f \setminus J_f$. By key technical result, $x \in \text{rne}(f)$ or $x \in \text{rne}(f^{-1})$. If $x \in \text{rne}(f)$, then $x \in \text{att}(f)$ by closing lemma. Similarly, if $x \in \text{rne}(f^{-1})$, then $x \in \text{att}(f^{-1}) = \text{rep}(f)$

Open questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **For endomorphisms** Are all Fatou components of a generic endomorphism f pre-recurrent? Equivalently (not trivially), is the Fatou set of f the union of the basins of attraction? Weak closing lemma for chain-recurrent points \Rightarrow yes
- If yes, then periodic points are dense in $C_f = \Omega_f$

Open questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For endomorphisms Are all Fatou components of a generic endomorphism *f* pre-recurrent? Equivalently (not trivially), is the Fatou set of *f* the union of the basins of attraction? Weak closing lemma for chain-recurrent points \Rightarrow yes If yes, then periodic points are dense in $C_f = \Omega_f$ However, we have proved that endomorphisms with a non-pre-recurrent Fatou component are dense in End X!

Open questions

For endomorphisms Are all Fatou components of a generic endomorphism *f* pre-recurrent? Equivalently (not trivially), is the Fatou set of *f* the union of the basins of attraction? Weak closing lemma for chain-recurrent points \Rightarrow yes If yes, then periodic points are dense in $C_f = \Omega_f$ However, we have proved that endomorphisms with a non-pre-recurrent Fatou component are dense in End X!

For automorphisms If a certain strong closing lemma holds and if a generic auto has no non-recurrent Fatou components, then for a generic auto f, $J_f = J_f^*$ is the complement of the union of the basins of attraction of the attracting and repelling cycles of f