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Any matrix A ∈ SLn(C) is a product of elementary matrices of the
form

Id + aijEij =


1 0

. . .
0 aij 1 0
...

...
. . .

0 0 1


or equivalently a product of upper and lower triangular unipotent
matrices.

A =

(
1 0
G1 1

)(
1 G2
0 1

)
. . .

(
1 GN

0 1

)
,where Gi ∈ Cn(n−1)/2
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Proof: Gauss elimination, it requires:
1.) Adding multiples of a row to another row
2.) Interchange of rows :(

0 −1
1 0

)
=

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
3.) multiplication of rows by constants:(

a 0
0 a−1

)
=

(
1 0
−a−1 1

)(
1 a− 1
0 1

)(
1 0
1 1

)(
1 a−1 − 1
0 1

)
(Whitehead lemma)
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What if the matrix A depends on a parameter x (continuously,
polynomially, holomorphically)? Can the upper and lower triangular
unipotent matrices be chosen depending well on the parameter?

A(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GN(x)
0 1

)
Now the Gi are maps Gi : X → Cn(n−1)/2.
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Let R = {f : X → C} denote the ring of continuous/
polynomial /holomorphic functions on a topological space/
algebraic variety / complex space X .
In the language of K-theory we are asking about factorization
of SLn(R) (special linear group over the ring R) as product of
elementary matrices over that ring.
Given m ≥ 2 and an associative, commutative, unital ring R ,
let En(R) denote the set of those n × n matrices which are
representable as products of unipotent matrices with entries in
R . We ask about the relation of En(R) and SLn(R).
The obstruction to this factorization is called the special
K1-group of the ring R , (more precise the n-th, where n is the
size of the matrices).
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Algebraic results

SLn(C[z1]) factorizes, more generally for Euclidean rings R
SLn(R) factorizes, however there is no universal bound on the
number of factors! van der Kallen, W., SL3(C[X ]) does not have bounded word length,

Algebraic K -theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357–361, 1982

SL2(C[z1, z2, . . . , zn]) does not factorize for n ≥ 2
counterexample found by Cohn (1966)(

1− z1z2 z2
1

−z2
2 1 + z1z2

)
∈ SL2(C[z1, z2])

P. M. Cohn, On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math. (1966),

no. 30, 5–53

SLn(C[z1, z2, . . . , zm]) does factorize for all m and all n ≥ 3
A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk

SSSR Ser. Mat. 41 (1977), no. 2, 235–252, 477
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Symplectic results
Sp2n(Z[z1, z2, . . . , zm]) does factorize for all m and all n ≥ 2
Grunewald, Fritz; Mennicke, Jens; Vaserstein, Leonid On symplectic groups over polynomial

rings. Math. Z. 206 (1991)

Sp2n(C[z1, z2, . . . , zm]) does factorize for all m and all n ≥ 2
Kopeiko, V. I. On the structure of the symplectic group of polynomial rings over regular rings.

(Russian) Fundam. Prikl. Mat. 1 (1995), no. 2, 545–548

Kopeiko, V. I. Stabilization of symplectic groups over a ring of polynomials. (Russian) Mat. Sb.

(N.S.) 106(148) (1978), no. 1, 94–107

Sp0
2n(O(X )) factorizes on a Stein space X

Ivarsson, B.; Kutzschebauch, F.; Løw, Erik Holomorphic factorization of mappings into Sp4(C),
Anal. PDE, 16, 2023, 1, 233–277
Schott, J. Holomorphic factorization of mappings into Sp2n(C), arXiv:2207.05389, to appear in J.
Eur. Math. Soc.
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Topological results

SLn(Cont(R3)) factorizes
W. Thurston and L. Vaserstein, On K1-theory of the Euclidean space, Topology Appl. 23 (1986),

no. 2, 145–148

A general observation:

At(x) =

(
1 0

tG1(x) 1

)(
1 tG2(x)
0 1

)
. . .

(
1 tGN(x)
0 1

)
t ∈ [0, 1]

gives a homotopy of the map A : X → SLm(C) to a constant
map. Such maps are called null-homotopic. If a map
factorizes, then it is necessarily null-homotopic.
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Continuous results

Theorem (Vaserstein)

For any natural number n and an integer d ≥ 0 there is a natural
number K such that for any finite dimensional normal topological
space X of dimension d and null-homotopic continuous mapping
A : X → SLn(C) the mapping can be written as a finite product of
no more than K = K (d , n) unipotent matrices. That is, one can
find continuous mappings Gl : X → Cn(n−1)/2, 1 ≤ l ≤ K such that

A(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GK (x)
0 1

)
for every x ∈ X .

L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations,

Proc. Amer. Math. Soc. 103 (1988), no. 3, 741–746
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Theorem (Hultgren, Wold)

Let X be a locally finite finite dimensional CW-complex and let
π : V → X be a real (resp. complex) topological vector bundle of
rank n. Assume that n ≥ 3 (resp.n ≥ 2) and let S be a
(continuous) nullhomotopic special vector bundle automorphism of
V . Then there exist unipotent vector bundle automorphisms
E1, ...,EN such that S = EN ◦ · · · ◦ E1.

J. Hultgren, E.F. Wold, Unipotent Factorization of Vector Bundle Automorphisms. Int. J. of Math. Vol.

32, No. 03, 2150013 (2021)
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The Gromov-Vaserstein problem for SLn

Theorem
Let X be a finite dimensional reduced Stein space and
A : X → SLn(C) be a holomorphic mapping that is null-homotopic.
Then there exist a natural number K = K (dimX , n) and
holomorphic mappings G1, . . . ,GK : X → Cn(n−1)/2 such that A
can be written as a product of upper and lower diagonal unipotent
matrices

A(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GK (x)
0 1

)
for every x ∈ X .
Ivarsson, B., Kutzschebauch, F. Holomorphic factorization of mappings into SLn(C), Ann. of Math. (2)
175 (2012), no. 1, 45-69
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The holomorphic vector bundle case

Theorem (Ionita, K.)

Let X be a Stein space and E → X a rank 2 holomorphic vector
bundle over X . Then F ∈ SAut(E ) is a (finite) product of
unipotent holomorphic automorphisms ui ∈ U(E ), i = 1, 2, . . . ,K ,

F (x) = u1(x) · u2(x) · . . . · uK (x)

if and only if F is null-homotopic.
Ionita, G.; Kutzschebauch, F. Holomorphic Factorization of vector bundle automorphisms.
arXiv:2305.04350 2023
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construction of the unipotent automorphisms

s1, s2 ∈ Γhol(E ,X ) linear independent outside a proper analytic
subset A of X
trivialization of E , X = ∪∞i=1Ui with a cocycle of transition
functions fi ,j : Ui ,j → GL2(C)

s i1, s
i
2 : Ui → C2 - local representations of the sections

A ∩ Ui = {x ∈ Ui : det(s i1(x), s i2(x)) = 0}

αi ,j := det(fi ,j) = det(s j1(x), s j2(x))(det(s i1(x), s i2(x)))−1 :
Ui ,j → C∗ defines a line bundle L

any global holomorphic section in L−1 gives a holomorphic
function f ∈ O(X ) with the property that on Ui , the quotient
f (x)(det(s i1(x), s i2(x)))−1 is holomorphic
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define a global nilpotent holomorphic endomorphism N− by

N−(s1(x)) = f (x)s2(x) andN−(s2(x)) = 0

in points x where s1(x), s2(x) form a basis of Ex ,i.e., outside A.
It extends to the points in A, since

s i1(x) =

(
a(x)
c(x)

)
and s i2(x) =

(
b(x)
d(x)

)
,

then in the standard basis e1, e2 ∈ C2 the matrix of N− is given by(
a(x) b(x)
c(x) d(x)

)
·
(

0 0
f (x) 0

)
·
(

a(x) b(x)
c(x) d(x)

)−1

=

=
f (x)

det(s i1(x), s i2(x))

(
a(x) b(x)
c(x) d(x)

)
·
(

0 0
1 0

)
·
(

d(x) −b(x)
−c(x) a(x)

)
.
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Proposition

Let π : E → X be a holomorphic vector bundle of rank 2 over a
Stein space X of dimension n. Then there exist n + 1 pairs of
nilpotent holomorphic automorphism N+

i ,N
−
i in End(E ),

i = 1, 2, . . . , n + 1 together with (non-zero) holomorphic functions
fi ∈ O(X ), without common zeros, with the property that on each
of the sets X \ {fi = 0} the bundle E is trivial and locally the pair
(N+

i ,N
−
i ) is holomorphically conjugated on X \ {fi = 0} to the

"standard" pair (
0 1
0 0

)
,

(
0 0
1 0

)
.
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Theorem
Let X be a Stein space and fi ∈ O(X ), i = 1, 2, . . . ,m finitely
many holomorphic functions without common zeros. Then every
null-homotopic special holomorphic vectorbundle automorphism
F ∈ SAut(E ) can be written as a product

F =
m∏
i=1

Gi ,

where each of the Gi ∈ SAut(E ) is a special holomorphic
vectorbundle automorphism, whose difference to the identity is
divisible by f 4

i . Moreover, the Gi ’s are strongly null-homotopic, i.e.,
they are null-homotopic such that on {fi = 0} the homotopy
(Gi )t = Id, ∀t ∈ [0, 1].

Frank Kutzschebauch, Universität Bern
Holomorphic factorization of vector bundle automorphisms



Linear Algebra
History of the factorization problem

The main results
What is used in the proof

Denote Ai := {fi = 0} for any U open in X define

Fi (U) := {α ∈ SAuthol(E |U) : fi | (α− Id)},

and similarily sheaves Gi by

Gi (U) := {α ∈ SAutcont(E |U) : α|U∩Ai
= Id)}.

Φ(U) := {(α1, α2, . . . αm) ∈ F1(U)×· · ·×Fm(U) : α1◦α2◦. . .◦αm = f |U},

and similarily the sheaf Ψ as

Ψ(U) := {(α1, α2, . . . αm) ∈ G1(U)×· · ·×Gm(U) : α1◦α2◦. . .◦αm = f |U}.
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The (fibrewise) map SAut(E )m−1 × SAut(E )m → SAut(E )m given
by

(β1(x), β2(x), . . . , βm−1(x))× (α1(x), α2(x), . . . , αm(x)) 7→
(α1(x)β1(x)−1, β1(x)α2(x)β2(x)−1, . . . , βm−1(x)αm(x))

is a "thickening" for the sub sheaf Hf of holomorphic sections of
SAut(E )m defined by

Hf (U) := {(α1, α2, . . . , αm) : α1 ◦ α2 ◦ . . . ◦ αm = f |U}.
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The subsheaf J of SAut(E )m−1 given by

J = {(β1, β2, . . . , β
m−1) ∈ SAut(E )m−1 :

f1 | (β1−Id), f2 | (β−1
1 β2−Id), . . . , fm−1 | (β−1

m−2βm−1−Id), fm | (βm−1−Id)}

leaves the sheaf Φ invariant.
Define the subsheaf Lie(J ) of End0(E )m−1 corresponding to J as

Lie(J ) = {(v1, v2, . . . , vm−1) ∈ End0(E )m−1 :

f1 | v1, f2 | (v1 − v2), . . . , fm−1 | (vm−2 − vm−1), fm | vm−1}, (1)

which is a coherent subsheaf of End0(E )m−1.
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The map

v = (v1, v2, . . . , vk−1) 7→ a(x) exp(v)

:= (α1(x) exp(−v1), exp(v1)α2(x) exp(−v2), . . . ,

exp(vl−1)αl(x) exp(−vl), . . . , exp(vm−1)αk(x)

is the required (even global) spray around the section
a = (α1, α2, . . . , αm) ∈ Φ. The transition function now comes from
log(a(x) exp(v(x))) and the gluing can be achieved as in the paper
of Studer. Alternatively, by the method of Cartan-Grauert as
explained by Forster and Ramspott.

O. Forster, K. J. Ramspott, Okasche Paare von Garben nicht-abelscher Gruppen. Invent. Math. 1,
260-286 (1966), Studer, Luca, A splitting lemma for coherent sheaves. Anal. PDE 14 (2021), no. 6,
1761Ð-1772.
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define U±(h) = Id +h · N± for a function h on X , where
U± = Id +N±

Theorem

Let U+,U− and f ∈ O(X ) be as above and let G ∈ SAut(E ) with
the properties that f 4 | G − Id and G is strongly null-homotopic.
Then

G = U−(h1) · U+(h2) · . . . · U−(h2k−1) · U+(h2k)

for some integer k and holomorphic functions hi ∈ O(X ),
i = 1, 2, . . . , k .
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X SAut(E )

C2n

G //

ψ2n

��

g

88qqqqqqqqqq

where ψ2n : C2n → SAut(E ) is given by

(z1, . . . , z2n) 7−→ U−(z1) · U+(z2) · . . .U−(z2n−1) · U+(z2n).

Proposition

Let f ∈ O(X ) be a holomorphic function on a complex space X
and let n ≥ 2. Given a holomorphic map G : X → SAut(E ) with
the property that G − Id is divisible by f 3, then the reachable
points of the fibration (G ∗(C2n) \ Sing,G ∗ψ2n,X ) form a stratified
elliptic submersion.
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G (x) = U−(z1(x)) · U+(z2(x)) · . . . · U+(z2n(x)),

in coordinates:

Si (x)−1 Mat(G )(x)Si (x) = Si (x)−1U−(z1(x))Si (x)·S−1
i (x)U+(z2(x))Si (x)·. . . ,

Id +f 3(x)S−1
i (x)

(
a1(x) b1(x)
c1(x) d1(x)

)
Si (x) =

(
1 0

z1f (x) 1

)
·
(

1 z2f (x)
0 1

)
·. . . ,

Id +f 2(x)fi (x)S#
i (x)

(
a1(x) b1(x)
c1(x) d1(x)

)
Si (x) =

=

(
1 0

z1f (x) 1

)
·
(

1 z2f (x)
0 1

)
· . . . .

Id +f 2(x)

(
a(x) b(x)
c(x) d(x)

)
=

(
1 0

z1f (x) 1

)
·
(

1 z2f (x)
0 1

)
·. . . .
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(
Qk

11(z , f ) Qk
12(z , f )

Qk
21(z , f ) Qk

22(z , f )

)
:=

(
1 z2f
0 1

)
·
(

1 0
z3f 1

)
·. . .·

(
1 0

z2k+1f 1

)
.

Then

Qk
11(z , f ) = 1 + f 2

∑
1≤i≤j≤k

z2iz2j+1 + f 3Q̃k
11(z , f ).

Qk
12(z , f ) = f

∑
1≤i≤k

z2i + f 3Q̃k
12(z , f ),

Qk
21(z , f ) = f

∑
1≤j≤k

z2j+1 + f 3Q̃k
21(z , f ),

Qk
22(z , f ) = 1 + f 2

∑
1≤j<i≤k

z2iz2j+1 + f 3Q̃k
22(z , f ).
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Theorem

Let U+,U− and f ∈ O(X ) be as above and consider a continuous
bundle automorphism G ∈ SAuttop(E ) with the properties that
f 4 | G − Id and G is strongly null-homotopic. Then

G = U−(h1) · U+(h2) · . . . · U−(h2k−1) · U+(h2k)

for some integer k and continuous functions hi ∈ O(X ),
i = 1, 2, . . . , k .
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Novelties (1)

For

A(x) =

(
a(x) b(x)
c(x) d(x)

)
∈ SL2(CC(X )),

under the special condition a(x) 6= 0 one can solve the equation(
a(x) b(x)
c(x) d(x)

)
=

(
1 0

z1(x) 1

)
· . . . ·

(
1 z4(x)
0 1

)
with the interpolation condition

A(x) = Id =⇒ z1(x) = · · · = z4(x) = 0

Frank Kutzschebauch, Universität Bern
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Solution:

z1(x) =

c(x)− a(x)− 1√
|a(x)− 1|

a(x)
;

z2(x) =
√
|a(x)− 1|;

z3(x) =
a(x)− 1√
|a(x)− 1|

;

z4(x) =
b(x)−

√
|a(x)− 1|

a(x)
.
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Novelties (2)

In case of divisibility f 3 | (A− Id), one can solve the equation(
1 + f 3a f 3b
f 3c 1 + f 3d

)
=

(
1 0
fz1 1

)
· . . . ·

(
1 fz4
0 1

)
under the assumption that 1 + f 3a 6= 0 with the interpolation
condition

A(x) = Id =⇒ z1(x) = · · · = z4(x) = 0
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Solution

z1 =

f 2c − af√
|af |

1 + f 3a
;

z2 =
√
|af |;

z3 =
af√
|af |

;

z4 =
f 2b −

√
|af |

1 + f 3a
.
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Novelties (3)
Special Whitehead Lemma

Writing a determinant 1 invertible diagonal matrix D as a product
of four elementary matrices over the ring of complex valued
continuous matrices with the interpolation condition

D(x) = Id =⇒ z1(x) = · · · = z4(x) = 0

Namely: For λ ∈ CC(X )∗, the following holds:

D(x) =

(
λ

λ−1

)
=

=

(
1 0

1−λ√
|λ−1|

1

)
·
(

1
√
|λ− 1|

0 1

)
·

(
1 0
λ−1√
|λ−1|

1

)
·

(
1 −

√
|λ−1|
λ

0 1

)
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THANK YOU!
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