Holomorphic factorization of vector bundle automorphisms

Frank Kutzschebauch, Universität Bern

Portoroz — June 2024

Outline

(1) Linear Algebra
(2) History of the factorization problem
(3) The main results

4 What is used in the proof

Any matrix $A \in S L_{n}(\mathbb{C})$ is a product of elementary matrices of the form

$$
I d+a_{i j} E_{i j}=\left(\begin{array}{ccccc}
1 & & & & 0 \\
& \ddots & & & \\
0 & a_{i j} & 1 & & 0 \\
\vdots & & \vdots & \ddots & \\
0 & & 0 & & 1
\end{array}\right)
$$

or equivalently a product of upper and lower triangular unipotent matrices.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
G_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2} \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{N} \\
0 & 1
\end{array}\right), \text { where } G_{i} \in \mathbb{C}^{n(n-1) / 2}
$$

Proof: Gauss elimination, it requires:
1.) Adding multiples of a row to another row
2.) Interchange of rows :

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

3.) multiplication of rows by constants:

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-a^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a-1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a^{-1}-1 \\
0 & 1
\end{array}\right)
$$

(Whitehead lemma)

What if the matrix A depends on a parameter x (continuously, polynomially, holomorphically)? Can the upper and lower triangular unipotent matrices be chosen depending well on the parameter?

$$
A(x)=\left(\begin{array}{cc}
1 & 0 \\
G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2}(x) \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & G_{N}(x) \\
0 & 1
\end{array}\right)
$$

Now the G_{i} are maps $G_{i}: X \rightarrow \mathbb{C}^{n(n-1) / 2}$.

- Let $R=\{f: X \rightarrow \mathbb{C}\}$ denote the ring of continuous/ polynomial /holomorphic functions on a topological space/ algebraic variety / complex space X.
- In the language of K-theory we are asking about factorization of $S L_{n}(R)$ (special linear group over the ring R) as product of elementary matrices over that ring.
- Given $m \geq 2$ and an associative, commutative, unital ring R, let $E_{n}(R)$ denote the set of those $n \times n$ matrices which are representable as products of unipotent matrices with entries in R. We ask about the relation of $E_{n}(R)$ and $S L_{n}(R)$.
- The obstruction to this factorization is called the special K_{1}-group of the ring R, (more precise the n-th, where n is the size of the matrices).

Algebraic results

- $S L_{n}\left(\mathbb{C}\left[z_{1}\right]\right)$ factorizes, more generally for Euclidean rings R $S L_{n}(R)$ factorizes, however there is no universal bound on the number of factors! van der Kallen, W ., $S L_{3}(\mathbb{C}[X])$ does not have bounded word length,

Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357-361, 1982
$S L_{2}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ does not factorize for $n \geq 2$
counterexample found by Cohn (1966)

P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966)
no. 30, 5-53

- $S L_{n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 3$
A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk

SSSR Ser Mat 41 (1977) no 2, 235-252, 177
\equiv

Algebraic results

- $S L_{n}\left(\mathbb{C}\left[z_{1}\right]\right)$ factorizes, more generally for Euclidean rings R $S L_{n}(R)$ factorizes, however there is no universal bound on the number of factors! van der Kallen, W., $S L_{3}(\mathbb{C}[X])$ does not have bounded word length,

Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357-361, 1982

- $S L_{2}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ does not factorize for $n \geq 2$ counterexample found by Cohn (1966)

$$
\left(\begin{array}{cc}
1-z_{1} z_{2} & z_{1}^{2} \\
-z_{2}^{2} & 1+z_{1} z_{2}
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbb{C}\left[z_{1}, z_{2}\right]\right)
$$

P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966),
no. 30, 5-53

- $S L_{n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 3$
A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk

SSSR Ser. Mat 41 (1977) no 2, 235-252, 477

Frank Kutzschebauch, Universität Bern

Algebraic results

- $S L_{n}\left(\mathbb{C}\left[z_{1}\right]\right)$ factorizes, more generally for Euclidean rings R $S L_{n}(R)$ factorizes, however there is no universal bound on the number of factors! van der Kallen, W., $S L_{3}(\mathbb{C}[X])$ does not have bounded word length,
Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357-361, 1982
- $S L_{2}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ does not factorize for $n \geq 2$ counterexample found by Cohn (1966)

$$
\left(\begin{array}{cc}
1-z_{1} z_{2} & z_{1}^{2} \\
-z_{2}^{2} & 1+z_{1} z_{2}
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbb{C}\left[z_{1}, z_{2}\right]\right)
$$

P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53

- $S L_{n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 3$
A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252, 477

Symplectic results

- $S p_{2 n}\left(\mathbb{Z}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 2$

Grunewald, Fritz; Mennicke, Jens; Vaserstein, Leonid On symplectic groups over polynomial rings. Math. Z. 206 (1991)

- $S p_{2 n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 2$

Kopeiko, V. I. On the structure of the symplectic group of polynomial rings over regular rings.
(Russian) Fundam. Prikl. Mat. 1 (1995), no. 2, 545-548
Kopeiko, V. I. Stabilization of symplectic groups over a ring of polynomials. (Russian) Mat. Sb.
(N.S.) 106(148) (1978), no. 1, 94-107

- $S p_{2 n}^{0}(\mathcal{O}(X))$ factorizes on a Stein space X

Ivarsson, B.; Kutzschebauch, F.; Løw, Erik Holomorphic factorization of mappings into $\operatorname{Spm}_{4}(\mathbb{C})$, Anal. PDE, 16, 2023, 1, 233-277
Schott, J. Holomorphic factorization of mappings into $S p_{2 n}(\mathbb{C})$, arXiv:2207.05389, to appear in J. Eur. Math. Soc.

Topological results

- $S L_{n}\left(\operatorname{Cont}\left(\mathbb{R}^{3}\right)\right)$ factorizes
W. Thurston and L. Vaserstein, On K 1 -theory of the Euclidean space, Topology Appl. 23 (1986),
no. 2, 145-148
- A general observation:

gives a homotopy of the map $A: X \rightarrow S L_{m}(\mathbb{C})$ to a constant map. Such maps are called null-homotopic. If a map factorizes, then it is necessarily null-homotopic.

Topological results

- $S L_{n}\left(\operatorname{Cont}\left(\mathbb{R}^{3}\right)\right)$ factorizes
W. Thurston and L. Vaserstein, On K K_{1}-theory of the Euclidean space, Topology Appl. 23 (1986),
no. 2, 145-148
- A general observation:

$$
A_{t}(x)=\left(\begin{array}{cc}
1 & 0 \\
t G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & t G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & t G_{N}(x) \\
0 & 1
\end{array}\right) t \in[0,1]
$$

gives a homotopy of the map $A: X \rightarrow S L_{m}(\mathbb{C})$ to a constant map. Such maps are called null-homotopic. If a map factorizes, then it is necessarily null-homotopic.

Continuous results

Theorem (Vaserstein)

For any natural number n and an integer $d \geq 0$ there is a natural number K such that for any finite dimensional normal topological space X of dimension d and null-homotopic continuous mapping $A: X \rightarrow S L_{n}(\mathbb{C})$ the mapping can be written as a finite product of no more than $K=K(d, n)$ unipotent matrices. That is, one can find continuous mappings $G_{l}: X \rightarrow \mathbb{C}^{n(n-1) / 2}, 1 \leq I \leq K$ such that

$$
A(x)=\left(\begin{array}{cc}
1 & 0 \\
G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{K}(x) \\
0 & 1
\end{array}\right)
$$

for every $x \in X$.
L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations,

Proc. Amer. Math. Soc. 103 (1988), no. 3, 741-746

Theorem (Hultgren, Wold)

Let X be a locally finite finite dimensional CW-complex and let $\pi: V \rightarrow X$ be a real (resp. complex) topological vector bundle of rank n. Assume that $n \geq 3$ (resp. $n \geq 2$) and let S be a (continuous) nullhomotopic special vector bundle automorphism of V. Then there exist unipotent vector bundle automorphisms E_{1}, \ldots, E_{N} such that $S=E_{N} \circ \cdots \circ E_{1}$.
J. Hultgren, E.F. Wold, Unipotent Factorization of Vector Bundle Automorphisms. Int. J. of Math. Vol. 32, No. 03, 2150013 (2021)

The Gromov-Vaserstein problem for $S L_{n}$

Theorem

Let X be a finite dimensional reduced Stein space and $A: X \rightarrow S L_{n}(\mathbb{C})$ be a holomorphic mapping that is null-homotopic. Then there exist a natural number $K=K(\operatorname{dim} X, n)$ and holomorphic mappings $G_{1}, \ldots, G_{K}: X \rightarrow \mathbb{C}^{n(n-1) / 2}$ such that A can be written as a product of upper and lower diagonal unipotent matrices

$$
A(x)=\left(\begin{array}{cc}
1 & 0 \\
G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{K}(x) \\
0 & 1
\end{array}\right)
$$

for every $x \in X$.
Ivarsson, B., Kutzschebauch, F. Holomorphic factorization of mappings into $S L_{n}(\mathbb{C})$, Ann. of Math. (2) 175 (2012), no. 1, 45-69

The holomorphic vector bundle case

Theorem (lonita, K.)

Let X be a Stein space and $E \rightarrow X$ a rank 2 holomorphic vector bundle over X. Then $F \in \operatorname{SAut}(E)$ is a (finite) product of unipotent holomorphic automorphisms $u_{i} \in \mathrm{U}(E), i=1,2, \ldots, K$,

$$
F(x)=u_{1}(x) \cdot u_{2}(x) \cdot \ldots \cdot u_{K}(x)
$$

if and only if F is null-homotopic.
Ionita, G.; Kutzschebauch, F. Holomorphic Factorization of vector bundle automorphisms. arXiv:2305.04350 2023

construction of the unipotent automorphisms

- $s_{1}, s_{2} \in \Gamma_{\text {hol }}(E, X)$ linear independent outside a proper analytic subset A of X
- trivialization of $E, X=\cup_{i=1}^{\infty} U_{i}$ with a cocycle of transition functions $f_{i, j}: U_{i, j} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$
- $s_{1}^{i}, s_{2}^{i}: U_{i} \rightarrow \mathbb{C}^{2}$ - local representations of the sections
- $A \cap U_{i}=\left\{x \in U_{i}: \operatorname{det}\left(s_{1}^{i}(x), s_{2}^{i}(x)\right)=0\right\}$
- $\alpha_{i, j}:=\operatorname{det}\left(f_{i, j}\right)=\operatorname{det}\left(s_{1}^{j}(x), s_{2}^{j}(x)\right)\left(\operatorname{det}\left(s_{1}^{i}(x), s_{2}^{i}(x)\right)\right)^{-1}$: $U_{i, j} \rightarrow \mathbb{C}^{*}$ defines a line bundle L
- any global holomorphic section in L^{-1} gives a holomorphic function $f \in \mathcal{O}(X)$ with the property that on U_{i}, the quotient $f(x)\left(\operatorname{det}\left(s_{1}^{i}(x), s_{2}^{i}(x)\right)\right)^{-1}$ is holomorphic
define a global nilpotent holomorphic endomorphism N^{-}by

$$
N^{-}\left(s_{1}(x)\right)=f(x) s_{2}(x) \text { and } N^{-}\left(s_{2}(x)\right)=0
$$

in points x where $s_{1}(x), s_{2}(x)$ form a basis of E_{x}, i.e., outside A.
It extends to the points in A, since

$$
s_{1}^{i}(x)=\binom{a(x)}{c(x)} \text { and } s_{2}^{i}(x)=\binom{b(x)}{d(x)}
$$

then in the standard basis $e_{1}, e_{2} \in \mathbb{C}^{2}$ the matrix of N^{-}is given by

$$
\begin{aligned}
& \left(\begin{array}{ll}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
f(x) & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right)^{-1}= \\
= & \frac{f(x)}{\operatorname{det}\left(s_{1}^{i}(x), s_{2}^{i}(x)\right)}\left(\begin{array}{cc}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
d(x) & -b(x) \\
-c(x) & a(x)
\end{array}\right) .
\end{aligned}
$$

Proposition

Let $\pi: E \rightarrow X$ be a holomorphic vector bundle of rank 2 over a Stein space X of dimension n. Then there exist $n+1$ pairs of nilpotent holomorphic automorphism N_{i}^{+}, N_{i}^{-}in $\operatorname{End}(E)$, $i=1,2, \ldots, n+1$ together with (non-zero) holomorphic functions $f_{i} \in \mathcal{O}(X)$, without common zeros, with the property that on each of the sets $X \backslash\left\{f_{i}=0\right\}$ the bundle E is trivial and locally the pair (N_{i}^{+}, N_{i}^{-}) is holomorphically conjugated on $X \backslash\left\{f_{i}=0\right\}$ to the "standard" pair

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Theorem

Let X be a Stein space and $f_{i} \in \mathcal{O}(X), i=1,2, \ldots, m$ finitely many holomorphic functions without common zeros. Then every null-homotopic special holomorphic vectorbundle automorphism $F \in \operatorname{SAut}(E)$ can be written as a product

$$
F=\prod_{i=1}^{m} G_{i}
$$

where each of the $G_{i} \in \operatorname{SAut}(E)$ is a special holomorphic vectorbundle automorphism, whose difference to the identity is divisible by f_{i}^{4}. Moreover, the G_{i} 's are strongly null-homotopic, i.e., they are null-homotopic such that on $\left\{f_{i}=0\right\}$ the homotopy $\left(G_{i}\right)_{t}=\mathrm{Id}, \forall t \in[0,1]$.

Denote $A_{i}:=\left\{f_{i}=0\right\}$ for any U open in X define

$$
\mathcal{F}_{i}(U):=\left\{\alpha \in \operatorname{SAut}_{\text {hol }}\left(\left.E\right|_{U}\right): f_{i} \mid(\alpha-\mathrm{Id})\right\}
$$

and similarily sheaves \mathcal{G}_{i} by

$$
\left.\mathcal{G}_{i}(U):=\left\{\alpha \in \operatorname{SAut}_{\text {cont }}\left(\left.E\right|_{U}\right):\left.\alpha\right|_{U \cap A_{i}}=\operatorname{Id}\right)\right\} .
$$

$\Phi(U):=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{m}\right) \in \mathcal{F}_{1}(U) \times \cdots \times \mathcal{F}_{m}(U): \alpha_{1} \circ \alpha_{2} \circ \ldots \circ \alpha_{m}=\left.f\right|_{U}\right\}$
and similarily the sheaf Ψ as
$\Psi(U):=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{m}\right) \in \mathcal{G}_{1}(U) \times \cdots \times \mathcal{G}_{m}(U): \alpha_{1} \circ \alpha_{2} \circ \ldots \circ \alpha_{m}=\left.f\right|_{U}\right\}$.

The (fibrewise) map $\operatorname{SAut}(E)^{m-1} \times \operatorname{SAut}(E)^{m} \rightarrow \operatorname{SAut}(E)^{m}$ given by

$$
\begin{aligned}
& \left(\beta_{1}(x), \beta_{2}(x), \ldots, \beta_{m-1}(x)\right) \times\left(\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{m}(x)\right) \mapsto \\
& \quad\left(\alpha_{1}(x) \beta_{1}(x)^{-1}, \beta_{1}(x) \alpha_{2}(x) \beta_{2}(x)^{-1}, \ldots, \beta_{m-1}(x) \alpha_{m}(x)\right)
\end{aligned}
$$

is a "thickening" for the sub sheaf \mathcal{H}_{f} of holomorphic sections of $\operatorname{SAut}(E)^{m}$ defined by

$$
\mathcal{H}_{f}(U):=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right): \alpha_{1} \circ \alpha_{2} \circ \ldots \circ \alpha_{m}=\left.f\right|_{U}\right\}
$$

The subsheaf \mathcal{J} of $\operatorname{SAut}(E)^{m-1}$ given by

$$
\mathcal{J}=\left\{\left(\beta_{1}, \beta_{2}, \ldots, \beta^{m-1}\right) \in \operatorname{SAut}(E)^{m-1}:\right.
$$

$f_{1}\left|\left(\beta_{1}-\mathrm{Id}\right), f_{2}\right|\left(\beta_{1}^{-1} \beta_{2}-\mathrm{Id}\right), \ldots, f_{m-1}\left|\left(\beta_{m-2}^{-1} \beta_{m-1}-\mathrm{Id}\right), f_{m}\right|\left(\beta_{m-1}-\mathrm{Id}\right)$
leaves the sheaf Φ invariant.
Define the subsheaf $\operatorname{Lie}(\mathcal{J})$ of $\operatorname{End}^{0}(E)^{m-1}$ corresponding to \mathcal{J} as

$$
\begin{align*}
& \operatorname{Lie}(\mathcal{J})=\left\{\left(v_{1}, v_{2}, \ldots, v_{m-1}\right) \in \operatorname{End}^{0}(E)^{m-1}:\right. \\
& \left.f_{1}\left|v_{1}, f_{2}\right|\left(v_{1}-v_{2}\right), \ldots, f_{m-1}\left|\left(v_{m-2}-v_{m-1}\right), f_{m}\right| v_{m-1}\right\} \tag{1}
\end{align*}
$$

which is a coherent subsheaf of $\operatorname{End}^{0}(E)^{m-1}$.

The map

$$
\begin{aligned}
& v=\left(v_{1}, v_{2}, \ldots, v_{k-1}\right) \mapsto a(x) \exp (v) \\
& \quad:=\left(\alpha_{1}(x) \exp \left(-v_{1}\right), \exp \left(v_{1}\right) \alpha_{2}(x) \exp \left(-v_{2}\right), \ldots,\right. \\
& \quad \exp \left(v_{l-1}\right) \alpha_{l}(x) \exp \left(-v_{l}\right), \ldots, \exp \left(v_{m-1}\right) \alpha_{k}(x)
\end{aligned}
$$

is the required (even global) spray around the section $a=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in \Phi$. The transition function now comes from $\log (a(x) \exp (v(x)))$ and the gluing can be achieved as in the paper of Studer. Alternatively, by the method of Cartan-Grauert as explained by Forster and Ramspott.
O. Forster, K. J. Ramspott, Okasche Paare von Garben nicht-abelscher Gruppen. Invent. Math. 1, 260-286 (1966), Studer, Luca, A splitting lemma for coherent sheaves. Anal. PDE 14 (2021), no. 6, 1761Đ-1772.
define $U^{ \pm}(h)=\operatorname{ld}+h \cdot N^{ \pm}$for a function h on X, where $U^{ \pm}=\mathrm{Id}+N^{ \pm}$

Theorem

Let U^{+}, U^{-}and $f \in \mathcal{O}(X)$ be as above and let $G \in \operatorname{SAut}(E)$ with the properties that $f^{4} \mid G$ - Id and G is strongly null-homotopic.
Then

$$
G=U^{-}\left(h_{1}\right) \cdot U^{+}\left(h_{2}\right) \cdot \ldots \cdot U^{-}\left(h_{2 k-1}\right) \cdot U^{+}\left(h_{2 k}\right)
$$

for some integer k and holomorphic functions $h_{i} \in \mathcal{O}(X)$, $i=1,2, \ldots, k$.

where $\psi_{2 n}: \mathbb{C}^{2 n} \rightarrow \operatorname{SAut}(E)$ is given by

$$
\left(z_{1}, \ldots, z_{2 n}\right) \longmapsto U^{-}\left(z_{1}\right) \cdot U^{+}\left(z_{2}\right) \cdot \ldots U^{-}\left(z_{2 n-1}\right) \cdot U^{+}\left(z_{2 n}\right) .
$$

Proposition

Let $f \in \mathcal{O}(X)$ be a holomorphic function on a complex space X and let $n \geq 2$. Given a holomorphic map $G: X \rightarrow \operatorname{SAut}(E)$ with the property that $G-\operatorname{ld}$ is divisible by f^{3}, then the reachable points of the fibration $\left(G^{*}\left(\mathbb{C}^{2 n}\right) \backslash\right.$ Sing, $\left.G^{*} \psi_{2 n}, X\right)$ form a stratified elliptic submersion.

$$
G(x)=U^{-}\left(z_{1}(x)\right) \cdot U^{+}\left(z_{2}(x)\right) \cdot \ldots \cdot U^{+}\left(z_{2 n}(x)\right)
$$

in coordinates:

$$
\begin{aligned}
& S_{i}(x)^{-1} \operatorname{Mat}(G)(x) S_{i}(x)=S_{i}(x)^{-1} U^{-}\left(z_{1}(x)\right) S_{i}(x) \cdot S_{i}^{-1}(x) U^{+}\left(z_{2}(x)\right) S_{i}(x \\
& \operatorname{Id}+f^{3}(x) S_{i}^{-1}(x)\left(\begin{array}{cc}
a_{1}(x) & b_{1}(x) \\
c_{1}(x) & d_{1}(x)
\end{array}\right) S_{i}(x)=\left(\begin{array}{cc}
1 & 0 \\
z_{1} f(x) & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & z_{2} f(x) \\
0 & 1
\end{array}\right.
\end{aligned}
$$

$$
\operatorname{Id}+f^{2}(x) f_{i}(x) S_{i}^{\#}(x)\left(\begin{array}{ll}
a_{1}(x) & b_{1}(x) \\
c_{1}(x) & d_{1}(x)
\end{array}\right) S_{i}(x)=
$$

$$
=\left(\begin{array}{cc}
1 & 0 \\
z_{1} f(x) & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & z_{2} f(x) \\
0 & 1
\end{array}\right) \cdot \ldots
$$

$$
\operatorname{Id}+f^{2}(x)\left(\begin{array}{cc}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
z_{1} f(x) & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & z_{2} f(x) \\
0 & 1
\end{array}\right) \cdot \ldots
$$

$\left(\begin{array}{cc}Q_{11}^{k}(z, f) & Q_{12}^{k}(z, f) \\ Q_{21}^{k}(z, f) & Q_{22}^{k}(z, f)\end{array}\right):=\left(\begin{array}{cc}1 & z_{2} f \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & 0 \\ z_{3} f & 1\end{array}\right) \cdots \cdot\left(\begin{array}{cc}1 & 0 \\ z_{2 k+1} f & 1\end{array}\right.$
Then

$$
\begin{gathered}
Q_{11}^{k}(z, f)=1+f^{2} \sum_{1 \leq i \leq j \leq k} z_{2 i} z_{2 j+1}+f^{3} \widetilde{Q}_{11}^{k}(z, f) . \\
Q_{12}^{k}(z, f)=f \sum_{1 \leq i \leq k} z_{2 i}+f^{3} \widetilde{Q}_{12}^{k}(z, f), \\
Q_{21}^{k}(z, f)=f \sum_{1 \leq j \leq k} z_{2 j+1}+f^{3} \widetilde{Q}_{21}^{k}(z, f), \\
Q_{22}^{k}(z, f)=1+f^{2} \sum_{1 \leq j<i \leq k} z_{2 i} z_{2 j+1}+f^{3} \tilde{Q}_{22}^{k}(z, f) .
\end{gathered}
$$

Theorem

Let U^{+}, U^{-}and $f \in \mathcal{O}(X)$ be as above and consider a continuous bundle automorphism $G \in \operatorname{SAut}_{\text {top }}(E)$ with the properties that $f^{4} \mid G$ - Id and G is strongly null-homotopic. Then

$$
G=U^{-}\left(h_{1}\right) \cdot U^{+}\left(h_{2}\right) \cdot \ldots \cdot U^{-}\left(h_{2 k-1}\right) \cdot U^{+}\left(h_{2 k}\right)
$$

for some integer k and continuous functions $h_{i} \in \mathcal{O}(X)$, $i=1,2, \ldots, k$.

Novelties (1)

For

$$
A(x)=\left(\begin{array}{ll}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{C}^{\mathbb{C}}(X)\right)
$$

under the special condition $a(x) \neq 0$ one can solve the equation

$$
\left(\begin{array}{ll}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
z_{1}(x) & 1
\end{array}\right) \cdot \ldots \cdot\left(\begin{array}{cc}
1 & z_{4}(x) \\
0 & 1
\end{array}\right)
$$

with the interpolation condition

$$
A(x)=\operatorname{ld} \Longrightarrow z_{1}(x)=\cdots=z_{4}(x)=0
$$

Solution:

$$
\begin{aligned}
& \text { - } z_{1}(x)=\frac{c(x)-\frac{a(x)-1}{\sqrt{|a(x)-1|}} ;}{a(x)} ; \\
& \text { - } z_{2}(x)=\sqrt{|a(x)-1|} ; \\
& \text { - } z_{3}(x)=\frac{a(x)-1}{\sqrt{|a(x)-1|} ;} \\
& z_{4}(x)=\frac{b(x)-\sqrt{|a(x)-1|}}{a(x)} .
\end{aligned}
$$

Novelties (2)

In case of divisibility $f^{3} \mid(A-I d)$, one can solve the equation

$$
\left(\begin{array}{cc}
1+f^{3} a & f^{3} b \\
f^{3} c & 1+f^{3} d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
f z_{1} & 1
\end{array}\right) \cdot \ldots \cdot\left(\begin{array}{cc}
1 & f z_{4} \\
0 & 1
\end{array}\right)
$$

under the assumption that $1+f^{3} a \neq 0$ with the interpolation condition

$$
A(x)=\operatorname{Id} \Longrightarrow z_{1}(x)=\cdots=z_{4}(x)=0
$$

Solution

$$
\begin{aligned}
& \quad z_{1}=\frac{f^{2} c-\frac{a f}{\sqrt{|a f|}}}{1+f^{3} a} ; \\
& \text { - } z_{2}=\sqrt{|a f|} ; \\
& \text { - } z_{3}=\frac{a f}{\sqrt{|a f|}} ; \\
& z_{4}=\frac{f^{2} b-\sqrt{|a f|}}{1+f^{3} a} .
\end{aligned}
$$

Novelties (3)

Special Whitehead Lemma

Writing a determinant 1 invertible diagonal matrix D as a product of four elementary matrices over the ring of complex valued continuous matrices with the interpolation condition

$$
D(x)=\operatorname{ld} \Longrightarrow z_{1}(x)=\cdots=z_{4}(x)=0
$$

Namely: For $\lambda \in \mathcal{C}^{\mathbb{C}}(X)^{*}$, the following holds:

$$
\begin{gathered}
D(x)=\left(\begin{array}{ll}
\lambda & \lambda^{-1}
\end{array}\right)= \\
=\left(\begin{array}{cc}
1 & 0 \\
\frac{1-\lambda}{\sqrt{|\lambda-1|}} & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & \sqrt{|\lambda-1|} \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
\frac{\lambda-1}{\sqrt{|\lambda-1|}} & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -\frac{\sqrt{|\lambda-1|}}{\lambda} \\
0 & 1
\end{array}\right)
\end{gathered}
$$

THANK YOU!

