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Rational convexity in Cn

K ⊂ Cn is a compact set.

• The rationally convex hull of K

r(K) = {z ∈ Cn : every algebraic hypersurface through z passes through K}
= {z ∈ Cn : f (z) ∈ f (K) for all polynomials f }

=

{
z ∈ Cn :

∣∣∣∣ fg (z)

∣∣∣∣ ≤ sup
K

∣∣∣∣ fg
∣∣∣∣ ∀polynomials f , g with g |K∪{z} ̸= 0

}
.

• K is rationally convex if r(K) = K .

• Classical motivation.

∗ Theorem A. Every holomorphic function on a neighborhood of K is uniformly
approximable on K by rational functions with no poles on K .

∗ If every continuous function on a neighborhood of K is uniformly approximable on
K by rational functions with no poles on K , then K is rationally convex.
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The pluripotential-theoretic point of view (Duval–Sibony)

• Yet another characterization. Given a compact set K ⊂ Cn,

z /∈ r(K) ⇐⇒ there is a (weakly) positive closed current T of bidegree (1, 1)

such that z ∈ suppT but suppT ∩ K = ∅.

• Theorem B. Let T be a p.c.c. of bidegree (1, 1) on Cn s.t. Cn \ supp T ⋐ Cn.

Ks = {z ∈ Cn : dist(z , supp T ) ≥ s}, s > 0,

is rationally convex in Cn.

Appl. Any p.c.c. T of bidegree (1, 1) can be weakly approx. by a sequence of “rational
divisors”, i.e., [Hj ]/Nj , where Hj is a hypersurface in Cn and Nj ∈ Z. Moreover, Hj ’s
converge to supp T in the Hausdorff metric.

• Theorem C. Suppose j : S ↪! Cn is a smooth totally real submanifold. Then,

r(S) = S ⇐⇒ S is isotropic w.r.t some Kähler form ω on Cn, i.e., j∗ω = 0.

Appl. New examples of rationally convex sets (using symplectomorphisms).

Gen. Immersions with special singularities (Gayet, Duval–Gayet, Shafikov–Sukhov,
Mitrea).
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The pluripotential-theoretic point of view (Nemirovski)

• Theorem D. Suppose K ⊂ Cn is a compact set such that

K = {z ∈ Cn : ρ(z) ≤ 0}

for some spsh ρ defined on a neighborhood U ⊃ K . Then,

r(K) = K ⇐⇒ dd cρ extends to a Kähler form ω on Cn.

• Appl. The union of finitely many disjoint closed balls in Cn is rationally convex.

• Idea of proof. (⇒) regularize and patch currents in the complement ⇒ existence
of smooth (1, 1)-form ω vanishing on r(K) and > 0 outside.

(⇐) Modify ω to ωε with support Cn \ {ρ < ε} and apply Theorem B.

Question. What are the analogues of these results in more general complex manifolds?
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A digression

• A hypersurface Y in a symplectic manifold (X , ω) is said to be of contact-type
w.r.t. ω if there is a contact form λ on Y such that dλ = ω|Y .

• Equivalently, there is a vector field V on a nbhd. of Y such that V ⋔ Y and
LVω = ω (or, ιVω = α).

• A Weinstein domain (X , ω,V , f ) consists of

∗ a compact symplectic manifold (X , ω) with boundary,

∗ a globally-defined Liouville v.f. V which points transverally out of ∂X .

∗ a Morse function f : X ! R, locally constant on ∂X , s.t. V is gradient-like for f , i.e.,

V (f ) ≥ δ(|V |2 + |df |2), for some δ > 0.

Rmk. The regular level sets of f are hypersurfaces of contact-type w.r.t. ω.

Question. Which smooth, closed, oriented manifolds can be realized (up to diff.) as
contact type hypersurfaces in (R2n, ωstd)?
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A digression

• X = {ϕ ≤ 0} a str ψcvx cpt in Cn ⇒ (X , ω= dd cϕ,V= ∇ωϕ, ϕ) a Wein. dom.

⇓
(∂X , α= d cϕ) a contact-type hypersurface w.r.t ω

• X is rat cvx in Cn ⇒ dd cϕ extends to a Kähler form (=ωstd at inf.)
⇓

(X , ω,V , ϕ)
symp.emb.
↪−! (Cn, ωstd)

⇓
(∂X , α) ↪−! Cn as contact-type w.r.t ωstd

• Theorem E (Eliashberg, Eliashberg–Cieliebak). Let n ≥ 3. Let X ⊂ Cn be a
smoothly bounded domain. T.F.A.E.

∗ X admits a defining Morse function with no critical points of index > n.

∗ X is smoothly isotopic to a str ψconvex compact domain.

∗ X is smoothly isotopic to a rationally convex compact domain.

• Forstnerič (1992), Nemirovski–Siegel (2016). Complete classification of all
disk-bundles over a compact two-dimensional surface that embed as

∗ str ψcvx domains in C2

∗ rationally convex domains in C2.

∃ X ⊂ C2 that isotopes to a str ψcvx, but not rat cvx domain in C2
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• Forstnerič (1992), Nemirovski–Siegel (2016). Complete classification of all
disk-bundles over a compact two-dimensional surface that embed as

∗ str ψcvx domains in C2

∗ rationally convex domains in C2.

∃ X ⊂ C2 that isotopes to a str ψcvx, but not rat cvx domain in C2

5/12



A digression

• X = {ϕ ≤ 0} a str ψcvx cpt in Cn ⇒ (X , ω= dd cϕ,V= ∇ωϕ, ϕ) a Wein. dom.
⇓

(∂X , α= d cϕ) a contact-type hypersurface w.r.t ω

• X is rat cvx in Cn ⇒ dd cϕ extends to a Kähler form (=ωstd at inf.)

⇓
(X , ω,V , ϕ)

symp.emb.
↪−! (Cn, ωstd)

⇓
(∂X , α) ↪−! Cn as contact-type w.r.t ωstd

• Theorem E (Eliashberg, Eliashberg–Cieliebak). Let n ≥ 3. Let X ⊂ Cn be a
smoothly bounded domain. T.F.A.E.

∗ X admits a defining Morse function with no critical points of index > n.

∗ X is smoothly isotopic to a str ψconvex compact domain.

∗ X is smoothly isotopic to a rationally convex compact domain.
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A digression

• Mark–Tosun (2022). No Brieskorn integer homology 3-sphere is
orientation-preserving diffeo. to the boundary of a rat cvx cpt domain in C2.

• Example:

Σ(p, q, r) = {(z ,w , η) ∈ C3 : zp + wq + ηr = 0} ∩ S(ε),

where, p, q, r ≥ 2 are pairwise relatively prime integers.

• Gompf’s (open) conjecture (2013). No nontrivial Brieskorn integer homology
3-sphere bounds a str ψcvx domain in C2.
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Analogues of rational convexity in projective manifolds

X is a projective manifold and K ⊂ X is a compact subset.

• Two hulls:

r(K) = {z ∈ X : every algebraic hypersurface through z intersects K}
R(K) = {z ∈ X : every positive divisor through z intersects K}

positive divisor: zero locus of the global hol. section of a positive line bundle on X

• On Pn, r(K) = R(K).

• Let X = P1 × P1 and K = P1 × {0}. Then

r(K) = K

but every positive divisor on X intersects K , i.e., R(K) = X .

• Let T be a nontrivial p.c.c. of bidegree (1, 1) on X . Then, R(suppT ) = X .

• Following Guedj (1999), we say that K is rationally convex in X if

R(K) = K .
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Analogues of Theorems A-D in the projective case

• Boudreaux-G.-Shafikov. Let K be a rationally convex subset of a projective
manifold X . Then, every holomorphic function in a neighborhood of K is the
uniform limit on K of a sequence of meromorphic functions of the form f /g ,
where f , g are global holomorphic sections of a positive line bundle on X , and g
does not vanish on K .

• Guedj. Let T be a p.c.c. of bidegree (1, 1) on a projective homogeneous manifold
X such that [T ] = c1(L) of some positive holomorphic line bundle L. Then,
X \ suppT can be exhausted by rationally convex sets.

• Guedj. Let S be a smooth compact totally real submanifold of a projective
manifold X . Then, R(S) = S if and only if S is isotropic with respect to a smooth
Hodge form θ on X . (θ is Kähler and [θ] ∈ H2(X ;Z))

Boudreaux-G.-Shafikov. Let X be a projective manifold and φ be a smooth spsh
function on an open set U ⊂ X . The compact set K = {z ∈ U : φ(z) ≤ 0} is
rationally convex if and only if dd cφ extends to a Hodge form on X .
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Analogues of rational convexity in Stein manifolds

X is a Stein manifold and K ⊂ X is a compact subset.

• Two hulls:

h(K) = {z ∈ X : every hypersurface through z intersects K

H(K) = {z ∈ X : every principal hypersurface through z intersects K}

Boudreaux–Shafikov.

h(K) = {z ∈ X : |m(z)| ≤ ∥m∥K ∀mero. m with I(m) ∩ (K ∪ {z}) = ∅}
H(K) = {z ∈ X : |m(z)| ≤ ∥m∥K ∀str. mero. m with I(m) ∩ (K ∪ {z}) = ∅}

str meromorphic: quotient of two entire functions which are pointwise relatively prime.

We say that K is meromorphically convex if

h(K) = K

and strongly meromorphically convex if

H(K) = K .

Colţoiu (1999). h(K) = H(K) for all compacts K ⇐⇒ Hom(H2(X ;Z),Z) = 0.

Strong mero cvx corresponds to rat cvx under proper holomorphic emb X ↪! Cn.
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Colţoiu (1999). h(K) = H(K) for all compacts K ⇐⇒ Hom(H2(X ;Z),Z) = 0.

Strong mero cvx corresponds to rat cvx under proper holomorphic emb X ↪! Cn.

9/12



Analogues of rational convexity in Stein manifolds

X is a Stein manifold and K ⊂ X is a compact subset.

• Two hulls:

h(K) = {z ∈ X : every hypersurface through z intersects K

H(K) = {z ∈ X : every principal hypersurface through z intersects K}

Boudreaux–Shafikov.

h(K) = {z ∈ X : |m(z)| ≤ ∥m∥K ∀mero. m with I(m) ∩ (K ∪ {z}) = ∅}
H(K) = {z ∈ X : |m(z)| ≤ ∥m∥K ∀str. mero. m with I(m) ∩ (K ∪ {z}) = ∅}

str meromorphic: quotient of two entire functions which are pointwise relatively prime.

We say that K is meromorphically convex if

h(K) = K

and strongly meromorphically convex if

H(K) = K .
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Analogues of Theorems A-D in Stein manifolds

• Hirschowitz, Boudreaux–Shafikov. Let K be a (strongly) meromorhpically subset of
a Stein manifold X . Then, every holomorphic function in a neighborhood of K is
the uniform limit on K of a sequence of (strongly) meromorphic functions on X .

• Guedj. Let T be a p.c.c. of bidegree (1, 1) on a Stein manifold X such that
[T ] = c1(L) of some positive holomorphic line bundle L. Then, X \ suppT can be
exhausted by meromorphically convex sets.

• Guedj, Boudreaux–Shafikov. Let S be a smooth compact totally real submanifold
of a Stein manifold X . Then,
• h(S) = S ⇐⇒ S is isotropic w.r.t. a smooth Hodge form θ on X ,
• H(S) = S ⇐⇒ S is isotropic w.r.t. a smooth trivial Hodge form θ on X .

Boudreaux-G.-Shafikov. Let X be a Stein manifold and φ be a smooth spsh
function on an open set U ⊂ X . The compact set K = {z ∈ U : φ(z) ≤ 0} is
(strongly) meromorphically convex if and only if dd cφ extends to a (trivial) Hodge
form on X .
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Boudreaux-G.-Shafikov. Let X be a Stein manifold and φ be a smooth spsh
function on an open set U ⊂ X . The compact set K = {z ∈ U : φ(z) ≤ 0} is
(strongly) meromorphically convex if and only if dd cφ extends to a (trivial) Hodge
form on X .
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Analogues of Theorems A-D in Stein manifolds
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Further remarks

A characterization of all rationally convex sets. Let X be a Stein manifold, and K ⊂ X
be a compact set. Then K is (strongly) meromorphically convex in X if and only if
there exists a neighborhood basis of K such that every element of the basis is of the
form Ω = {ρ < 0}, where ρ is a strictly plurisubharmonic function in a neighborhood of
Ω, and dd cρ extends off a neighborhood of Ω to a (trivial) Hodge form on X . The
same characterization holds for rational convexity of proper compact subsets of a
projective manifold.

Convexity w.r.t. currents. Meromorphic convexity in Stein manifolds is equivalent to
convexity with respect to p.c.c. T of bidegree (1, 1) such that [T ] ∈ H2(X ,Z).
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Two key ingredients

Lemma A. Let (X , ω) be a projective manifold endowed with a Kähler form. Let
K ⊂ X be rationally convex.

(i) For every z /∈ K , ∃ p.c.c. T of bidegree (1, 1) such that [T ] ∈ H2(X ,Z), T admits
a continuous potential, is smooth and positive at z and vanishes in a
neighborhood of K .

(ii) for every ε > 0 and rel cpt nbhd V of K , there exists a smooth closed (1, 1)-form
ωε such that

ωε ≥ ω on X \ V

ωε ≡ 0 on a neighborhood of K

ωε ≥ −εω on V

[ωε] ∈ H2(X ,Z).

Rmk. Theorem B from Duval–Sibony doesn’t generalize to all projective X .

Lemma B. Let X be a projective manifold and V ⊂ X be an open subset. Let L be a
positive line bundle on X and φ a positive continuous metric of L on X . Let
s ∈ O(V , L). Suppose

K = {z ∈ V : ∥s∥φ ≥ 1}

is compact. Then, K is rationally convex.
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THANK YOU.


