A characterization of rational convexity in Stein and projective manifolds

Purvi Gupta IISc, Bangalore

joint with Blake Boudreaux and Rasul Shafikov

Complex Analysis, Geometry, and Dynamics III, Portorož June 14, 2024

 $K \subset \mathbb{C}^n$ is a compact set.

- $K \subset \mathbb{C}^n$ is a compact set.
- The rationally convex hull of K

 $r(K) = \{z \in \mathbb{C}^n : \text{every algebraic hypersurface through } z \text{ passes through } K\}$

- $K \subset \mathbb{C}^n$ is a compact set.
- The rationally convex hull of K

 $r(K) = \{z \in \mathbb{C}^n : \text{every algebraic hypersurface through } z \text{ passes through } K\} \\ = \{z \in \mathbb{C}^n : f(z) \in f(K) \text{ for all polynomials } f\}$

 $K \subset \mathbb{C}^n$ is a compact set.

• The rationally convex hull of K

$$\begin{aligned} r(K) &= \left\{ z \in \mathbb{C}^n : \text{every algebraic hypersurface through } z \text{ passes through } K \right\} \\ &= \left\{ z \in \mathbb{C}^n : f(z) \in f(K) \text{ for all polynomials } f \right\} \\ &= \left\{ z \in \mathbb{C}^n : \left| \frac{f}{g}(z) \right| \leq \sup_{\kappa} \left| \frac{f}{g} \right| \, \forall \text{polynomials } f, g \text{ with } g|_{K \cup \{z\}} \neq 0 \right\}. \end{aligned}$$

 $K \subset \mathbb{C}^n$ is a compact set.

• The rationally convex hull of K

$$\begin{aligned} r(K) &= \left\{ z \in \mathbb{C}^n : \text{every algebraic hypersurface through } z \text{ passes through } K \right\} \\ &= \left\{ z \in \mathbb{C}^n : f(z) \in f(K) \text{ for all polynomials } f \right\} \\ &= \left\{ z \in \mathbb{C}^n : \left| \frac{f}{g}(z) \right| \leq \sup_{\kappa} \left| \frac{f}{g} \right| \, \forall \text{polynomials } f, g \text{ with } g|_{K \cup \{z\}} \neq 0 \right\}. \end{aligned}$$

• K is rationally convex if r(K) = K.

 $K \subset \mathbb{C}^n$ is a compact set.

• The rationally convex hull of K

 $\begin{aligned} r(K) &= \left\{ z \in \mathbb{C}^n : \text{every algebraic hypersurface through } z \text{ passes through } K \right\} \\ &= \left\{ z \in \mathbb{C}^n : f(z) \in f(K) \text{ for all polynomials } f \right\} \\ &= \left\{ z \in \mathbb{C}^n : \left| \frac{f}{g}(z) \right| \le \sup_{K} \left| \frac{f}{g} \right| \text{ } \forall \text{polynomials } f, g \text{ with } g|_{K \cup \{z\}} \neq 0 \right\}. \end{aligned}$

- K is rationally convex if r(K) = K.
- Classical motivation.
 - * Theorem A. Every holomorphic function on a neighborhood of K is uniformly approximable on K by rational functions with no poles on K.
 - If every continuous function on a neighborhood of K is uniformly approximable on K by rational functions with no poles on K, then K is rationally convex.

• Yet another characterization. Given a compact set $K \subset \mathbb{C}^n$,

 $z \notin r(K) \iff$ there is a (weakly) positive closed current T of bidegree (1,1) such that $z \in \text{supp } T$ but $\text{supp } T \cap K = \emptyset$.

• Yet another characterization. Given a compact set $K \subset \mathbb{C}^n$,

 $z \notin r(K) \iff$ there is a (weakly) positive closed current T of bidegree (1,1) such that $z \in \text{supp} T$ but $\text{supp} T \cap K = \emptyset$.

• Theorem B. Let T be a p.c.c. of bidegree (1,1) on \mathbb{C}^n s.t. $\mathbb{C}^n \setminus \text{supp } T \Subset \mathbb{C}^n$.

 $\mathcal{K}_s = \{z \in \mathbb{C}^n : \operatorname{dist}(z, \operatorname{supp} T) \geq s\}, \quad s > 0,$

is rationally convex in \mathbb{C}^n .

• Yet another characterization. Given a compact set $K \subset \mathbb{C}^n$,

 $z \notin r(K) \iff$ there is a (weakly) positive closed current T of bidegree (1,1) such that $z \in \text{supp} T$ but $\text{supp} T \cap K = \emptyset$.

• Theorem B. Let T be a p.c.c. of bidegree (1,1) on \mathbb{C}^n s.t. $\mathbb{C}^n \setminus \text{supp } T \Subset \mathbb{C}^n$.

$$\mathcal{K}_s = \{z \in \mathbb{C}^n : \operatorname{dist}(z, \operatorname{supp} T) \geq s\}, \quad s > 0,$$

is rationally convex in \mathbb{C}^n .

Appl. Any p.c.c. T of bidegree (1, 1) can be weakly approx. by a sequence of "rational divisors", i.e., $[H_j]/N_j$, where H_j is a hypersurface in \mathbb{C}^n and $N_j \in \mathbb{Z}$. Moreover, H_j 's converge to supp T in the Hausdorff metric.

• Yet another characterization. Given a compact set $K \subset \mathbb{C}^n$,

 $z \notin r(K) \iff$ there is a (weakly) positive closed current T of bidegree (1,1) such that $z \in \text{supp} T$ but $\text{supp} T \cap K = \emptyset$.

• Theorem B. Let T be a p.c.c. of bidegree (1,1) on \mathbb{C}^n s.t. $\mathbb{C}^n \setminus \text{supp } T \in \mathbb{C}^n$.

$$\mathcal{K}_s = \{z \in \mathbb{C}^n : \operatorname{dist}(z, \operatorname{supp} T) \geq s\}, \quad s > 0,$$

is rationally convex in \mathbb{C}^n .

- Appl. Any p.c.c. T of bidegree (1, 1) can be weakly approx. by a sequence of "rational divisors", i.e., $[H_j]/N_j$, where H_j is a hypersurface in \mathbb{C}^n and $N_j \in \mathbb{Z}$. Moreover, H_j 's converge to supp T in the Hausdorff metric.
- Theorem C. Suppose $j: S \hookrightarrow \mathbb{C}^n$ is a smooth totally real submanifold. Then,

 $r(S) = S \iff S$ is isotropic w.r.t some Kähler form ω on \mathbb{C}^n , i.e., $j^*\omega = 0$.

• Yet another characterization. Given a compact set $K \subset \mathbb{C}^n$,

 $z \notin r(K) \iff$ there is a (weakly) positive closed current T of bidegree (1,1) such that $z \in \text{supp} T$ but $\text{supp} T \cap K = \emptyset$.

• Theorem B. Let T be a p.c.c. of bidegree (1,1) on \mathbb{C}^n s.t. $\mathbb{C}^n \setminus \text{supp } T \Subset \mathbb{C}^n$.

$$\mathcal{K}_s = \{z \in \mathbb{C}^n : \operatorname{dist}(z, \operatorname{supp} T) \geq s\}, \quad s > 0,$$

is rationally convex in \mathbb{C}^n .

- Appl. Any p.c.c. T of bidegree (1, 1) can be weakly approx. by a sequence of "rational divisors", i.e., $[H_j]/N_j$, where H_j is a hypersurface in \mathbb{C}^n and $N_j \in \mathbb{Z}$. Moreover, H_j 's converge to supp T in the Hausdorff metric.
- Theorem C. Suppose $j: S \hookrightarrow \mathbb{C}^n$ is a smooth totally real submanifold. Then,

 $r(S) = S \iff S$ is isotropic w.r.t some Kähler form ω on \mathbb{C}^n , i.e., $j^*\omega = 0$.

Appl. New examples of rationally convex sets (using symplectomorphisms).

• Yet another characterization. Given a compact set $K \subset \mathbb{C}^n$,

 $z \notin r(K) \iff$ there is a (weakly) positive closed current T of bidegree (1,1) such that $z \in \text{supp} T$ but $\text{supp} T \cap K = \emptyset$.

• Theorem B. Let T be a p.c.c. of bidegree (1,1) on \mathbb{C}^n s.t. $\mathbb{C}^n \setminus \text{supp } T \in \mathbb{C}^n$.

$$\mathcal{K}_s = \{z \in \mathbb{C}^n : \operatorname{dist}(z, \operatorname{supp} T) \geq s\}, \quad s > 0,$$

is rationally convex in \mathbb{C}^n .

- Appl. Any p.c.c. T of bidegree (1, 1) can be weakly approx. by a sequence of "rational divisors", i.e., $[H_j]/N_j$, where H_j is a hypersurface in \mathbb{C}^n and $N_j \in \mathbb{Z}$. Moreover, H_j 's converge to supp T in the Hausdorff metric.
- Theorem C. Suppose $j: S \hookrightarrow \mathbb{C}^n$ is a smooth totally real submanifold. Then,

 $r(S) = S \iff S$ is isotropic w.r.t some Kähler form ω on \mathbb{C}^n , i.e., $j^*\omega = 0$.

- Appl. New examples of rationally convex sets (using symplectomorphisms).
- Gen. Immersions with special singularities (Gayet, Duval–Gayet, Shafikov–Sukhov, Mitrea).

• Theorem D. Suppose $K \subset \mathbb{C}^n$ is a compact set such that

$$K = \{z \in \mathbb{C}^n : \rho(z) \le 0\}$$

for some spsh ρ defined on a neighborhood $U \supset K$. Then,

 $r(K) = K \iff dd^c \rho$ extends to a Kähler form ω on \mathbb{C}^n .

• Theorem D. Suppose $K \subset \mathbb{C}^n$ is a compact set such that

$$\mathsf{K} = \{ z \in \mathbb{C}^n : \rho(z) \leq 0 \}$$

for some spsh ρ defined on a neighborhood $U \supset K$. Then,

 $r(K) = K \iff dd^c \rho$ extends to a Kähler form ω on \mathbb{C}^n .

• Appl. The union of finitely many disjoint closed balls in \mathbb{C}^n is rationally convex.

• Theorem D. Suppose $K \subset \mathbb{C}^n$ is a compact set such that

$$\mathsf{K} = \{ z \in \mathbb{C}^n : \rho(z) \le \mathsf{0} \}$$

for some spsh ρ defined on a neighborhood $U \supset K$. Then,

 $r(K) = K \iff dd^c \rho$ extends to a Kähler form ω on \mathbb{C}^n .

- Appl. The union of finitely many disjoint closed balls in \mathbb{C}^n is rationally convex.
- Idea of proof. (⇒) regularize and patch currents in the complement ⇒ existence of smooth (1, 1)-form ω vanishing on r(K) and > 0 outside.

• Theorem D. Suppose $K \subset \mathbb{C}^n$ is a compact set such that

$$\mathsf{K} = \{ z \in \mathbb{C}^n : \rho(z) \leq \mathsf{0} \}$$

for some spsh ρ defined on a neighborhood $U \supset K$. Then,

 $r(K) = K \iff dd^c \rho$ extends to a Kähler form ω on \mathbb{C}^n .

- Appl. The union of finitely many disjoint closed balls in \mathbb{C}^n is rationally convex.
- Idea of proof. (⇒) regularize and patch currents in the complement ⇒ existence of smooth (1,1)-form ω vanishing on r(K) and > 0 outside.

(\Leftarrow) Modify ω to ω_{ε} with support $\mathbb{C}^n \setminus \{\rho < \varepsilon\}$ and apply Theorem B.

• Theorem D. Suppose $K \subset \mathbb{C}^n$ is a compact set such that

$$\mathsf{K} = \{ z \in \mathbb{C}^n : \rho(z) \leq \mathsf{0} \}$$

for some spsh ρ defined on a neighborhood $U \supset K$. Then,

 $r(K) = K \iff dd^c \rho$ extends to a Kähler form ω on \mathbb{C}^n .

- Appl. The union of finitely many disjoint closed balls in \mathbb{C}^n is rationally convex.
- Idea of proof. (⇒) regularize and patch currents in the complement ⇒ existence of smooth (1,1)-form ω vanishing on r(K) and > 0 outside.

(\Leftarrow) Modify ω to ω_{ε} with support $\mathbb{C}^n \setminus \{\rho < \varepsilon\}$ and apply Theorem B.

Question. What are the analogues of these results in more general complex manifolds?

 A hypersurface Y in a symplectic manifold (X, ω) is said to be of contact-type w.r.t. ω if there is a contact form λ on Y such that dλ = ω|_Y.

- A hypersurface Y in a symplectic manifold (X, ω) is said to be of contact-type w.r.t. ω if there is a contact form λ on Y such that $d\lambda = \omega|_Y$.
- Equivalently, there is a vector field V on a nbhd. of Y such that $V \pitchfork Y$ and $\mathcal{L}_V \omega = \omega$ (or, $\iota_V \omega = \alpha$).

- A hypersurface Y in a symplectic manifold (X, ω) is said to be of contact-type w.r.t. ω if there is a contact form λ on Y such that dλ = ω|_Y.
- Equivalently, there is a vector field V on a nbhd. of Y such that $V \pitchfork Y$ and $\mathcal{L}_V \omega = \omega$ (or, $\iota_V \omega = \alpha$).
- A Weinstein domain (X, ω, V, f) consists of
 - * a compact symplectic manifold (X, ω) with boundary,
 - * a globally-defined Liouville v.f. V which points transverally out of ∂X .
 - * a Morse function $f: X \to \mathbb{R}$, locally constant on ∂X , s.t. V is gradient-like for f, i.e.,

 $V(f) \ge \delta(|V|^2 + |df|^2), \quad ext{for some } \delta > 0.$

- A hypersurface Y in a symplectic manifold (X, ω) is said to be of contact-type w.r.t. ω if there is a contact form λ on Y such that dλ = ω|_Y.
- Equivalently, there is a vector field V on a nbhd. of Y such that $V \pitchfork Y$ and $\mathcal{L}_V \omega = \omega$ (or, $\iota_V \omega = \alpha$).
- A Weinstein domain (X, ω, V, f) consists of
 - * a compact symplectic manifold (X, ω) with boundary,
 - * a globally-defined Liouville v.f. V which points transverally out of ∂X .
 - * a Morse function $f : X \to \mathbb{R}$, locally constant on ∂X , s.t. V is gradient-like for f, i.e., $V(f) \ge \delta(|V|^2 + |df|^2)$, for some $\delta \ge 0$.

Rmk. The regular level sets of f are hypersurfaces of contact-type w.r.t. ω .

- A hypersurface Y in a symplectic manifold (X, ω) is said to be of contact-type w.r.t. ω if there is a contact form λ on Y such that dλ = ω|_Y.
- Equivalently, there is a vector field V on a nbhd. of Y such that $V \pitchfork Y$ and $\mathcal{L}_V \omega = \omega$ (or, $\iota_V \omega = \alpha$).
- A Weinstein domain (X, ω, V, f) consists of
 - * a compact symplectic manifold (X, ω) with boundary,
 - * a globally-defined Liouville v.f. V which points transverally out of ∂X .
 - * a Morse function $f : X \to \mathbb{R}$, locally constant on ∂X , s.t. V is gradient-like for f, i.e., $V(f) \ge \delta(|V|^2 + |df|^2)$, for some $\delta > 0$.

Rmk. The regular level sets of f are hypersurfaces of contact-type w.r.t. ω .

Question. Which smooth, closed, oriented manifolds can be realized (up to diff.) as contact type hypersurfaces in $(\mathbb{R}^{2n}, \omega_{std})$?

• $X = \{\phi \leq 0\}$ a str ψ cvx cpt in $\mathbb{C}^n \Rightarrow (X, \omega = dd^c \phi, V = \nabla_{\!\omega} \phi, \phi)$ a Wein. dom.

- $X = \{\phi \le 0\}$ a str ψ cvx cpt in $\mathbb{C}^n \Rightarrow (X, \omega = dd^c \phi, V = \nabla_{\!\omega} \phi, \phi)$ a Wein. dom. $\downarrow \downarrow$ $(\partial X, \alpha = d^c \phi)$ a contact-type hypersurface w.r.t ω
- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form

- $X = \{\phi \leq 0\}$ a str ψ cvx cpt in $\mathbb{C}^n \Rightarrow (X, \omega = dd^c \phi, V = \nabla_{\!\omega} \phi, \phi)$ a Wein. dom. $\downarrow \downarrow$ $(\partial X, \alpha = d^c \phi)$ a contact-type hypersurface w.r.t ω
- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form (= ω_{std} at inf.)

- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form $(=\omega_{std} \text{ at inf.})$ $\downarrow \downarrow$ $(X, \omega, V, \phi) \xrightarrow{symp.emb.} (\mathbb{C}^n, \omega_{std})$

- $X = \{\phi \leq 0\}$ a str ψ cvx cpt in $\mathbb{C}^n \Rightarrow (X, \omega = dd^c \phi, V = \nabla_{\omega} \phi, \phi)$ a Wein. dom. \downarrow $(\partial X, \alpha = d^c \phi)$ a contact-type hypersurface w.r.t ω
- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form $(=\omega_{std} \text{ at inf.})$ $(X, \omega, V, \phi) \xrightarrow{symp.emb.} (\mathbb{C}^n, \omega_{std})$ $(\partial X, \alpha) \hookrightarrow \mathbb{C}^n$ as contact-type w.r.t ω_{std}

- $X = \{\phi \le 0\}$ a str ψ cvx cpt in $\mathbb{C}^n \Rightarrow (X, \omega = dd^c \phi, V = \nabla_{\omega} \phi, \phi)$ a Wein. dom. \downarrow $(\partial X, \alpha = d^c \phi)$ a contact-type hypersurface w.r.t ω
- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form $(=\omega_{std} \text{ at inf.})$ $(X, \omega, V, \phi) \xrightarrow{symp.emb.} (\mathbb{C}^n, \omega_{std})$ $(\partial X, \alpha) \hookrightarrow \mathbb{C}^n$ as contact-type w.r.t ω_{std}
- Theorem E (Eliashberg, Eliashberg-Cieliebak). Let n ≥ 3. Let X ⊂ Cⁿ be a smoothly bounded domain. T.F.A.E.
 - * X admits a defining Morse function with no critical points of index > n.
 - * X is smoothly isotopic to a str ψ convex compact domain.
 - * X is smoothly isotopic to a rationally convex compact domain.

- $X = \{\phi \le 0\}$ a str ψ cvx cpt in $\mathbb{C}^n \Rightarrow (X, \omega = dd^c \phi, V = \nabla_{\omega} \phi, \phi)$ a Wein. dom. \downarrow $(\partial X, \alpha = d^c \phi)$ a contact-type hypersurface w.r.t ω
- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form $(=\omega_{std} \text{ at inf.})$ $(X, \omega, V, \phi) \xrightarrow{symp.emb.} (\mathbb{C}^n, \omega_{std})$ $(\partial X, \alpha) \hookrightarrow \mathbb{C}^n$ as contact-type w.r.t ω_{std}
- Theorem E (Eliashberg, Eliashberg-Cieliebak). Let n ≥ 3. Let X ⊂ Cⁿ be a smoothly bounded domain. T.F.A.E.
 - * X admits a defining Morse function with no critical points of index > n.
 - * X is smoothly isotopic to a str ψ convex compact domain.
 - * X is smoothly isotopic to a rationally convex compact domain.
- Forstnerič (1992), Nemirovski–Siegel (2016). Complete classification of all disk-bundles over a compact two-dimensional surface that embed as

- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form $(=\omega_{std} \text{ at inf.})$ $(X, \omega, V, \phi) \xrightarrow{symp.emb.} (\mathbb{C}^n, \omega_{std})$ $(\partial X, \alpha) \hookrightarrow \mathbb{C}^n$ as contact-type w.r.t ω_{std}
- Theorem E (Eliashberg, Eliashberg–Cieliebak). Let n ≥ 3. Let X ⊂ Cⁿ be a smoothly bounded domain. T.F.A.E.
 - * X admits a defining Morse function with no critical points of index > n.
 - *~X is smoothly isotopic to a str ψ convex compact domain.
 - * X is smoothly isotopic to a rationally convex compact domain.
- Forstnerič (1992), Nemirovski–Siegel (2016). Complete classification of all disk-bundles over a compact two-dimensional surface that embed as
 - * str ψ cvx domains in \mathbb{C}^2
 - * rationally convex domains in \mathbb{C}^2 .

- X is rat cvx in $\mathbb{C}^n \Rightarrow dd^c \phi$ extends to a Kähler form $(=\omega_{std} \text{ at inf.})$ $(X, \omega, V, \phi) \xrightarrow{symp.emb.} (\mathbb{C}^n, \omega_{std})$ $(\partial X, \alpha) \hookrightarrow \mathbb{C}^n$ as con<u>tact-type w.r.t ω_{std} </u>
- Theorem E (Eliashberg, Eliashberg-Cieliebak). Let n ≥ 3. Let X ⊂ Cⁿ be a smoothly bounded domain. T.F.A.E.
 - * X admits a defining Morse function with no critical points of index > n.
 - *~X is smoothly isotopic to a str ψ convex compact domain.
 - * X is smoothly isotopic to a rationally convex compact domain.
- Forstnerič (1992), Nemirovski–Siegel (2016). Complete classification of all disk-bundles over a compact two-dimensional surface that embed as
 - $* \operatorname{str} \psi \operatorname{cvx}$ domains in \mathbb{C}^2
 - * rationally convex domains in \mathbb{C}^2 .
 - $\exists X \subset \mathbb{C}^2$ that isotopes to a str ψ cvx, but not rat cvx domain in \mathbb{C}^2

 Mark–Tosun (2022). No Brieskorn integer homology 3-sphere is orientation-preserving diffeo. to the boundary of a rat cvx cpt domain in C².

 Mark–Tosun (2022). No Brieskorn integer homology 3-sphere is orientation-preserving diffeo. to the boundary of a rat cvx cpt domain in C².

• Example:

$$\Sigma(\rho,q,r) = \{(z,w,\eta) \in \mathbb{C}^3 : z^{\rho} + w^q + \eta^r = 0\} \cap \mathbb{S}(\varepsilon),$$

where, $p, q, r \ge 2$ are pairwise relatively prime integers.

 Mark–Tosun (2022). No Brieskorn integer homology 3-sphere is orientation-preserving diffeo. to the boundary of a rat cvx cpt domain in C².

• Example:

$$\Sigma(
ho,q,r)=\{(z,w,\eta)\in\mathbb{C}^3:z^{
ho}+w^q+\eta^r=0\}\cap\mathbb{S}(arepsilon),$$

where, $p, q, r \ge 2$ are pairwise relatively prime integers.

• Gompf's (open) conjecture (2013). No nontrivial Brieskorn integer homology 3-sphere bounds a str ψ cvx domain in \mathbb{C}^2 .

X is a projective manifold and $K \subset X$ is a compact subset.

X is a projective manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $r(K) = \{z \in X : \text{every algebraic hypersurface through } z \text{ intersects } K\}$ $R(K) = \{z \in X : \text{every positive divisor through } z \text{ intersects } K\}$

positive divisor: zero locus of the global hol. section of a positive line bundle on X • On \mathbb{P}^n , r(K) = R(K).

X is a projective manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $r(K) = \{z \in X : \text{every algebraic hypersurface through } z \text{ intersects } K\}$ $R(K) = \{z \in X : \text{every positive divisor through } z \text{ intersects } K\}$

positive divisor: zero locus of the global hol. section of a positive line bundle on X

- On \mathbb{P}^n , r(K) = R(K).
- Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ and $K = \mathbb{P}^1 \times \{0\}$. Then

r(K) = K

but every positive divisor on X intersects K, i.e., R(K) = X.

X is a projective manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $r(K) = \{z \in X : \text{every algebraic hypersurface through } z \text{ intersects } K\}$ $R(K) = \{z \in X : \text{every positive divisor through } z \text{ intersects } K\}$

positive divisor: zero locus of the global hol. section of a positive line bundle on X

- On \mathbb{P}^n , r(K) = R(K).
- Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ and $K = \mathbb{P}^1 \times \{0\}$. Then

r(K) = K

but every positive divisor on X intersects K, i.e., R(K) = X.

• Let T be a nontrivial p.c.c. of bidegree (1,1) on X. Then, R(suppT) = X.

X is a projective manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $r(K) = \{z \in X : \text{every algebraic hypersurface through } z \text{ intersects } K\}$ $R(K) = \{z \in X : \text{every positive divisor through } z \text{ intersects } K\}$

positive divisor: zero locus of the global hol. section of a positive line bundle on X

- On \mathbb{P}^n , r(K) = R(K).
- Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ and $K = \mathbb{P}^1 \times \{0\}$. Then

$$r(K) = K$$

but every positive divisor on X intersects K, i.e., R(K) = X.

- Let T be a nontrivial p.c.c. of bidegree (1,1) on X. Then, R(suppT) = X.
- Following Guedj (1999), we say that K is rationally convex in X if

$$R(K) = K.$$

• Boudreaux-G.-Shafikov. Let K be a rationally convex subset of a projective manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of meromorphic functions of the form f/g, where f, g are global holomorphic sections of a positive line bundle on X, and g does not vanish on K.

- Boudreaux-G.-Shafikov. Let K be a rationally convex subset of a projective manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of meromorphic functions of the form f/g, where f, g are global holomorphic sections of a positive line bundle on X, and g does not vanish on K.
- Guedj. Let T be a p.c.c. of bidegree (1, 1) on a projective homogeneous manifold X such that $[T] = c_1(L)$ of some positive holomorphic line bundle L. Then, $X \setminus \text{supp } T$ can be exhausted by rationally convex sets.

- Boudreaux-G.-Shafikov. Let K be a rationally convex subset of a projective manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of meromorphic functions of the form f/g, where f, g are global holomorphic sections of a positive line bundle on X, and g does not vanish on K.
- Guedj. Let T be a p.c.c. of bidegree (1, 1) on a projective homogeneous manifold X such that $[T] = c_1(L)$ of some positive holomorphic line bundle L. Then, $X \setminus \text{supp } T$ can be exhausted by rationally convex sets.
- Guedj. Let S be a smooth compact totally real submanifold of a projective manifold X. Then, R(S) = S if and only if S is isotropic with respect to a smooth Hodge form θ on X. (θ is Kähler and [θ] ∈ H²(X; Z))

- Boudreaux-G.-Shafikov. Let K be a rationally convex subset of a projective manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of meromorphic functions of the form f/g, where f, g are global holomorphic sections of a positive line bundle on X, and g does not vanish on K.
- Guedj. Let T be a p.c.c. of bidegree (1, 1) on a projective homogeneous manifold X such that $[T] = c_1(L)$ of some positive holomorphic line bundle L. Then, $X \setminus \text{supp } T$ can be exhausted by rationally convex sets.
- Guedj. Let S be a smooth compact totally real submanifold of a projective manifold X. Then, R(S) = S if and only if S is isotropic with respect to a smooth Hodge form θ on X. (θ is Kähler and [θ] ∈ H²(X; Z))
- Boudreaux-G.-Shafikov. Let X be a projective manifold and φ be a smooth spsh function on an open set $U \subset X$. The compact set $K = \{z \in U : \varphi(z) \le 0\}$ is rationally convex if and only if $dd^c\varphi$ extends to a Hodge form on X.

X is a Stein manifold and $K \subset X$ is a compact subset.

X is a Stein manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $h(K) = \{z \in X : \text{every hypersurface through } z \text{ intersects } K \}$

 $H(K) = \{z \in X : \text{every principal hypersurface through } z \text{ intersects } K\}$

X is a Stein manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $h(K) = \{z \in X : \text{every hypersurface through } z \text{ intersects } K \\ H(K) = \{z \in X : \text{every principal hypersurface through } z \text{ intersects } K\}$

• Boudreaux–Shafikov.

 $\begin{aligned} h(K) &= \{z \in X : |m(z)| \le \|m\|_{\mathcal{K}} \quad \forall \text{mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \\ H(K) &= \{z \in X : |m(z)| \le \|m\|_{\mathcal{K}} \quad \forall \text{str. mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \end{aligned}$

str meromorphic: quotient of two entire functions which are pointwise relatively prime.

X is a Stein manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $h(K) = \{z \in X : \text{every hypersurface through } z \text{ intersects } K \\ H(K) = \{z \in X : \text{every principal hypersurface through } z \text{ intersects } K\}$

• Boudreaux–Shafikov.

 $\begin{aligned} h(K) &= \{z \in X : |m(z)| \le ||m||_{\mathcal{K}} \quad \forall \text{mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \\ H(K) &= \{z \in X : |m(z)| \le ||m||_{\mathcal{K}} \quad \forall \text{str. mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \end{aligned}$

str meromorphic: quotient of two entire functions which are pointwise relatively prime.

• We say that K is meromorphically convex if

$$h(K) = K$$

and strongly meromorphically convex if

$$H(K) = K.$$

X is a Stein manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $h(K) = \{z \in X : \text{every hypersurface through } z \text{ intersects } K \\ H(K) = \{z \in X : \text{every principal hypersurface through } z \text{ intersects } K\}$

• Boudreaux–Shafikov.

 $\begin{aligned} h(K) &= \{z \in X : |m(z)| \le ||m||_{\mathcal{K}} \quad \forall \text{mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \\ H(K) &= \{z \in X : |m(z)| \le ||m||_{\mathcal{K}} \quad \forall \text{str. mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \end{aligned}$

str meromorphic: quotient of two entire functions which are pointwise relatively prime.

• We say that K is meromorphically convex if

$$h(K) = K$$

and strongly meromorphically convex if

$$H(K)=K.$$

• Colțoiu (1999). h(K) = H(K) for all compacts $K \iff \text{Hom}(H_2(X;\mathbb{Z}),\mathbb{Z}) = 0$.

X is a Stein manifold and $K \subset X$ is a compact subset.

• Two hulls:

 $h(K) = \{z \in X : \text{every hypersurface through } z \text{ intersects } K \\ H(K) = \{z \in X : \text{every principal hypersurface through } z \text{ intersects } K\}$

Boudreaux–Shafikov.

 $\begin{aligned} h(K) &= \{ z \in X : |m(z)| \le \|m\|_{\mathcal{K}} \quad \forall \text{mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \\ H(K) &= \{ z \in X : |m(z)| \le \|m\|_{\mathcal{K}} \quad \forall \text{str. mero. } m \text{ with } \mathcal{I}(m) \cap (K \cup \{z\}) = \emptyset \} \end{aligned}$

str meromorphic: quotient of two entire functions which are pointwise relatively prime.

• We say that K is meromorphically convex if

$$h(K) = K$$

and strongly meromorphically convex if

$$H(K)=K.$$

• Colțoiu (1999). h(K) = H(K) for all compacts $K \iff \text{Hom}(H_2(X;\mathbb{Z}),\mathbb{Z}) = 0$.

• Strong mero cvx corresponds to rat cvx under proper holomorphic emb $X \hookrightarrow \mathbb{C}^n$.

• Hirschowitz, Boudreaux–Shafikov. Let K be a (strongly) meromorhpically subset of a Stein manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of (strongly) meromorphic functions on X.

- Hirschowitz, Boudreaux–Shafikov. Let K be a (strongly) meromorhpically subset of a Stein manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of (strongly) meromorphic functions on X.
- Guedj. Let T be a p.c.c. of bidegree (1, 1) on a Stein manifold X such that $[T] = c_1(L)$ of some positive holomorphic line bundle L. Then, $X \setminus \text{supp } T$ can be exhausted by meromorphically convex sets.

- Hirschowitz, Boudreaux–Shafikov. Let K be a (strongly) meromorhpically subset of a Stein manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of (strongly) meromorphic functions on X.
- Guedj. Let T be a p.c.c. of bidegree (1, 1) on a Stein manifold X such that $[T] = c_1(L)$ of some positive holomorphic line bundle L. Then, $X \setminus \text{supp } T$ can be exhausted by meromorphically convex sets.
- Guedj, Boudreaux-Shafikov. Let S be a smooth compact totally real submanifold of a Stein manifold X. Then,
 - $h(S) = S \iff S$ is isotropic w.r.t. a smooth Hodge form θ on X,
 - $H(S) = S \iff S$ is isotropic w.r.t. a smooth trivial Hodge form θ on X.

- Hirschowitz, Boudreaux–Shafikov. Let K be a (strongly) meromorhpically subset of a Stein manifold X. Then, every holomorphic function in a neighborhood of K is the uniform limit on K of a sequence of (strongly) meromorphic functions on X.
- Guedj. Let T be a p.c.c. of bidegree (1, 1) on a Stein manifold X such that $[T] = c_1(L)$ of some positive holomorphic line bundle L. Then, $X \setminus \text{supp } T$ can be exhausted by meromorphically convex sets.
- Guedj, Boudreaux–Shafikov. Let S be a smooth compact totally real submanifold of a Stein manifold X. Then,
 - $h(S) = S \iff S$ is isotropic w.r.t. a smooth Hodge form θ on X,
 - $H(S) = S \iff S$ is isotropic w.r.t. a smooth trivial Hodge form θ on X.
- Boudreaux-G.-Shafikov. Let X be a Stein manifold and φ be a smooth spsh function on an open set $U \subset X$. The compact set $K = \{z \in U : \varphi(z) \le 0\}$ is (strongly) meromorphically convex if and only if $dd^c\varphi$ extends to a (trivial) Hodge form on X.

A characterization of all rationally convex sets. Let X be a Stein manifold, and $K \subset X$ be a compact set. Then K is (strongly) meromorphically convex in X if and only if there exists a neighborhood basis of K such that every element of the basis is of the form $\Omega = \{\rho < 0\}$, where ρ is a strictly plurisubharmonic function in a neighborhood of $\overline{\Omega}$, and $dd^c \rho$ extends off a neighborhood of $\overline{\Omega}$ to a (trivial) Hodge form on X. The same characterization holds for rational convexity of proper compact subsets of a projective manifold.

Convexity w.r.t. currents. Meromorphic convexity in Stein manifolds is equivalent to convexity with respect to p.c.c. T of bidegree (1, 1) such that $[T] \in H^2(X, \mathbb{Z})$.

Two key ingredients

Lemma A. Let (X, ω) be a projective manifold endowed with a Kähler form. Let $K \subset X$ be rationally convex.

- (i) For every z ∉ K, ∃ p.c.c. T of bidegree (1,1) such that [T] ∈ H²(X, Z), T admits a continuous potential, is smooth and positive at z and vanishes in a neighborhood of K.
- (ii) for every $\varepsilon>0$ and rel cpt nbhd V of K, there exists a smooth closed (1,1)-form ω_ε such that
 - $\omega_{arepsilon} \geq \omega$ on $X \setminus V$
 - $\omega_{\varepsilon} \equiv 0$ on a neighborhood of K
 - $\omega_{arepsilon} \geq -arepsilon \omega$ on V
 - $[\omega_{\varepsilon}] \in H^2(X, \mathbb{Z}).$

Rmk. Theorem B from Duval–Sibony doesn't generalize to all projective X.

Lemma B. Let X be a projective manifold and $V \subset X$ be an open subset. Let L be a positive line bundle on X and φ a positive continuous metric of L on X. Let $s \in \mathcal{O}(V, L)$. Suppose

$${\mathcal K}=\{z\in {\mathcal V}:\|s\|_arphi\ge 1\}$$

is compact. Then, K is rationally convex.

THANK YOU.