WANDERING DOMAINS and BLASCHKE SEQUENCES via QC SURGERY

Complex Analysis, Geometry and Dynamics III Portorož, June 12th, 2024 Núria Fagella (Joint work with V. Evdoridou, L. Pardo-Simón and L. Geyer)

Facultat de Matemàtiques i Informàtica, UB

Centre de recerca Matemàtica de la UB

Institut de Matemàtica

HOLOMORPHIC DYNAMICS: THE BASIC PARTITION

We consider dynamics of $f : \mathbb{C} \to \mathbb{C}$ entire transcendental.

The complex plane decomposes into two **totally invariant sets**:

- The Fatou set F(f) (normal or stable set):
 - $\{f^n\}$ normal (equicontinuous) on each **Fatou component**

1

HOLOMORPHIC DYNAMICS: THE BASIC PARTITION

We consider dynamics of $f : \mathbb{C} \to \mathbb{C}$ entire transcendental.

The complex plane decomposes into two **totally invariant sets**:

- **The Fatou set** F(f) (normal or stable set):
 - {*f*^{*n*}} normal (equicontinuous) on each **Fatou component**
- The Julia set $J(f) = \widehat{\mathbb{C}} \setminus F(f)$ (the chaotic set)
 - The closure of the set of repelling periodic points
 - The boundary between the different stable domains

HOLOMORPHIC DYNAMICS: THE BASIC PARTITION

We consider dynamics of $f : \mathbb{C} \to \mathbb{C}$ entire transcendental.

The complex plane decomposes into two **totally invariant sets**:

- **The Fatou set** F(f) (normal or stable set):
 - $\{f^n\}$ normal (equicontinuous) on each **Fatou component**
- The Julia set $J(f) = \widehat{\mathbb{C}} \setminus F(f)$ (the chaotic set)
 - The closure of the set of repelling periodic points
 - The boundary between the different stable domains

1

• The Fatou set is open and typically consists of infinitely many components, known as Fatou components.

• The **Fatou set** is open and typically consists of infinitely many components, known as **Fatou components**.

• Their boundaries belong to the Julia set, so Fatou components are mapped to Fatou components.

• The Fatou set is open and typically consists of infinitely many components, known as Fatou components.

• Their boundaries belong to the Julia set, so Fatou components are mapped to Fatou components.

• Three possibilities:

 $\begin{cases} \textbf{Periodic} & \text{if } f^p(U) = U \text{ for some } p \geq 1 \\ \textbf{Preperiodic} & \text{if } f^k(U) \text{ is periodic for some } k > 1 \text{ (and not earlier)} \\ \textbf{Wandering} & \text{if } f^k(U) \text{ is not periodic for any } k \geq 1. \end{cases}$

If U is a (simply connected) Fatou component and $\varphi : \mathbb{D} \to U$ is the Riemann map, then $g := \varphi^{-1} \circ f \circ \varphi$ is an **associated inner function** to f (holomorphic self-map of \mathbb{D} with a.a. radial limits in $\partial \mathbb{D}$).

If U is a (simply connected) Fatou component and $\varphi : \mathbb{D} \to U$ is the Riemann map, then $g := \varphi^{-1} \circ f \circ \varphi$ is an **associated inner function** to f (holomorphic self-map of \mathbb{D} with a.a. radial limits in $\partial \mathbb{D}$).

Warning! Neither g nor φ need to extend to the $\partial \mathbb{D}$.

If U is a (simply connected) Fatou component and $\varphi : \mathbb{D} \to U$ is the Riemann map, then $g := \varphi^{-1} \circ f \circ \varphi$ is an **associated inner function** to f (holomorphic self-map of \mathbb{D} with a.a. radial limits in $\partial \mathbb{D}$).

Warning! Neither g nor φ need to extend to the $\partial \mathbb{D}$.

• Transfering results from g to f is not always possible.

If U is a (simply connected) Fatou component and $\varphi : \mathbb{D} \to U$ is the Riemann map, then $g := \varphi^{-1} \circ f \circ \varphi$ is an **associated inner function** to f (holomorphic self-map of \mathbb{D} with a.a. radial limits in $\partial \mathbb{D}$).

Warning! Neither g nor φ need to extend to the $\partial \mathbb{D}$.

- Transfering results from g to f is not always possible.
- If deg $f < \infty$ then g is a finite Blasche product.

Question: Which inner functions can be realized as **associated inner functions** to a (simply connected) Fatou component?

Question: Which inner functions can be realized as **associated inner functions** to a (simply connected) Fatou component?

A few explicit examples are due to Baker, Devaney-Goldberg from the 80's.

Question: Which inner functions can be realized as **associated inner functions** to a (simply connected) Fatou component?

A few explicit examples are due to Baker, Devaney-Goldberg from the 80's.

A more systematic study in [Evdoridou-Rempe-Sixsmith'20]

As for Baker domains, **wandering domains** (= **wandering components**) can only exist for **transcendental maps** (i.e. with essential singularities).

• U is a wandering domain if $f^n(U) \cap f^m(U) = \emptyset$ for all $n \neq m$.

 $z+2\pi+\sin(z)$

• They do **not** exist for rational maps [Sullivan'82] – only for transcendental.

- They do **not** exist for rational maps [Sullivan'82] only for transcendental.
- "Recently" discovered [Baker'80]

- They do **not** exist for rational maps [Sullivan'82] only for transcendental.
- "Recently" discovered [Baker'80]
- It is not easy to construct examples WD are not associated to periodic orbits.

- They do **not** exist for rational maps [Sullivan'82] only for transcendental.
- "Recently" discovered [Baker'80]
- It is not easy to construct examples WD are not associated to periodic orbits.
- They do not exist for maps with a finite number of **singular** values (singularities of f^{-1}).

- They do **not** exist for rational maps [Sullivan'82] only for transcendental.
- "Recently" discovered [Baker'80]
- It is not easy to construct examples WD are not associated to periodic orbits.
- They do not exist for maps with a finite number of **singular** values (singularities of f^{-1}).
- Major open questions related to wandering domains.

- They do **not** exist for rational maps [Sullivan'82] only for transcendental.
- "Recently" discovered [Baker'80]
- It is not easy to construct examples WD are not associated to periodic orbits.
- They do not exist for maps with a finite number of **singular** values (singularities of f^{-1}).
- Major open questions related to wandering domains.
- Need to understand dynamics inside the WD
 [Benini-Evdoridou-F-Rippon-Stallard'22], on their boundary
 [BEFRS'23,24] and also the relation of the WD with the singular
 values of the map (all related [Baranski-F-Jarque-Karpinska'17])

Is there also a **relation to INNER FUNCTIONS**??

Is there also a **relation to INNER FUNCTIONS**??

Choose a base point $z_0 \in U$ and define $z_n := f^n(z_0) \in U_n$.

Is there also a **relation to INNER FUNCTIONS**??

Choose a base point $z_0 \in U$ and define $z_n := f^n(z_0) \in U_n$. Choose Riemann maps $\varphi_n : \mathbb{D} \to U_n$ such that $\varphi_n(z_n) = 0$. (Other choices are also possible!!)

Is there also a **relation to INNER FUNCTIONS**??

Choose a base point $z_0 \in U$ and define $z_n := f^n(z_0) \in U_n$. Choose Riemann maps $\varphi_n : \mathbb{D} \to U_n$ such that $\varphi_n(z_n) = 0$. (Other choices are also possible!!)

• (g_n) sequence of inner functions associated to to $(f|_{U_n})$.

• We say that $(f|_{U_n})$ and (g_n) are **conformally equivalent**.

QUESTION: Can every **sequence** of inner functions be **realized** by the wandering orbit of some entire map *f*? If so, what can we say about *f*?

QUESTION: Can every **sequence** of inner functions be **realized** by the wandering orbit of some entire map *f*? If so, what can we say about *f*?

ANSWER: Yes, under some conditions.

QUESTION: Can every **sequence** of inner functions be **realized** by the wandering orbit of some entire map *f*? If so, what can we say about *f*?

ANSWER: Yes, under some conditions.

Theorem [EFGP'24]

Let (\tilde{b}_n) sequence of **uniformly hyperbolic** finite Blaschke products. Then, \exists an entire transcendental function f with an orbit of scwd (simply connected wandering domains) (U_n) and a sequence of conformal maps $(\Theta_n : U_n \to \mathbb{D})$ such that

$$f|_{U_n} = \Theta_{n+1}^{-1} \circ \widetilde{b}_n \circ \Theta_n.$$

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

Let (b_n) be a sequence of Blaschke products as above with $2 \leq \deg(b_n) = d_n \leq d < \infty$. Then TFAE:

• $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

- $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.
- $\exists s \in (0,1)$ such that $\operatorname{Crit}(b_n) \subset \mathbb{D}_s$ for all n.

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

- $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.
- $\exists s \in (0,1)$ such that $\operatorname{Crit}(b_n) \subset \mathbb{D}_s$ for all n.
- Given any orbit (z_n) , $\exists C$ such that $d_{\mathbb{D}^{(n)}}(z_n, c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

- $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.
- $\exists s \in (0,1)$ such that $\operatorname{Crit}(b_n) \subset \mathbb{D}_s$ for all n.
- Given any orbit (z_n) , $\exists C$ such that $d_{\mathbb{D}^{(n)}}(z_n, c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.
- There exists an orbit (z_n) and a constant C such that $d_{\mathbb{D}^{(n)}}(z_n,c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

Let (b_n) be a sequence of Blaschke products as above with $2 \leq \deg(b_n) = d_n \leq d < \infty$. Then TFAE:

- $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.
- $\exists s \in (0,1)$ such that $\operatorname{Crit}(b_n) \subset \mathbb{D}_s$ for all n.
- Given any orbit (z_n) , $\exists C$ such that $d_{\mathbb{D}^{(n)}}(z_n, c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.
- There exists an orbit (z_n) and a constant C such that $d_{\mathbb{D}^{(n)}}(z_n,c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.

In any of these cases, we say that (b_n) is **uniformly hyperbolic**.

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

Let (b_n) be a sequence of Blaschke products as above with $2 \leq \deg(b_n) = d_n \leq d < \infty$. Then TFAE:

- $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.
- $\exists s \in (0,1)$ such that $\operatorname{Crit}(b_n) \subset \mathbb{D}_s$ for all n.
- Given any orbit (z_n) , $\exists C$ such that $d_{\mathbb{D}^{(n)}}(z_n, c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.
- There exists an orbit (z_n) and a constant C such that $d_{\mathbb{D}^{(n)}}(z_n,c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.

In any of these cases, we say that (b_n) is **uniformly hyperbolic**.

Moreover $\overline{b_n(\mathbb{D}_r)} \subset \mathbb{D}_r$, hence $b_n^{-1}(\mathbb{D}_r) \supset \overline{\mathbb{D}_r}$

Consider Blaschke products:
$$b(z) := z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k}z}$$

Definition/Theorem

Let (b_n) be a sequence of Blaschke products as above with $2 \leq \deg(b_n) = d_n \leq d < \infty$. Then TFAE:

- $\exists r \in (0,1)$ such that $\operatorname{Zeros}(b_n) \subset \mathbb{D}_r$ for all n.
- $\exists s \in (0,1)$ such that $\operatorname{Crit}(b_n) \subset \mathbb{D}_s$ for all n.
- Given any orbit (z_n) , $\exists C$ such that $d_{\mathbb{D}^{(n)}}(z_n, c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.
- There exists an orbit (z_n) and a constant C such that $d_{\mathbb{D}^{(n)}}(z_n,c) \leq C$ for all $c \in \operatorname{Crit}(b_n)$.

In any of these cases, we say that (b_n) is **uniformly hyperbolic**.

Moreover $\overline{b_n(\mathbb{D}_r)} \subset \mathbb{D}_r$, hence $b_n^{-1}(\mathbb{D}_r) \supset \overline{\mathbb{D}_r}$

bm

bm
• We shall prove the realizability theorem using a **qc surgery construction**, hence we will have **some control** on the properties of the final function *f* (essential for our **applications**). We shall prove the realizability theorem using a qc surgery construction, hence we will have some control on the properties of the final function f (essential for our applications).

• Recently announced a more general realizability theorem by Evdoridou-MartiPete-Rempe, using approximation theory.

 We shall prove the realizability theorem using a qc surgery construction, hence we will have some control on the properties of the final function f (essential for our applications).

• Recently announced a more general realizability theorem by Evdoridou-MartiPete-Rempe, using approximation theory.

• Surgery in a **finite number of wandering domains** is "easy" and has been done before [F-Henriksen'09] [Evdoridou-Rempe-Sixsmith'20]

Definition

A map $\phi: U \to V$, $U, V \subset \mathbb{C}$ is K-quasiconformal if :

- 1. ϕ is an orientation preserving homeomorphism,
- 2. ϕ is absolutely continuous on lines (\Rightarrow differentiable a.e.)
- 3. $||\mu(z)||_{\infty} \le k < 1$ a.e. where $K := \frac{1+k}{1-k} \ge 1$ and

$$\mu(z) := \phi^* \mu_0(z) := \frac{\partial_{\bar{z}} \phi}{\partial_z \phi}(z)$$
 a.e. where defined.

• 1-qc maps are conformal ($\mu = \mu_0 \equiv 0$, k = 0).

• $K \in [1, \infty)$ (or $k \in [0, 1)$) measures angle distortion, or how far ϕ is from being conformal.

• μ encodes the information of the **field of ellipses** $(D_z \phi)^{-1}(\mathbb{S}^1)$ (eccentricity and orientation), defined a.e.

• **Pasting** quasiconformal maps along "reasonable" curves preserves quasiconformality. (This gives great **flexibility**!)

• **Pasting** quasiconformal maps along "reasonable" curves preserves quasiconformality. (This gives great **flexibility**!)

• If f is K_1 -qc and g is K_2 -qc \Rightarrow $f \circ g$ is $K_1 \cdot K_2$ -qc

• **Pasting** quasiconformal maps along "reasonable" curves preserves quasiconformality. (This gives great **flexibility**!)

- If f is K_1 -qc and g is K_2 -qc \Rightarrow $f \circ g$ is $K_1 \cdot K_2$ -qc
- If f is K-qc then f^{-1} is also K-qc.

• **Pasting** quasiconformal maps along "reasonable" curves preserves quasiconformality. (This gives great **flexibility**!)

- If f is K_1 -qc and g is K_2 -qc \Rightarrow $f \circ g$ is $K_1 \cdot K_2$ -qc
- If f is K-qc then f^{-1} is also K-qc.

 $g: U \rightarrow V$ is a K-quasiregular map if g is locally K-quasiconformal except at a discrete set of points.

 $\begin{array}{ccc} \mbox{conformal} & \longleftrightarrow & \mbox{holomorphic} \\ \mbox{quasiconformal} & \longleftrightarrow & \mbox{quasiregular} \end{array}$

• **Pasting** quasiconformal maps along "reasonable" curves preserves quasiconformality. (This gives great **flexibility**!)

- If f is K_1 -qc and g is K_2 -qc \Rightarrow $f \circ g$ is $K_1 \cdot K_2$ -qc
- If f is K-qc then f^{-1} is also K-qc.

 $g: U \rightarrow V$ is a K-quasiregular map if g is locally K-quasiconformal except at a discrete set of points.

 $\begin{array}{ccc} \mbox{conformal} & \longleftrightarrow & \mbox{holomorphic} \\ \mbox{quasiconformal} & \longleftrightarrow & \mbox{quasiregular} \end{array}$

• Quasiregular maps often are used as **dynamical models** of holomorphic maps, i.e. $\phi \circ g = G \circ \phi$, where g is q.r., ϕ is q.c. and G is holomorphic. We write $g \sim_{gc} G$.

Question: But when is a quasiregular map a dynamical model for some holomorphic map??

Question: But when is a quasiregular map a dynamical model for some holomorphic map??

Sullivan's principle

 $g: \mathcal{C}
ightarrow \mathbb{C}$ is qc conjugate to some holomorphic map \mathcal{G}

\iff

iterates $\{g^n\}$ are K-quasiregular, for all n > 0 and some $K < \infty$.

Question: But when is a quasiregular map a dynamical model for some holomorphic map??

Sullivan's principle $g: C \to \mathbb{C}$ is qc conjugate to some holomorphic map G \iff iterates $\{g^n\}$ are K-quasiregular, for all n > 0 and some $K < \infty$.

The proof is based on the celebrated theorem of Morrey, Ahlfors, Bers, and Bojarski (the Measurable Riemann Mapping Theorem) which proves the existence of K-quasiconformal solutions of the Beltrami PDE

$$\partial_{\bar{z}}\phi=\mu(z)\,\partial_z\phi$$

. for every μ measurable such that $||\mu||_{\infty} \leq k < 1$.

.

QUESTION: Can every **sequence** of inner functions be **realized** by the wandering orbit of some entire map *f*? If so, what can we say about *f*?

QUESTION: Can every **sequence** of inner functions be **realized** by the wandering orbit of some entire map *f*? If so, what can we say about *f*?

Theorem [EFGP'24] Let (\tilde{b}_n) sequence of **uniformly hyperbolic** finite Blaschke products. Then, \exists an entire transcendental function f with an orbit of scwd (simply connected wandering domains) (U_n) and a sequence of conformal maps $(\Theta_n : U_n \to \mathbb{D})$ such that

$$f|_{U_n} = \Theta_{n+1}^{-1} \circ \widetilde{b}_n \circ \Theta_n.$$

STEP 1 of the proof: The gluing map

Step 1: Construction of the "gluing map"

Two uniformly hyperbolic sequences $b_n \colon \mathbb{D}^{(n)} \to \mathbb{D}^{(n+1)}$ and $\widetilde{b}_n \colon \widetilde{\mathbb{D}}^{(n)} \to \widetilde{\mathbb{D}}^{(n+1)}$ with matching degrees $d_n = \widetilde{d}_n$, are K-qc equivalent near the boundary of \mathbb{D} .

STEP 1 of the proof: The gluing map

Step 1: Construction of the "gluing map"

Two **uniformly hyperbolic** sequences $b_n : \mathbb{D}^{(n)} \to \mathbb{D}^{(n+1)}$ and $\widetilde{b}_n : \widetilde{\mathbb{D}}^{(n)} \to \widetilde{\mathbb{D}}^{(n+1)}$ with **matching degrees** $d_n = \widetilde{d}_n$, are K-**qc equivalent** near the boundary of \mathbb{D} .

More precisely: $\exists K > 1 \text{ and } h_n : \mathbb{D}^{(n)} \to \widetilde{\mathbb{D}}^{(n)} K - \text{qc maps, such that for all } n \in \mathbb{N}$ (a) $h_n(z) = z \text{ for } |z| \leq r$; (b) $b_n = h_{n+1}^{-1} \circ \widetilde{b}_n \circ h_n$ on the annulus $C_n := \mathbb{D}^{(n)} \setminus b_n^{-1}(\mathbb{D}_r)$.

$$h_n = \begin{cases} \operatorname{Id} & \text{on } \mathbb{D}_r \\ \widetilde{b}_n^{-1} \circ b_n & \text{on } \partial^o A_n \end{cases}$$

$$h_n = \begin{cases} \operatorname{Id} & \text{on } \mathbb{D}_r \\ \widetilde{b}_n^{-1} \circ b_n & \text{on } \partial^{\circ} A_n \\ \psi_n & \text{on } A_n \text{ int} \end{cases}$$

on $\partial^{\circ} A_n$ on A_n interpolating K-qc between $h_n|_{\partial^{\circ} A_n}$ and Id

K = K(r, d) INDEPENDENT of n

Step 2: Gluing the sequence inside an actual wandering domain

Theorem [EFGP'24]

Let f be an entire function, (U_n) an orbit of scwd, and $(\tilde{b}_n : \mathbb{D} \to \mathbb{D})$ a sequence of Blaschke products such that $2 \leq \deg(f|_{U_n}) = \deg(\tilde{b}_n)$ for all $n \geq 0$. Suppose both sequences $(f|_{U_n})$ and (\tilde{b}_n) are uniformly hyperbolic.

Then $\exists F$ entire with (\widetilde{U}_n) scwd, such that:

(a) There is a sequence of conformal maps $\theta_n : \widetilde{U}_n \to \mathbb{D}$ such that

$$F|_{\widetilde{U}_n}= heta_{n+1}^{-1}\circ\widetilde{b}_n\circ\theta_n.$$

(b) *f* and *F* are **qc conjugate** outside the wandering orbits (and beyond).

New map (unif. K - qr): $g = \begin{cases} f & \text{on } \mathbb{C} \setminus \bigcup_n U_n \\ \psi_{n+1}^{-1} \circ \widetilde{b_n} \circ \psi_n & \text{on } U_n \end{cases}$ OBS: $g = f \text{ near } \partial U_n$ (yellow)

OBS: g = f near ∂U_n (yellow)

22

 $G = \phi^{-1}g\phi$ holomorphic.
Final step: Finding the template

Step 3: Finding the template f where to glue (\tilde{b}_n)

Lemma [BERFS'22]

Let (d_n) be a sequence in \mathbb{N} , with $2 \leq d_n \leq d < \infty$. Then \exists an entire function f with an orbit of scwd (U_n) such that $(f|_{U_n})$ is uniformly hyperbolic and deg $(f|_{U_n}) = d_n$ for all n.

Final step: Finding the template

Step 3: Finding the template f where to glue (\tilde{b}_n)

Lemma [BERFS'22]

Let (d_n) be a sequence in \mathbb{N} , with $2 \leq d_n \leq d < \infty$. Then \exists an entire function f with an orbit of scwd (U_n) such that $(f|_{U_n})$ is uniformly hyperbolic and deg $(f|_{U_n}) = d_n$ for all n.

This lemma is proven by approximation theory.

Final step: Finding the template

Step 3: Finding the template f where to glue (\tilde{b}_n)

Lemma [BERFS'22]

Let (d_n) be a sequence in \mathbb{N} , with $2 \leq d_n \leq d < \infty$. Then \exists an entire function f with an orbit of scwd (U_n) such that $(f|_{U_n})$ is uniformly hyperbolic and deg $(f|_{U_n}) = d_n$ for all n.

This lemma is proven by approximation theory.

But if $d_n = d$ for all $n \in \mathbb{N}$, then f can be written explicitly [ERS'20] (important for our applications).

• The original motivation is related to **quasiconformal deformations** of entire functions, **supported on wandering domains**. We use the framework in [McMullen-Sullivan'98] generalized to transcendental maps in [F-Henriksen'09].

• The original motivation is related to **quasiconformal deformations** of entire functions, **supported on wandering domains**. We use the framework in [McMullen-Sullivan'98] generalized to transcendental maps in [F-Henriksen'09].

• To that end, we study **grand orbit relations** (discrete vs indiscrete) in completely invariant subsets of the Fatou set, on which *f* acts as a covering.

• The original motivation is related to **quasiconformal deformations** of entire functions, **supported on wandering domains**. We use the framework in [McMullen-Sullivan'98] generalized to transcendental maps in [F-Henriksen'09].

• To that end, we study **grand orbit relations** (discrete vs indiscrete) in completely invariant subsets of the Fatou set, on which *f* acts as a covering.

• The behaviour is **opposite** to that of periodic components. We construct an **example** of a wandering domain, where **discrete and indiscrete** grand orbit relations **coexist**.

• The original motivation is related to **quasiconformal deformations** of entire functions, **supported on wandering domains**. We use the framework in [McMullen-Sullivan'98] generalized to transcendental maps in [F-Henriksen'09].

• To that end, we study **grand orbit relations** (discrete vs indiscrete) in completely invariant subsets of the Fatou set, on which *f* acts as a covering.

• The behaviour is **opposite** to that of periodic components. We construct an **example** of a wandering domain, where **discrete and indiscrete** grand orbit relations **coexist**.

• We first construct a sequence of (unif. hyp) **Blaschke products** of constant degree $d \ge 2$, showing the desired property. Then we use the **realizability theorem**. The **control** on the final map f allows us to show the coexistence property.

THE END

THANK YOU FOR YOUR ATTENTION!

