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HOLOMORPHIC DYNAMICS: THE BASIC PARTITION

We consider dynamics of f : C! C entire transcendental.

The complex plane decomposes into two totally invariant sets:

• The Fatou set F (f ) (normal or stable set):

• {f n} normal (equicontinuous) on each Fatou component

• The Julia set J(f ) = bC \ F (f ) (the chaotic set)

• The closure of the set of repelling periodic points

• The boundary between the di↵erent stable domains

polynomial transcendental
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THE FATOU SET

• The Fatou set is open and typically consists of infinitely many

components, known as Fatou components.

• Their boundaries belong to the Julia set, so Fatou components

are mapped to Fatou components.

• Three possibilities:

8
>><

>>:

Periodic if f p(U) = U for some p � 1

Preperiodic if f k(U) is periodic for some k > 1 (and not earlier)

Wandering if f k(U) is not periodic for any k � 1.
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PERIODIC FATOU COMPONENTS and INNER FUNCTIONS

If U is a (simply connected) Fatou component and ' : D! U is

the Riemann map, then g := '�1 � f � ' is an associated inner

function to f (holomorphic self-map of D with a.a. radial limits in @D).

Warning! Neither g nor ' need to extend to the @D.

• Transfering results from g to f is not always possible.

• If degf <1 then g is a finite Blasche product.
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PERIODIC FATOU COMPONENTS and INNER FUNCTIONS

Question: Which inner functions can be realized as associated

inner functions to a (simply connected) Fatou component?

A few explicit examples are due to Baker, Devaney-Goldberg from

the 80’s.

A more systematic study in [Evdoridou-Rempe-Sixsmith’20]
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WANDERING DOMAINS

As for Baker domains, wandering domains (= wandering

components) can only exist for transcendental maps (i.e. with

essential singularities).

• U is a wandering domain if f n(U) \ f m(U) = ; for all n 6= m.

z + 2⇡ + sin(z)
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WANDERING DOMAINS

• They do not exist for rational maps [Sullivan’82] – only for

transcendental.

• “Recently” discovered [Baker’80]

• It is not easy to construct examples – WD are not associated

to periodic orbits.

• They do not exist for maps with a finite number of singular

values (singularities of f �1).

• Major open questions related to wandering domains.

• Need to understand dynamics inside the WD

[Benini-Evdoridou-F-Rippon-Stallard’22], on their boundary

[BEFRS’23,24] and also the relation of the WD with the singular

values of the map (all related [Baranski-F-Jarque-Karpinska’17])
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SIMPLY CONNECTED WANDERING DOMAINS

Is there also a relation to INNER FUNCTIONS??

Choose a base point z0 2 U and define zn := f n(z0) 2 Un.

Choose Riemann maps 'n : D! Un such that 'n(zn) = 0.

(Other choices are also possible!!)

• (gn) sequence of inner functions associated to to (f |Un).

• We say that (f |Un) and (gn) are conformally equivalent.
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ASSOCIATED SEQUENCES OF INNER FUNCTIONS

QUESTION: Can every sequence of inner functions be realized

by the wandering orbit of some entire map f ? If so, what can we

say about f ?

ANSWER: Yes, under some conditions.

Theorem [EFGP’24]

Let (ebn) sequence of uniformly hyperbolic finite Blaschke

products. Then, 9 an entire transcendental function f with

an orbit of scwd (simply connected wandering domains) (Un)

and a sequence of conformal maps (⇥n : Un ! D) such that

f |Un = ⇥�1

n+1
� ebn �⇥n.
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UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Consider Blaschke products: b(z) := z
d�1Y

k=1

z � ak
1� akz

Definition/Theorem

Let (bn) be a sequence of Blaschke products as above with

2  deg(bn) = dn  d <1. Then TFAE:

• 9 r 2 (0, 1) such that Zeros(bn) ⇢ Dr for all n.

• 9 s 2 (0, 1) such that Crit(bn) ⇢ Ds for all n.

• Given any orbit (zn), 9 C such that dD(n)(zn, c)  C for all

c 2 Crit(bn).

• There exists an orbit (zn) and a constant C such that

dD(n)(zn, c)  C for all c 2 Crit(bn).

In any of these cases, we say that (bn) is uniformly hyperbolic.

Moreover bn(Dr ) ⇢ Dr , hence b�1
n (Dr ) � Dr
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SURGERY vs APPROXIMATION THEORY

• We shall prove the realizability theorem using a qc surgery

construction, hence we will have some control on the properties

of the final function f (essential for our applications).

• Recently announced a more general realizability theorem by

Evdoridou-MartiPete-Rempe, using approximation theory.

• Surgery in a finite number of wandering domains is ”easy”

and has been done before [F-Henriksen’09] [Evdoridou-Rempe-Sixsmith’20]
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QUASICONFORMAL SURGERY (crash course)

Definition

A map � : U ! V , U,V ⇢ C is K�quasiconformal if :

1. � is an orientation preserving homeomorphism,

2. � is absolutely continuous on lines () di↵erentiable a.e.)

3. ||µ(z)||1  k < 1 a.e. where K := 1+k
1�k � 1 and

µ(z) := �⇤µ0(z) :=
@z̄�

@z�
(z) a.e. where defined.

• 1-qc maps are conformal (µ = µ0 ⌘ 0, k = 0).

• K 2 [1,1) (or k 2 [0, 1) ) measures angle distortion, or how

far � is from being conformal.

• µ encodes the information of the field of ellipses (Dz�)�1(S1)
(eccentricity and orientation), defined a.e.
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QUASICONFORMAL SURGERY (crash course)

• Pasting quasiconformal maps along “reasonable” curves

preserves quasiconformality. (This gives great flexibility!)

• If f is K1�qc and g is K2�qc ) f � g is K1 · K2�qc

• If f is K�qc then f �1 is also K�qc.

g : U ! V is a K�quasiregular map if g is locally K�quasiconformal

except at a discrete set of points.

conformal  ! holomorphic

quasiconformal  ! quasiregular

• Quasiregular maps often are used as dynamical models of

holomorphic maps, i.e. � � g = G � �, where g is q.r., � is q.c. and

G is holomorphic. We write g ⇠
qc

G .
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QUASICONFORMAL SURGERY (crash course)

Question: But when is a quasiregular map a dynamical model for

some holomorphic map??

Sullivan’s principle

g : C ! C is qc conjugate to some holomorphic map G

()
iterates {gn} are K�quasiregular, for all n > 0 and some K <1.

The proof is based on the celebrated theorem of Morrey, Ahlfors, Bers,

and Bojarski (the Measurable Riemann Mapping Theorem) which

proves the existence of K�quasiconformal solutions of the Beltrami PDE

@z̄� = µ(z) @z�

. for every µ measurable such that ||µ||1  k < 1.
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RECALL:

QUESTION: Can every sequence of inner functions be realized

by the wandering orbit of some entire map f ? If so, what can we

say about f ?

Theorem [EFGP’24]

Let (ebn) sequence of uniformly hyperbolic finite Blaschke

products. Then, 9 an entire transcendental function f with

an orbit of scwd (simply connected wandering domains) (Un)

and a sequence of conformal maps (⇥n : Un ! D) such that

f |Un = ⇥�1

n+1
� ebn �⇥n.
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STEP 1 of the proof: The gluing map

Step 1: Construction of the ”gluing map”

Two uniformly hyperbolic sequences

bn : D(n) ! D(n+1) and ebn : eD(n) ! eD(n+1)

with matching degrees dn = d̃n, are K�qc equivalent

near the boundary of D.

More precisely:

9 K > 1 and hn : D(n) ! eD(n) K�qc maps, such that for all n 2 N

(a) hn(z) = z for |z |  r ;

(b) bn = h�1

n+1
� ebn � hn on the annulus Cn := D(n) \ b�1

n (Dr ).

. . . D(n) D(n+1) . . .

. . . eD(n) eD(n+1) . . .

bn�1 bn

hn

bn+1

hn+1

ebn�1
ebn ebn+1
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The gluing map
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STEP 2 of the proof: A replacement surgery procedure

Step 2: Gluing the sequence inside an actual wandering

domain

Theorem [EFGP’24]

Let f be an entire function, (Un) an orbit of scwd, and (ebn : D!
D) a sequence of Blaschke products such that 2  deg(f |Un) =

deg(ebn) for all n � 0. Suppose both sequences (f |Un) and (ebn) are
uniformly hyperbolic.

Then 9 F entire with ( eUn) scwd, such that:

(a) There is a sequence of conformal maps ✓n : eUn ! D such

that

F |eUn
= ✓�1

n+1
� ebn � ✓n.

(b) f and F are qc conjugate outside the wandering orbits (and

beyond).

20
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Final step: Finding the template

Step 3: Finding the template f where to glue (ebn)

Lemma [BERFS’22]

Let (dn) be a sequence in N, with 2  dn  d <1. Then 9 an

entire function f with an orbit of scwd (Un) such that (f |Un) is

uniformly hyperbolic and deg(f |Un) = dn for all n.

This lemma is proven by approxima-

tion theory.

But if dn = d for all n 2 N, then

f can be written explicitely [ERS’20]

(important for our applications).
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FURTHER MOTIVATION / APPLICATIONS

• The original motivation is related to quasiconformal deformations of

entire functions, supported on wandering domains. We use the

framework in [McMullen-Sullivan’98] generalized to transcendental maps

in [F-Henriksen’09].

• To that end, we study grand orbit relations (discrete vs indiscrete) in

completely invariant subsets of the Fatou set, on which f acts as a

covering.

• The behaviour is opposite to that of periodic components. We

construct an example of a wandering domain, where discrete and

indiscrete grand orbit relations coexist.

• We first construct a sequence of (unif. hyp) Blaschke products of

constant degree d � 2, showing the desired property. Then we use the

realizability theorem. The control on the final map f allows us to show

the coexistence property.
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THE END

THANK YOU FOR YOUR
ATTENTION!
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