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THE FATOU SET

e The Fatou set is open and typically consists of infinitely many
components, known as Fatou components.

e Their boundaries belong to the Julia set, so Fatou components
are mapped to Fatou components.

e [hree possibilities:

 Periodic if fP(U) = U for some p >1

_/\

Preperiodic if fXK(U) is periodic for some k > 1 (and not earlier)

. . k . . .
| Wandering  if f*(U) is not periodic for any k > 1.
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PERIODIC FATOU COMPONENTS and INNER FUNCTIONS

If U is a (simply connected) Fatou component and ¢ : D — U is
the Riemann map, then g := ¢! o f o © is an associated inner
function to f (holomorphic self-map of D with a.a. radial limits in D).

\PT 7
OO
Warning! Neither g nor ¢ need to extend to the OD.

e Transfering results from g to f is not always possible.

e |If degf < oo then g is a finite Blasche product.
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Question: Which inner functions can be realized as associated

inner functions to a (simply connected) Fatou component?

A few explicit examples are due to Baker, Devaney-Goldberg from
the 80’s.

A more systematic study in [Evdoridou-Rempe-Sixsmith'20]



WANDERING DOMAINS

As for Baker domains, wandering domains (= wandering
components) can only exist for transcendental maps (i.e. with

essential singularities).

e U is a wandering domain if f"(U)Nf™(U) = 0 for all n £ m.

Z 4 27 + sin(z)
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WANDERING DOMAINS

e They do not exist for rational maps [Sullivan'82] — only for
transcendental.

e “Recently” discovered [Baker'80]

e It is not easy to construct examples — WD are not associated

to periodic orbits.

e They do not exist for maps with a finite number of singular
values (singularities of f1).

e Major open questions related to wandering domains.

e Need to understand dynamics inside the WD
[Benini-Evdoridou-F-Rippon-Stallard’22], on their boundary
[BEFRS'23,24] and also the relation of the WD with the singular
values of the map (all related [Baranski-F-Jarque-Karpinska'17])
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SIMPLY CONNECTED WANDERING DOMAINS

Is there also a relation to INNER FUNCTIONS??

Choose a base point zp € U and define z, := f"(z) € U,.
Choose Riemann maps ¢, : D — U, such that p,(z,) = 0.
(Other choices are also possible!!)

.zouo L .zL,tl L oo L .at"tn..
“o ”’ j‘f’m

DIETOSIIEN
Gy

Gh =: 80«0 .,,,034

e (gn) sequence of inner functions associated to to (f|y, ).

e We say that (f|y. ) and (g,) are conformally equivalent.
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ASSOCIATED SEQUENCES OF INNER FUNCTIONS

QUESTION: Can every sequence of inner functions be realized
by the wandering orbit of some entire map f? If so, what can we

say about f7?

ANSWER: Yes, under some conditions.

Theorem [EFGP’24]

Let (b,) sequence of uniformly hyperbolic finite Blaschke
products. Then, d an entire transcendental function f with
an orbit of scwd (simply connected wandering domains) (U,)
and a sequence of conformal maps (©, : U, — D) such that

f‘Un = @;_|1_1 OEn O@n.



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
Consider Blaschk ducts: b(z) =
onsider Blaschke products: b(z) zklill 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
Consider Blaschk ducts: b(z) =
onsider Blaschke products: b(z) zklill 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:

e dre(0,1) such that Zeros(b,) C D, for all n.



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
Consider Blaschk ducts: b(z) =
onsider Blaschke products: b(z) zklill 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:

e dre(0,1) such that Zeros(b,) C D, for all n.
e dse(0,1) such that Crit(b,) C D for all n.



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
Consider Blaschk ducts: b(z) =
onsider Blaschke products: b(z) zklill 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:

e dre(0,1) such that Zeros(b,) C D, for all n.
e dse(0,1) such that Crit(b,) C D for all n.

e Given any orbit (z,), 3 C such that dyw(z,,c) < C for all
c € Crit(bp).



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
Consider Blaschk ducts: b(z) =
onsider Blaschke products: b(z) zklill 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:

e dre(0,1) such that Zeros(b,) C D, for all n.
e dse(0,1) such that Crit(b,) C D for all n.

e Given any orbit (z,), 3 C such that dyw(z,,c) < C for all
c € Crit(bp).

e There exists an orbit (z,) and a constant C such that
dpn (zn, ¢) < C for all ¢ € Crit(b,).



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
C ider Blaschk ducts: b —
onsider Blaschke products: b(z) 21(1:[1 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:

e dre(0,1) such that Zeros(b,) C D, for all n.
e dse(0,1) such that Crit(b,) C D for all n.

e Given any orbit (z,), 3 C such that dyw(z,,c) < C for all
c € Crit(bp).

e There exists an orbit (z,) and a constant C such that
dpn (zn, ¢) < C for all ¢ € Crit(b,).

In any of these cases, we say that (b,) is uniformly hyperbolic.



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
Consider Blaschk ducts: b(z) =
onsider Blaschke products: b(z) zklill 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < oco. Then TFAE:

e dre(0,1) such that Zeros(b,) C D, for all n.
e dse(0,1) such that Crit(b,) C D for all n.

e Given any orbit (z,), 3 C such that dyw(z,,c) < C for all
c € Crit(bp).

e There exists an orbit (z,) and a constant C such that
dpn (zn, ¢) < C for all ¢ € Crit(b,).

In any of these cases, we say that (b,) is uniformly hyperbolic.

Moreover b,(ID,) C D, , hence b 1(D,) D> D, 9



UNIFORMLY HYPERBOLIC BLASCHKE PRODUCTS

Z — dk

d—1
C ider Blaschk ducts: b —
onsider Blaschke products: b(z) 21(1:[1 152

Definition/ Theorem

Let (b,) be a sequence of Blaschke products as above with
2 < deg(b,) =d, <d < co. Then TFAE: bm

e dr e (0,1) such that Zeros(b,) C D, for all n.
e 1s¢e(0,1) such that Crit(b,) C D for all n. b
m

e Given any orbit (z,), 3 C such that dyw(z,,c) < C for all
c € Crit(bp).

e There exists an orbit (z,) and a constant C such that
dpn (zn, ¢) < C for all ¢ € Crit(b,).

In any of these cases, we say that (b,) is uniformly hyperbolic.

Moreover b,(ID,) C D, , hence b 1(D,) D> D, 9



SURGERY vs APPROXIMATION THEORY

e \We shall prove the realizability theorem using a qc surgery
construction, hence we will have some control on the properties
of the final function f (essential for our applications).

10



SURGERY vs APPROXIMATION THEORY

e \We shall prove the realizability theorem using a qc surgery
construction, hence we will have some control on the properties
of the final function f (essential for our applications).

e Recently announced a more general realizability theorem by
Evdoridou-MartiPete-Rempe, using approximation theory.

10



SURGERY vs APPROXIMATION THEORY

e \We shall prove the realizability theorem using a qc surgery
construction, hence we will have some control on the properties
of the final function f (essential for our applications).

e Recently announced a more general realizability theorem by
Evdoridou-MartiPete-Rempe, using approximation theory.

e Surgery in a finite number of wandering domains is " easy”
and has been done before [F-Henriksen’09] [Evdoridou-Rempe-Sixsmith'20]

10



QUASICONFORMAL SURGERY (crash course)

Definition
Amapo¢: U — V, U,V CCis K—quasiconformal if :

1. ¢ is an orientation preserving homeomorphism,
2. ¢ is absolutely continuous on lines (= differentiable a.e.)

3. |u(2)]]oo < k <1 a.e. where K := 1% > 1 and

w(z) .= ¢ uo(z) := gzz (z) a.e. where defined.

e 1-qc maps are conformal (1 = o =0, kK = 0).

e K €[l,00) (or k € [0,1) ) measures angle distortion, or how
far ¢ is from being conformal.

e 11 encodes the information of the field of ellipses (D,¢) *(S?)

(eccentricity and orientation), defined a.e. ”
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QUASICONFORMAL SURGERY (crash course)

e Pasting quasiconformal maps along “reasonable” curves
preserves quasiconformality. (This gives great flexibility!)

olf fisKi—qcand gis Kb—qc = fogis Ki-Ky—qc
o If fis K—qc then f~1is also K—qc.

g : U — Visa K—quasiregular map if g is locally K—quasiconformal
except at a discrete set of points.

conformal +<— holomorphic
quasiconformal <— quasiregular

e Quasiregular maps often are used as dynamical models of
holomorphic maps, i.e. pog = G o @, where gis q.r., ¢ is g.c. and

G is holomorphic. We write g ~ G.
£ 12
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QUASICONFORMAL SURGERY (crash course)

Question: But when is a quasiregular map a dynamical model for
some holomorphic map??

Sullivan’s principle
g . C — C is gc conjugate to some holomorphic map G
<
iterates {g"} are K—quasiregular, for all n > 0 and some K < oo.

The proof is based on the celebrated theorem of Morrey, Ahlfors, Bers,
and Bojarski (the Measurable Riemann Mapping Theorem) which
proves the existence of K—quasiconformal solutions of the Beltrami PDE

0z¢ = u(z) 0;¢
for every 1 measurable such that ||p||eo < k < 1.

13
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Modifying ONE inner function
O
500) & o) _G,, 0O
fo ()53 =C8)
New map (qr):

f on C\ U,
g — 1
©pi1b ¥n on U,

Define a gx—invariant almost J
o

complex structure pu:
Spread to C using dynamics. /
MRMT (or Sull. pple): 3¢ qc ~
(C,p) ——— (C, ) 08 —
}{00 oY 0800 0

J# J#

G(hol)
(CMUO) ? (C7/“1‘0)

15




Modifying ONE inner function

Ho

New map (qr): o Una
) f on C\ U,
° 90;&15 Y on U, B

Define a gx—invariant almost

complex structure pu:

p=g"po = 3 on U,

Spread to C using dynamics.

MRMT (or Sull. pple): 3¢ qc
(C, 1) —5— (€, p)

Js Jo ~
(€. p0) —""+ (C, o) b new “mner - umdbiom

15
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RECALL:

QUESTION: Can every sequence of inner functions be realized
by the wandering orbit of some entire map 7 If so, what can we

say about 7?7

Theorem [EFGP’24]

Let (b,) sequence of uniformly hyperbolic finite Blaschke
products. Then, 3 an entire transcendental function f with
an orbit of scwd (simply connected wandering domains) (U,)
and a sequence of conformal maps (©, : U, — D) such that

fly, = @;il oEn o0 O,.

16



STEP 1 of the proof: The gluing map

Step 1: Construction of the " gluing map”

Two uniformly hyperbolic sequences
b,: DM D+ apd b, DM 5 Do+

~

with matching degrees d, = d,, are K—qc equivalent
near the boundary of .
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STEP 1 of the proof: The gluing map

Step 1: Construction of the " gluing map”

Two uniformly hyperbolic sequences

by: DM DD and b, D) — D)
with matching degrees d, = d,, are K—qc equivalent
near the boundary of .

More precisely:
3 K >1and h,: D" — D) K —qc maps, such that for all n € N

(a) hp(z) = z for |z| < r;

(b) b, = h;jl o b, o h, on the annulus C, := D\ b-1(D,).

bt pn) B pynt1) e

[

~ o~

bn_1 . ]]5(”) b,

~

b, pn+1) b

17

~
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=
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—
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The gluing map

n-1 bn- n . b

_b__) @, —_— r — -_—> ...
An© " ,

Am-\ 1 ' id Ane I

o “br T Do

bwr @., LN DR N e W P

(1d on D,

S
S
|
7\
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The gluing map
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En_l o b, on 0°A,
h, =
< a; on A, interpolating K—qc between h,|5.4 and Id
\

K = K(r,d) INDEPENDENT of n 19
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[ 1d on D,
En_l o b, on 0°A,
h, =
< a; on A, interpolating K—qc between h,|5.4 and Id
~ _ .
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STEP 2 of the proof: A replacement surgery procedure

Step 2: Gluing the sequence inside an actual wandering
domain

Theorem [EFGP’24]

Let f be an entire function, (U,) an orbit of scwd, and (b, : D —
D) a sequence of Blaschke products such that 2 < deg(f|y, ) =

deg(b,) for all n > 0. Suppose both sequences (f|y.) and (b,) are
uniformly hyperbolic.

Then 3 F entire with (U,) scwd, such that:

~

(a) There is a sequence of conformal maps 6, : U, — I such

that

_p—1 L
g =0, 10bpob.

n

F

(b) f and F are qc conjugate outside the wandering orbits (and
beyond).

20
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STEP 2: A replacement surgery procedure

ho- o\ [hn Y, [ Yo [

New map (unif. K— qr): Define a g * —ig}/jriant a.c.s.

f onC\U, Uy  *H=Ynko= gy, on U
g = ¢n_+11 o b o o on U, e Spread to C using dynamics.

OBS: g = f near U, (yellow)
22
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r~ ~ ~
bn-l bh bn-lvf ,
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- &) k(D U —
New map (unif. K— qr): Define a g * —invariant a.c.s. u:
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STEP 2: A replacement surgery procedure

New map (unif. K— qr): Define a g * — |gvar|ant a.c.s. [ )’r);’ &
f on C\ . U, o p1=1pno = gt on U "
g = oL 0B 0w, on U ! e Spread to C usmg dynamics. NEwW ASSOC,
n+1 n n n
OBS: g = f near U, (yellow) ¢ MRMT — ¢ — SEQVENCE

G = ¢~ 1g¢ holomorphic. 29



Final step: Finding the template

Step 3: Finding the template  where to glue (b,)

Lemma [BERFS'22]

Let (d,) be a sequence in N, with 2 < d, < d < co. Then 3 an
entire function f with an orbit of scwd (U,) such that (f|y, ) is
uniformly hyperbolic and deg(f|y,) = d, for all n.
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Final step: Finding the template

Step 3: Finding the template  where to glue (b,)

Lemma [BERFS'22]

Let (d,) be a sequence in N, with 2 < d, < d < co. Then 3 an
entire function f with an orbit of scwd (U,) such that (f|y, ) is
uniformly hyperbolic and deg(f|y,) = d, for all n.

This lemma is proven by approxima-
tion theory.

But if d, = d for all n € N, then
f can be written explicitely
(important for our applications).
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FURTHER MOTIVATION / APPLICATIONS

e The original motivation is related to quasiconformal deformations of
entire functions, supported on wandering domains. We use the
framework in [McMullen-Sullivan'98] generalized to transcendental maps
in [F-Henriksen'09].
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FURTHER MOTIVATION / APPLICATIONS

e The original motivation is related to quasiconformal deformations of
entire functions, supported on wandering domains. We use the

framework in [McMullen-Sullivan'98] generalized to transcendental maps
in [F-Henriksen'09].

e To that end, we study grand orbit relations (discrete vs indiscrete) in
completely invariant subsets of the Fatou set, on which f acts as a
covering.

e The behaviour is opposite to that of periodic components. We
construct an example of a wandering domain, where discrete and
indiscrete grand orbit relations coexist.

e We first construct a sequence of (unif. hyp) Blaschke products of
constant degree d > 2, showing the desired property. Then we use the
realizability theorem. The control on the final map f allows us to show

the coexistence property. 4



THE END

THANK YOU FOR YOUR
ATTENTION!
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