L^2 -estimates for $\bar{\partial}$ and ODEs

Zbigniew Błocki Uniwersytet Jagielloński, Kraków, Poland

Complex Analysis, Geometry, and Dynamics III - Portorož 2024

Theorem Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$, $\varphi \in PSH(\Omega)$

Theorem Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$, $\varphi \in PSH(\Omega)$ Then we can find $u \in L^2_{loc}(\Omega)$ s.th. $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda.$$

Theorem Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$, $\varphi \in PSH(\Omega)$ Then we can find $u \in L^2_{loc}(\Omega)$ s.th. $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 \mathrm{e}^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} \mathrm{e}^{-\varphi} d\lambda.$$

 $\qquad \qquad \text{If } \varphi \text{ is } C^2 \text{ and } i\partial\bar\partial\varphi>0 \text{ then } |\alpha|^2_{i\partial\bar\partial\varphi}=\varphi^{j\bar k}\alpha_j\bar\alpha_k,$

Theorem Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$, $\varphi \in PSH(\Omega)$ Then we can find $u \in L^2_{loc}(\Omega)$ s.th. $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 \mathrm{e}^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} \mathrm{e}^{-\varphi} d\lambda.$$

- ▶ If φ is C^2 and $i\partial \bar{\partial} \varphi > 0$ then $|\alpha|_{i\partial \bar{\partial} \varphi}^2 = \varphi^{j\bar{k}} \alpha_j \bar{\alpha}_k$,
- $\qquad |\alpha|^2_{i\partial\bar\partial\varphi} \leq H \iff i\bar\alpha \wedge \alpha \leq H\, i\partial\bar\partial\varphi$

Theorem Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$, $\varphi \in PSH(\Omega)$ Then we can find $u \in L^2_{loc}(\Omega)$ s.th. $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \le \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda.$$

- $\qquad \qquad \text{If } \varphi \text{ is } C^2 \text{ and } i\partial\bar\partial\varphi>0 \text{ then } |\alpha|^2_{i\partial\bar\partial\varphi}=\varphi^{j\bar k}\alpha_j\bar\alpha_k,$
- $|\alpha|_{i\partial\bar\partial\varphi}^2 \le H \iff i\bar\alpha \land \alpha \le H\,i\partial\bar\partial\varphi$
- The original Hörmander's formulation with $2|\alpha|^2/c$, where $(\varphi_{j\bar{k}}) \geq c(\delta_{jk})$, instead of $|\alpha|^2_{i\partial\bar{\partial}\varphi}$. The above formulation for (0,1)-forms is due to Demailly.

$$G_{\Omega}(z,w) := \sup\{u(z) \colon u \in PSH^{-}(\Omega), \ u \leq \log|\cdot - w| + C \ \text{near} \ w\}$$

$$G_{\Omega}(z,w) := \sup\{u(z) \colon u \in PSH^{-}(\Omega), \ u \leq \log|\cdot - w| + C \ \text{near} \ w\}$$

General assumption Ω is a bounded pscvx, $0 \in \Omega$, $G := G_{\Omega}(\cdot, 0)$

$$G_{\Omega}(z,w) := \sup\{u(z) \colon u \in PSH^{-}(\Omega), \ u \leq \log|\cdot - w| + C \text{ near } w\}$$

General assumption Ω is a bounded pscvx, $0 \in \Omega$, $G := G_{\Omega}(\cdot, 0)$

▶ If Ω is hyperconvex then $G \in C(\overline{\Omega} \setminus \{0\})$, G = 0 on $\partial\Omega$ (Demailly)

$$G_{\Omega}(z,w) := \sup\{u(z) \colon u \in PSH^{-}(\Omega), \ u \leq \log|\cdot - w| + C \text{ near } w\}$$

General assumption Ω is a bounded pscvx, $0 \in \Omega$, $G := G_{\Omega}(\cdot, 0)$

- If Ω is hyperconvex then $G \in C(\overline{\Omega} \setminus \{0\})$, G = 0 on $\partial \Omega$ (Demailly)
- If $\partial\Omega\in C^{2,1}$, strongly pscvx, then $G\in C^{1,1}(\overline{\Omega}\setminus\{0\})$ (B./Bo Guan)

$$G_{\Omega}(z,w) := \sup\{u(z) \colon u \in PSH^{-}(\Omega), \ u \leq \log|\cdot - w| + C \text{ near } w\}$$

General assumption Ω is a bounded pscvx, $0 \in \Omega$, $G := G_{\Omega}(\cdot, 0)$

- If Ω is hyperconvex then $G \in C(\overline{\Omega} \setminus \{0\})$, G = 0 on $\partial \Omega$ (Demailly)
- ▶ If $\partial\Omega\in C^{2,1}$, strongly pscvx, then $G\in C^{1,1}(\overline{\Omega}\setminus\{0\})$ (B./Bo Guan)
- ▶ If $\partial\Omega\in C^{\infty}$, strongly convex, then $G\in C^{\infty}(\overline{\Omega}\setminus\{0\})$ (Lempert)

$$\mathsf{K}_\Omega(w) := \sup\{|f(w)|^2 \colon f \in \mathcal{O}(\Omega), ||f|| := ||f||_{L^2(\Omega)} \leq 1\}.$$

$$\mathit{K}_{\Omega}(w) := \sup\{|f(w)|^2 \colon f \in \mathcal{O}(\Omega), ||f|| := ||f||_{L^2(\Omega)} \leq 1\}.$$

Theorem
$$K_{\Omega}(0) \geq rac{e^{2nt}}{\lambda(\{\mathit{G} < t\})}, \ t < 0$$

$$K_{\Omega}(w) := \sup\{|f(w)|^2 \colon f \in \mathcal{O}(\Omega), ||f|| := ||f||_{L^2(\Omega)} \le 1\}.$$

Theorem
$$K_{\Omega}(0) \geq \frac{e^{2nt}}{\lambda(\{\mathit{G} < \mathit{t}\})}, \ \mathit{t} < 0$$

Proof (modified, using Hörmander's estimate directly)

$$K_{\Omega}(w) := \sup\{|f(w)|^2 \colon f \in \mathcal{O}(\Omega), ||f|| := ||f||_{L^2(\Omega)} \le 1\}.$$

Theorem
$$K_{\Omega}(0) \geq rac{e^{2nt}}{\lambda(\{\mathit{G} < \mathit{t}\})}, \ \mathit{t} < 0$$

Proof (modified, using Hörmander's estimate directly) Set

$$\varphi := 2nG - \log(1-G).$$

Then $\varphi \in PSH^{-}(\Omega)$ and $e^{-\varphi}$ is not locally integrable near 0.

$$K_{\Omega}(w) := \sup\{|f(w)|^2 \colon f \in \mathcal{O}(\Omega), ||f|| := ||f||_{L^2(\Omega)} \le 1\}.$$

Theorem
$$K_\Omega(0) \geq rac{e^{2nt}}{\lambda(\{\mathit{G} < \mathit{t}\})}, \ \mathit{t} < 0$$

Proof (modified, using Hörmander's estimate directly) Set

$$\varphi := 2nG - \log(1-G).$$

Then $\varphi \in PSH^-(\Omega)$ and $e^{-\varphi}$ is not locally integrable near 0. Define $\alpha := \overline{\partial}(\chi \circ G) = \chi' \circ G \,\overline{\partial} G$, where χ will be determined later.

$$K_{\Omega}(w) := \sup\{|f(w)|^2 \colon f \in \mathcal{O}(\Omega), ||f|| := ||f||_{L^2(\Omega)} \le 1\}.$$

Theorem
$$K_\Omega(0) \geq rac{e^{2nt}}{\lambda(\{\mathit{G} < t\})}, \ t < 0$$

Proof (modified, using Hörmander's estimate directly) Set

$$\varphi := 2nG - \log(1-G).$$

Then $\varphi \in PSH^-(\Omega)$ and $e^{-\varphi}$ is not locally integrable near 0. Define $\alpha := \overline{\partial}(\chi \circ G) = \chi' \circ G \,\overline{\partial} G$, where χ will be determined later.

$$i\bar{\alpha} \wedge \alpha = (\chi' \circ G)^2 i\partial G \wedge \bar{\partial} G,$$

 $i\partial \bar{\partial} \varphi \geq \frac{1}{(1-G)^2} i\partial G \wedge \bar{\partial} G,$

hence

$$iar{lpha}\wedgelpha\leq (1-G)^2(\chi'\circ G)^2\,i\partialar{\partial}arphi.$$

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s) = 0$ for $s \ge t$ and $(\chi')^2(1-s)^3e^{-2ns} = 1$ for s < t.

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s)=0$ for $s\geq t$ and $(\chi')^2(1-s)^3e^{-2ns}=1$ for s< t. Then

$$\chi(-\infty) = \int_{-\infty}^{t} (1-s)^{-3/2} e^{ns} ds$$

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s)=0$ for $s\geq t$ and $(\chi')^2(1-s)^3e^{-2ns}=1$ for s< t. Then

$$\chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds \approx e^{nt},$$

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s)=0$ for $s\geq t$ and $(\chi')^2(1-s)^3e^{-2ns}=1$ for s< t. Then

$$\chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds \approx e^{nt},$$

$$||u|| \leq \sqrt{\lambda(\{G < t\})}.$$

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s)=0$ for $s\geq t$ and $(\chi')^2(1-s)^3e^{-2ns}=1$ for s< t. Then

$$\chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds \approx e^{nt},$$

$$||u|| \leq \sqrt{\lambda(\{G < t\})}.$$

Define $f := \chi \circ G - u \in \mathcal{O}(\Omega)$, so that $f(0) = \chi(-\infty)$.

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s)=0$ for $s\geq t$ and $(\chi')^2(1-s)^3e^{-2ns}=1$ for s< t. Then

$$\chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds \approx e^{nt},$$

$$||u|| \leq \sqrt{\lambda(\{G < t\})}.$$

Define $f:=\chi\circ G-u\in\mathcal{O}(\Omega)$, so that $f(0)=\chi(-\infty)$. Then

$$||f|| \leq \sqrt{\int_{\Omega} (\chi \circ G)^2 d\lambda + ||u||} \leq (1 + \chi(-\infty)) \sqrt{\lambda(\{G < t\})},$$

$$||u||^2 \leq \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} (\chi' \circ G)^2 (1-G)^3 e^{-2nG} d\lambda.$$

Now choose χ so that $\chi(s)=0$ for $s\geq t$ and $(\chi')^2(1-s)^3e^{-2ns}=1$ for s< t. Then

$$\chi(-\infty) = \int_{-\infty}^{t} (1-s)^{-3/2} e^{ns} ds \approx e^{nt},$$

$$||u|| \leq \sqrt{\lambda(\{G < t\})}.$$

Define $f := \chi \circ G - u \in \mathcal{O}(\Omega)$, so that $f(0) = \chi(-\infty)$. Then

$$||f|| \leq \sqrt{\int_{\Omega} (\chi \circ G)^2 d\lambda + ||u||} \leq (1 + \chi(-\infty)) \sqrt{\lambda(\{G < t\})},$$

$$K_{\Omega}(0) \geq \frac{|f(0)|^2}{||f||^2} \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

where
$$c(n, t) = \left(\frac{\chi(-\infty)}{1 + \chi(-\infty)}\right)^2$$
.

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

We need $c(n, t) = e^{2nt}$.

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

We need $c(n, t) = e^{2nt}$. Tensor-power trick

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

We need $c(n, t) = e^{2nt}$. Tensor-power trick:

$$\widetilde{\Omega} := \Omega^m = \Omega \times \cdots \times \Omega \subset \mathbb{C}^{nm}$$
.

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

We need $c(n, t) = e^{2nt}$. Tensor-power trick:

$$\widetilde{\Omega} := \Omega^m = \Omega \times \cdots \times \Omega \subset \mathbb{C}^{nm}$$
.

Then

$$\widetilde{G}(z^1,\ldots,z^m)=\max\{G(z^1),\ldots,G(z^m)\},$$

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

We need $c(n, t) = e^{2nt}$. Tensor-power trick:

$$\widetilde{\Omega} := \Omega^m = \Omega \times \cdots \times \Omega \subset \mathbb{C}^{nm}$$
.

Then

$$\widetilde{G}(z^1,\ldots,z^m)=\max\{G(z^1),\ldots,G(z^m)\},$$

$$(K_{\Omega}(0))^m = K_{\widetilde{\Omega}}(0) \ge \frac{c(nm,t)}{\lambda(\{\widetilde{G} < t\})} = \frac{c(nm,t)}{(\lambda(\{G < t\}))^m}.$$

$$K_{\Omega}(0) \geq \frac{c(n,t)}{\lambda(\{G < t\})},$$

where

$$c(n,t) = \left(\frac{\chi(-\infty)}{1+\chi(-\infty)}\right)^2, \quad \chi(-\infty) = \int_{-\infty}^t (1-s)^{-3/2} e^{ns} ds.$$

We need $c(n, t) = e^{2nt}$. Tensor-power trick:

$$\widetilde{\Omega} := \Omega^m = \Omega \times \cdots \times \Omega \subset \mathbb{C}^{nm}$$
.

Then

$$\widetilde{G}(z^1,\ldots,z^m)=\max\{G(z^1),\ldots,G(z^m)\},$$

$$(K_{\Omega}(0))^m = K_{\widetilde{\Omega}}(0) \ge \frac{c(nm,t)}{\lambda(\{\widetilde{G} < t\})} = \frac{c(nm,t)}{(\lambda(\{G < t\}))^m}.$$

But
$$(c(nm, t))^{1/m} \to e^{2nt}$$
 as $m \to \infty$.

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})}$$
 (1)

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})}$$
 (1)

▶ There is a simpler proof due to Lempert.

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})}$$
 (1)

▶ There is a simpler proof due to Lempert. It follows from the convexity of $t \mapsto \log K_{\{G < t\}}(0)$

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})} \tag{1}$$

▶ There is a simpler proof due to Lempert. It follows from the convexity of $t \mapsto \log K_{\{G < t\}}(0)$ but this uses $\bar{\partial}$ in a hidden way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmonicity of the Bergman kernel for sections of a domain).

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})} \tag{1}$$

- ▶ There is a simpler proof due to Lempert. It follows from the convexity of $t\mapsto \log K_{\{G< t\}}(0)$ but this uses $\bar{\partial}$ in a hidden way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmonicity of the Bergman kernel for sections of a domain).
- ▶ Lempert's proof uses \mathbb{C}^{n+1} to prove the inequality in \mathbb{C}^n , the previous proof (Hörmander + tensor power trick) uses all dimensions.

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})} \tag{1}$$

- ▶ There is a simpler proof due to Lempert. It follows from the convexity of $t\mapsto \log K_{\{G< t\}}(0)$ but this uses $\bar{\partial}$ in a hidden way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmonicity of the Bergman kernel for sections of a domain).
- ▶ Lempert's proof uses \mathbb{C}^{n+1} to prove the inequality in \mathbb{C}^n , the previous proof (Hörmander + tensor power trick) uses all dimensions.
- ▶ If n=1 then $e^{2t}/\lambda(\{G < t\}) \to (c_{\Omega}(0))^2/\pi$ as $t \to -\infty$, where

$$c_{\Omega}(0) = \exp \lim_{z \to 0} (G(z) - \log |z|)$$

is the logarithmic capacity.

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})} \tag{1}$$

- ▶ There is a simpler proof due to Lempert. It follows from the convexity of $t\mapsto \log K_{\{G< t\}}(0)$ but this uses $\bar{\partial}$ in a hidden way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmonicity of the Bergman kernel for sections of a domain).
- ▶ Lempert's proof uses \mathbb{C}^{n+1} to prove the inequality in \mathbb{C}^n , the previous proof (Hörmander + tensor power trick) uses all dimensions.
- ▶ If n=1 then $e^{2t}/\lambda(\{G < t\}) \to (c_{\Omega}(0))^2/\pi$ as $t \to -\infty$, where

$$c_{\Omega}(0) = \exp \lim_{z \to 0} (G(z) - \log |z|)$$

is the logarithmic capacity. So (1) gives another proof of the Suita conjecture $c_{\Omega}^2 \leq \pi K_{\Omega}$.

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})} \tag{1}$$

- ▶ There is a simpler proof due to Lempert. It follows from the convexity of $t\mapsto \log K_{\{G< t\}}(0)$ but this uses $\bar{\partial}$ in a hidden way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmonicity of the Bergman kernel for sections of a domain).
- ▶ Lempert's proof uses \mathbb{C}^{n+1} to prove the inequality in \mathbb{C}^n , the previous proof (Hörmander + tensor power trick) uses all dimensions.
- ▶ If n=1 then $e^{2t}/\lambda(\{G < t\}) \to (c_{\Omega}(0))^2/\pi$ as $t \to -\infty$, where

$$c_{\Omega}(0) = \exp \lim_{z \to 0} (G(z) - \log |z|)$$

is the logarithmic capacity. So (1) gives another proof of the Suita conjecture $c_{\Omega}^2 \leq \pi K_{\Omega}$. Ohsawa was the first to realize that this one-dimensional problem needs $\bar{\partial}$.

$$K_{\Omega}(0) \ge \frac{e^{2nt}}{\lambda(\{G < t\})} \tag{1}$$

- ▶ There is a simpler proof due to Lempert. It follows from the convexity of $t \mapsto \log K_{\{G < t\}}(0)$ but this uses $\bar{\partial}$ in a hidden way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmonicity of the Bergman kernel for sections of a domain).
- ▶ Lempert's proof uses \mathbb{C}^{n+1} to prove the inequality in \mathbb{C}^n , the previous proof (Hörmander + tensor power trick) uses all dimensions.
- ▶ If n=1 then $e^{2t}/\lambda(\{G < t\}) \to (c_{\Omega}(0))^2/\pi$ as $t \to -\infty$, where

$$c_{\Omega}(0) = \exp \lim_{z \to 0} (G(z) - \log |z|)$$

is the logarithmic capacity. So (1) gives another proof of the Suita conjecture $c_{\Omega}^2 \leq \pi K_{\Omega}$. Ohsawa was the first to realize that this one-dimensional problem needs $\bar{\partial}$.

$$ightharpoonup c(n,t)/\lambda(\{G < t\}) \to 0 \text{ as } t \to -\infty$$

► For arbitrary n we have $e^{2nt}/\lambda(\{G < t\}) \to 1/\lambda(I_{\Omega}^A)$ as $t \to -\infty$, where

$$I_{\Omega}^{A} := \{ v \in \mathbb{C}^{n} \colon \limsup_{\zeta \to 0} (G(\zeta v) - \log |\zeta|) \le 0 \}$$

is the Azukawa indicatrix (B.-Zwonek).

For arbitrary n we have $e^{2nt}/\lambda(\{G < t\}) \to 1/\lambda(I_{\Omega}^A)$ as $t \to -\infty$, where

$$I_{\Omega}^{A} := \{ v \in \mathbb{C}^{n} \colon \limsup_{\zeta \to 0} (G(\zeta v) - \log |\zeta|) \le 0 \}$$

is the Azukawa indicatrix (B.-Zwonek). So

$$\mathcal{K}_{\Omega}(0) \geq rac{1}{\lambda(I_{\Omega}^A)}.$$

For arbitrary n we have $e^{2nt}/\lambda(\{G < t\}) \to 1/\lambda(I_{\Omega}^A)$ as $t \to -\infty$, where

$$I_{\Omega}^{A} := \{ v \in \mathbb{C}^{n} \colon \limsup_{\zeta \to 0} (G(\zeta v) - \log |\zeta|) \le 0 \}$$

is the Azukawa indicatrix (B.-Zwonek). So

$$\mathcal{K}_{\Omega}(0) \geq rac{1}{\lambda(I_{\Omega}^A)}.$$

Using Lempert's theory one can show that if Ω is convex then $I_{Ω}^{A} = I_{Ω}^{K}$, where

$$I_{\Omega}^{K}:=\{arphi'(0)\colon arphi\in\mathcal{O}(\mathbb{D},\Omega),\ arphi(0)=0\}$$

is the Kobayashi indicatrix.

ODE Question $\lim_{t\to -\infty} e^{-t}c(t) > 0$, where

$$c(t) := \sup\{\left(\int_{-\infty}^t \sqrt{\gamma''(s)e^{\gamma(s)}}e^sds\right)^2 : \gamma \in \mathit{CVX} \cap C^2(\mathbb{R}_-,\mathbb{R}_-)\}.$$

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_0^A)$ as $t \to -\infty$?

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_{\Omega}^{A})$ as $t \to -\infty$?

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_{\Omega}^{A})$ as $t \to -\infty$?

Monotonicity would follow if $\log \lambda(\{G < t\})$ was convex in t.

► Fornæss found an example of a triply connected $\Omega \subset \mathbb{C}$ such that log $\lambda(\{G < t\})$ is not convex.

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_{\Omega}^{A})$ as $t \to -\infty$?

- ▶ Fornæss found an example of a triply connected $\Omega \subset \mathbb{C}$ such that $\log \lambda(\{G < t\})$ is not convex.
- ▶ (B.-Zwonek) If $\nabla G(z_0) = 0$ for some $z_0 \in \Omega \subset \mathbb{C}$ (e.g. annulus) then $\log \lambda(\{G < t\})$ is not convex.

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_{\Omega}^{A})$ as $t \to -\infty$?

- ▶ Fornæss found an example of a triply connected $\Omega \subset \mathbb{C}$ such that $\log \lambda(\{G < t\})$ is not convex.
- ▶ (B.-Zwonek) If $\nabla G(z_0) = 0$ for some $z_0 \in \Omega \subset \mathbb{C}$ (e.g. annulus) then $\log \lambda(\{G < t\})$ is not convex.
- ▶ (Thomas) If Ω is a disc not centered at 0 then $\log \lambda(\{G < t\})$ is not convex.

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_{\Omega}^{A})$ as $t \to -\infty$?

- ▶ Fornæss found an example of a triply connected $\Omega \subset \mathbb{C}$ such that $\log \lambda(\{G < t\})$ is not convex.
- ▶ (B.-Zwonek) If $\nabla G(z_0) = 0$ for some $z_0 \in \Omega \subset \mathbb{C}$ (e.g. annulus) then $\log \lambda(\{G < t\})$ is not convex.
- ▶ (Thomas) If Ω is a disc not centered at 0 then $\log \lambda(\{G < t\})$ is not convex.

$$h(t) := \log \lambda(\{G < t\}) - 2nt$$

Question: Is $e^{2nt}/\lambda(\{G < t\})$ decreasing to $1/\lambda(I_{\Omega}^{A})$ as $t \to -\infty$?

Monotonicity would follow if $\log \lambda(\{G < t\})$ was convex in t.

- ▶ Fornæss found an example of a triply connected $\Omega \subset \mathbb{C}$ such that $\log \lambda(\{G < t\})$ is not convex.
- ▶ (B.-Zwonek) If $\nabla G(z_0) = 0$ for some $z_0 \in \Omega \subset \mathbb{C}$ (e.g. annulus) then $\log \lambda(\{G < t\})$ is not convex.
- ▶ (Thomas) If Ω is a disc not centered at 0 then $\log \lambda(\{G < t\})$ is not convex.

$$h(t) := \log \lambda(\{G < t\}) - 2nt$$

By the co-area formula

$$\frac{d}{dt}\lambda(\{G < t\}) = \int_{\{G = t\}} \frac{d\sigma}{|\nabla G|}.$$

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq 2n\lambda(\Omega).$$

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq 2n\lambda(\Omega).$$

▶ (B.-Zwonek) True for n = 1

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq 2n\lambda(\Omega).$$

▶ (B.-Zwonek) True for n = 1: by the Schwarz inequality

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq\frac{(\sigma(\partial\Omega))^2}{\int_{\partial\Omega}|\nabla G|\,d\sigma}.$$

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq 2n\lambda(\Omega).$$

▶ (B.-Zwonek) True for n = 1: by the Schwarz inequality

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq\frac{(\sigma(\partial\Omega))^2}{\int_{\partial\Omega}|\nabla G|\,d\sigma}.$$

But $\int_{\partial\Omega} |\nabla G| d\sigma = 2\pi$ and $(\sigma(\partial\Omega))^2 \ge 4\pi\lambda(\Omega)$ (classical isoperimetric inequality).

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq 2n\lambda(\Omega).$$

▶ (B.-Zwonek) True for n = 1: by the Schwarz inequality

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq\frac{(\sigma(\partial\Omega))^2}{\int_{\partial\Omega}|\nabla G|\,d\sigma}.$$

But $\int_{\partial\Omega} |\nabla G| d\sigma = 2\pi$ and $(\sigma(\partial\Omega))^2 \ge 4\pi\lambda(\Omega)$ (classical isoperimetric inequality).

Proposition If Ω is convex then

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq n\lambda(\Omega).$$

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w.

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w. We may assume that $H=\{z_1=w_1\}$.

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w. We may assume that $H=\{z_1=w_1\}$. By Ω' denote the projection of Ω along H to $\{z_2=\cdots=z_n=0\}$.

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w. We may assume that $H=\{z_1=w_1\}$. By Ω' denote the projection of Ω along H to $\{z_2=\cdots=z_n=0\}$. Let I be the real line in $\mathbb C$ tangent to $\partial\Omega'$ at w_1 (so that $I\times H$ is the real tangent space to $\partial\Omega$ at w).

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w. We may assume that $H=\{z_1=w_1\}$. By Ω' denote the projection of Ω along H to $\{z_2=\cdots=z_n=0\}$. Let I be the real line in $\mathbb C$ tangent to $\partial\Omega'$ at w_1 (so that $I\times H$ is the real tangent space to $\partial\Omega$ at w). If $\zeta_0\in I$ is the shortest point to 0 then

$$u(z) := \log \left| \frac{z_1}{z_1 - 2\zeta_0} \right| \le G(z).$$

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w. We may assume that $H=\{z_1=w_1\}$. By Ω' denote the projection of Ω along H to $\{z_2=\cdots=z_n=0\}$. Let I be the real line in $\mathbb C$ tangent to $\partial\Omega'$ at w_1 (so that $I\times H$ is the real tangent space to $\partial\Omega$ at w). If $\zeta_0\in I$ is the shortest point to 0 then

$$u(z) := \log \left| \frac{z_1}{z_1 - 2\zeta_0} \right| \leq G(z).$$

Then

$$|\nabla G(w)| \le |\nabla u(w)| = 2|\zeta_0| = \frac{2}{\langle w, n_w \rangle}.$$

$$|\nabla G(w)| \leq \frac{2}{\langle w, n_w \rangle},$$

where n_w is the unit outer normal.

Proof Let H be the complex tangent space to $\partial\Omega$ at w. We may assume that $H=\{z_1=w_1\}$. By Ω' denote the projection of Ω along H to $\{z_2=\cdots=z_n=0\}$. Let I be the real line in $\mathbb C$ tangent to $\partial\Omega'$ at w_1 (so that $I\times H$ is the real tangent space to $\partial\Omega$ at w). If $\zeta_0\in I$ is the shortest point to 0 then

$$u(z) := \log \left| \frac{z_1}{z_1 - 2\zeta_0} \right| \le G(z).$$

Then

$$|\nabla G(w)| \le |\nabla u(w)| = 2|\zeta_0| = \frac{2}{\langle w, n_w \rangle}.$$

Remark The constant 2 cannot be improved (disc).

Proposition If Ω is convex then

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq n\lambda(\Omega).$$

Proposition If Ω is convex then

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq n\lambda(\Omega).$$

Proof

$$\int_{\partial\Omega} \frac{d\sigma}{|\nabla G|} \geq \frac{1}{2} \int_{\partial\Omega} \langle w, n_w \rangle \, d\sigma(w)$$

Proposition If Ω is convex then

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq n\lambda(\Omega).$$

Proof

$$\int_{\partial\Omega} \frac{d\sigma}{|
abla G|} \geq \frac{1}{2} \int_{\partial\Omega} \langle w, n_w \rangle \, d\sigma(w) = n\lambda(\Omega).$$

Proposition If Ω is convex then

$$\int_{\partial\Omega}\frac{d\sigma}{|\nabla G|}\geq n\lambda(\Omega).$$

Proof

$$\int_{\partial\Omega} \frac{d\sigma}{|
abla G|} \geq \frac{1}{2} \int_{\partial\Omega} \langle w, n_w \rangle \, d\sigma(w) = n\lambda(\Omega). \quad \Box$$

Corollary If Ω is convex then $e^{nt}/\lambda(\{G < t\})$ is monotone in t.

$$\Omega$$
 pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial} \alpha = 0$

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$ Looking for u solving $\bar{\partial}u = \alpha$ with estimates.

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$ Looking for u solving $\bar{\partial}u = \alpha$ with estimates. $\varphi \in PSH(\Omega)$,

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$ Looking for u solving $\bar{\partial}u = \alpha$ with estimates. $\varphi \in PSH(\Omega)$, φ , Ω are sufficiently regular

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$ Looking for u solving $\bar{\partial}u = \alpha$ with estimates. $\varphi \in PSH(\Omega)$, φ , Ω are sufficiently regular Hörmander: $\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda$.

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$

Looking for u solving $\bar{\partial} u = \alpha$ with estimates.

 $\varphi \in PSH(\Omega)$, φ , Ω are sufficiently regular

Hörmander: $\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda.$

Donnelly-Fefferman: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ (i.e. $i\partial\psi\wedge\bar{\partial}\psi\leq i\partial\bar{\partial}\psi$) then

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq 4 \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{-\varphi} d\lambda.$$

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$

Looking for u solving $\bar{\partial}u=\alpha$ with estimates.

 $\varphi \in PSH(\Omega)$, φ , Ω are sufficiently regular

Hörmander: $\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda.$

Donnelly-Fefferman: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ (i.e. $i\partial\psi\wedge\bar{\partial}\psi\leq i\partial\bar{\partial}\psi$) then

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \le 4 \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{-\varphi} d\lambda.$$

Twisting (Berndtsson)

 Ω pscvx in \mathbb{C}^n , $\alpha \in L^2_{loc,(0,1)}(\Omega)$, $\bar{\partial}\alpha = 0$

Looking for u solving $\bar{\partial} u = \alpha$ with estimates.

 $\varphi \in \mathit{PSH}(\Omega)$, φ , Ω are sufficiently regular

 $\text{H\"{o}rmander: } \int_{\Omega} |u|^2 \mathrm{e}^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} \mathrm{e}^{-\varphi} d\lambda.$

Donnelly-Fefferman: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ (i.e. $i\partial\psi\wedge\bar{\partial}\psi\leq i\partial\bar{\partial}\psi$) then

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \le 4 \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi} d\lambda.$$

Twisting (Berndtsson)

If u is a solution to $\bar{\partial}u=\alpha$ minimal in $L^2(\Omega,e^{-\psi/2-\varphi})$ then $u\perp\ker\bar{\partial}$ and

$$\int_{\Omega} u\bar{f} e^{-\psi/2-\varphi} d\lambda = 0, \quad f \in \ker \bar{\partial}.$$

$$\bar{\partial}v = \beta := \bar{\partial}(e^{\psi/2}u) = \left(\alpha + \frac{1}{2}u\bar{\partial}\psi\right)e^{\psi/2}$$

minimal in $L^2(\Omega, e^{-\psi-\varphi})$.

$$\bar{\partial} \mathbf{v} = \beta := \bar{\partial} (e^{\psi/2} \mathbf{u}) = \left(\alpha + \frac{1}{2} \mathbf{u} \bar{\partial} \psi \right) e^{\psi/2}$$

minimal in $L^2(\Omega,e^{-\psi-arphi})$. By Hörmander and since $|\bar\partial\psi|^2_{i\partial\bar\partial\psi}\leq 1$,

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda = \int_{\Omega} |v|^2 e^{-\psi-\varphi} d\lambda \le \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}(\varphi+\psi)} e^{-\psi-\varphi} d\lambda$$

$$\bar{\partial}v = \beta := \bar{\partial}(e^{\psi/2}u) = \left(\alpha + \frac{1}{2}u\bar{\partial}\psi\right)e^{\psi/2}$$

minimal in $L^2(\Omega,e^{-\psi-\varphi})$. By Hörmander and since $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$,

$$\begin{split} \int_{\Omega} |u|^2 e^{-\varphi} d\lambda &= \int_{\Omega} |v|^2 e^{-\psi - \varphi} d\lambda \leq \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}(\varphi + \psi)} e^{-\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left| \alpha + \frac{1}{2} u \bar{\partial} \psi \right|^2_{i\partial\bar{\partial}\psi} e^{-\varphi} d\lambda \end{split}$$

$$\bar{\partial}v = \beta := \bar{\partial}(e^{\psi/2}u) = \left(\alpha + \frac{1}{2}u\bar{\partial}\psi\right)e^{\psi/2}$$

minimal in $L^2(\Omega,e^{-\psi-arphi}).$ By Hörmander and since $|\bar\partial\psi|^2_{i\partial\bar\partial\psi}\leq 1$,

$$\begin{split} \int_{\Omega} |u|^2 e^{-\varphi} d\lambda &= \int_{\Omega} |v|^2 e^{-\psi - \varphi} d\lambda \leq \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}(\varphi + \psi)} e^{-\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left| \alpha + \frac{1}{2} u \bar{\partial} \psi \right|^2_{i\partial\bar{\partial}\psi} e^{-\varphi} d\lambda \\ &\leq \int_{\Omega} \left[2|\alpha|^2_{i\partial\bar{\partial}\psi} + \frac{1}{2} |u|^2 \right] e^{-\varphi} d\lambda. \end{split}$$

Berndtsson: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ and $0\leq\delta<1$ then

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1 - \delta)^2} \int_{\Omega} |\alpha|^2_{i \partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$

Berndtsson: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ and $0\leq\delta<1$ then

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$

▶ One can show that the constant $4/(1-\delta)^2$ is optimal.

Berndtsson: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ and $0\leq\delta<1$ then

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1 - \delta)^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\delta \psi - \varphi} d\lambda.$$

- ▶ One can show that the constant $4/(1-\delta)^2$ is optimal.
- ▶ If we knew such an estimate for $\delta = 1$ then the Ohsawa-Takegoshi extension theorem could be deduced from it.

Berndtsson: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ and $0\leq\delta<1$ then

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1 - \delta)^2} \int_{\Omega} |\alpha|^2_{i \partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$

- ▶ One can show that the constant $4/(1-\delta)^2$ is optimal.
- If we knew such an estimate for $\delta=1$ then the Ohsawa-Takegoshi extension theorem could be deduced from it.

Bo-Yong Chen: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ in Ω and $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq a<1$ on $\mathrm{supp}\,\alpha$ then

$$\int_{\Omega} |u|^2 (1-|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}) e^{\psi-\varphi} d\lambda \leq \frac{1}{(1-\sqrt{a})^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\psi-\varphi} d\lambda.$$

Berndtsson: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ and $0\leq\delta<1$ then

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1 - \delta)^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\delta \psi - \varphi} d\lambda.$$

- ▶ One can show that the constant $4/(1-\delta)^2$ is optimal.
- If we knew such an estimate for $\delta=1$ then the Ohsawa-Takegoshi extension theorem could be deduced from it.

Bo-Yong Chen: If $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq 1$ in Ω and $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}\leq a<1$ on $\mathrm{supp}\,\alpha$ then

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}) e^{\psi-\varphi} d\lambda \leq \frac{1}{(1 - \sqrt{a})^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\psi-\varphi} d\lambda.$$

► This estimate, together with an ODE, can give Suita and Ohsawa-Takegoshi with the constant 1.95388... (earlier obtained by Guan-Zhou). B.: If $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\omega}\leq 1$ in Ω and $H\leq a<1$ on $\mathrm{supp}\,\alpha$ then

$$\int_{\Omega}|u|^2(1-H)e^{2\psi-\varphi}d\lambda\leq \frac{1+\sqrt{a}}{1-\sqrt{a}}\int_{\Omega}|\alpha|^2_{i\partial\bar{\partial}\varphi}e^{2\psi-\varphi}d\lambda.$$

B.: If $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\omega}\leq 1$ in Ω and $H\leq a<1$ on $\mathrm{supp}\,\alpha$ then

$$\int_{\Omega} |u|^2 (1-H) \mathrm{e}^{2\psi-\varphi} d\lambda \leq \frac{1+\sqrt{\mathsf{a}}}{1-\sqrt{\mathsf{a}}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} \mathrm{e}^{2\psi-\varphi} d\lambda.$$

► This estimate, together with a solution of ODE, can give Suita and Ohsawa-Takegoshi with the optimal constant 1.

B.: If $H:=|\bar\partial\psi|^2_{i\partial\bar\partial\varphi}\leq 1$ in Ω and $H\leq a<1$ on $\mathrm{supp}\,\alpha$ then

$$\int_{\Omega} |u|^2 (1-H) \mathrm{e}^{2\psi-\varphi} d\lambda \leq \frac{1+\sqrt{a}}{1-\sqrt{a}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} \mathrm{e}^{2\psi-\varphi} d\lambda.$$

- ► This estimate, together with a solution of ODE, can give Suita and Ohsawa-Takegoshi with the optimal constant 1.
- ightharpoonup Recovers all previous ones, e.g. Hörmander's ($\psi=0$).

 φ psh, ψ s.th. $H:=|\bar{\partial}\psi|_{i\partial\bar{\partial}\varphi}^2<1$

arphi psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}arphi}<1$ u minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

arphi psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}arphi}<1$ u minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

$$\int_{\Omega} u \bar{f} e^{\psi - \varphi} d\lambda = 0, \quad f \in \ker \bar{\partial}$$

arphi psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}arphi}<1$

u minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

$$\int_{\Omega} u\bar{f}e^{\psi-\varphi}d\lambda = 0, \quad f \in \ker \bar{\partial}$$

 $v:=e^{\psi}u$ minimal solution in $L^2(\Omega,e^{-\varphi})$ to $\bar{\partial}v=\beta$, where

$$\beta := \bar{\partial}(e^{\psi}u) = e^{\psi}(\alpha + u\bar{\partial}\psi).$$

 φ psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}<1$

u minimal solution to $\bar{\partial}u=\alpha$ in $L^2(\Omega,e^{\psi-\varphi})$

$$\int_{\Omega} u\bar{f}e^{\psi-\varphi}d\lambda = 0, \quad f \in \ker \bar{\partial}$$

 $v:=e^{\psi}u$ minimal solution in $L^2(\Omega,e^{-\varphi})$ to $\bar{\partial}v=\beta$, where

$$\beta := \bar{\partial}(e^{\psi}u) = e^{\psi}(\alpha + u\bar{\partial}\psi).$$

By Hörmander

$$\int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda = \int_{\Omega} |v|^2 e^{-\varphi} d\lambda \le \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda$$

arphi psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}arphi}<1$ u minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

$$\int_{\Omega} u\bar{f}e^{\psi-\varphi}d\lambda = 0, \quad f \in \ker \bar{\partial}$$

 $v:=e^{\psi}u$ minimal solution in $L^2(\Omega,e^{-\varphi})$ to $\bar{\partial}v=\beta$, where

$$\beta := \bar{\partial}(e^{\psi}u) = e^{\psi}(\alpha + u\bar{\partial}\psi).$$

By Hörmander

$$\begin{split} \int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda &= \int_{\Omega} |v|^2 e^{-\varphi} d\lambda \le \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda \\ &= \int_{\Omega} |\alpha + u\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} \end{split}$$

 φ psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}<1$

u minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

$$\int_{\Omega} u\bar{f}e^{\psi-\varphi}d\lambda = 0, \quad f \in \ker \bar{\partial}$$

 $v:=e^{\psi}u$ minimal solution in $L^2(\Omega,e^{-\varphi})$ to $\bar{\partial}v=\beta$, where

$$\beta := \bar{\partial}(e^{\psi}u) = e^{\psi}(\alpha + u\bar{\partial}\psi).$$

By Hörmander

$$\begin{split} \int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda &= \int_{\Omega} |v|^2 e^{-\varphi} d\lambda \le \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda \\ &= \int_{\Omega} |\alpha + u\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} \\ &\le \int_{\Omega} \left[(1 + t^{-1}) |\alpha|^2_{i\partial\bar{\partial}\varphi} + (1 + t) |u|^2 H \right] e^{2\psi - \varphi} d\lambda, \end{split}$$

where t > 0.

 φ psh, ψ s.th. $H:=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}<1$

u minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

$$\int_{\Omega} u\bar{f}e^{\psi-\varphi}d\lambda = 0, \quad f \in \ker \bar{\partial}$$

 $v:=e^{\psi}u$ minimal solution in $L^2(\Omega,e^{-\varphi})$ to $\bar{\partial}v=\beta$, where

$$\beta := \bar{\partial}(e^{\psi}u) = e^{\psi}(\alpha + u\bar{\partial}\psi).$$

By Hörmander

$$\begin{split} \int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda &= \int_{\Omega} |v|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda \\ &= \int_{\Omega} |\alpha + u\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} \\ &\leq \int_{\Omega} \left[(1 + t^{-1}) |\alpha|^2_{i\partial\bar{\partial}\varphi} + (1 + t) |u|^2 H \right] e^{2\psi - \varphi} d\lambda, \end{split}$$

where t > 0. May take $0 \le \mu < 1$ s.th. $1 - (1 + t)H = \mu(1 - H)$.

Theorem Ω pscvx, $\varphi \in PSH(\Omega)$, $\psi \in W^{1,2}_{loc}(\Omega)$,

Theorem Ω pscvx, $\varphi \in PSH(\Omega)$, $\psi \in W^{1,2}_{loc}(\Omega)$, $H \in L^{\infty}(\Omega)$ s.th. $0 \leq H < 1$ and $i\partial \psi \wedge \bar{\partial} \psi \leq Hi\partial \bar{\partial} \varphi$

Theorem Ω pscvx, $\varphi \in PSH(\Omega)$, $\psi \in W^{1,2}_{loc}(\Omega)$, $H \in L^{\infty}(\Omega)$ s.th. $0 \le H < 1$ and

$$i\partial\psi\wedge\bar\partial\psi\leq {\it Hi}\partial\bar\partial\varphi$$

$$\mu \in L^{\infty}(\Omega)$$
 s.th. $0 \le \mu < 1$

Theorem Ω pscvx, $\varphi \in PSH(\Omega)$, $\psi \in W^{1,2}_{loc}(\Omega)$, $H \in L^{\infty}(\Omega)$ s.th. $0 \le H < 1$ and

$$i\partial\psi\wedge\bar\partial\psi\leq {\it Hi}\partial\bar\partial\varphi$$

 $\mu \in L^{\infty}(\Omega)$ s.th. $0 \leq \mu < 1$ Then for $\alpha \in L^2_{loc,(0,1)}(\Omega)$ with $\bar{\partial}\alpha = 0$ we can find $u \in L^2_{loc}(\Omega)$ s.th. $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 \mu (1-H) e^{2\psi-\varphi} d\lambda \leq \int_{\Omega} \frac{1-\mu+\mu H}{(1-\mu)(1-H)} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi-\varphi} d\lambda.$$

Theorem Ω pscvx, $\varphi \in PSH(\Omega)$, $\psi \in W^{1,2}_{loc}(\Omega)$, $H \in L^{\infty}(\Omega)$ s.th. $0 \le H < 1$ and

$$i\partial\psi\wedge\bar\partial\psi\leq {\it Hi}\partial\bar\partial\varphi$$

 $\mu \in L^{\infty}(\Omega)$ s.th. $0 \leq \mu < 1$ Then for $\alpha \in L^2_{loc,(0,1)}(\Omega)$ with $\bar{\partial}\alpha = 0$ we can find $u \in L^2_{loc}(\Omega)$ s.th. $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 \mu (1-H) e^{2\psi-\varphi} d\lambda \leq \int_{\Omega} \frac{1-\mu+\mu H}{(1-\mu)(1-H)} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi-\varphi} d\lambda.$$

▶ If $H \le a < 1$ on $\operatorname{supp} \alpha$ then for $\mu = 1/(1 + \sqrt{a})$ we recover the previous result.

Thank you!