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Hormander's Estimate

Theorem € pscvx in C", a € L/20c,(o,1_)(Q)' da =0, ¢ € PSH(Q)
Then we can find u € L2 (Q) s.th. du = a and

loc

2 _—p 2 —p
ul“e d/\g/ alfs e Pd.
/Q| | Q’ "aa“"

> If ¢ is C2 and i90yp > 0 then ‘O‘Eaap = gof’?ajo‘zk,
> laffs, < H <= iaha< H i0dyp

» The original Hormander's formulation with 2|a|?/c, where
(¢;x) = c(djk), instead of |a|?85¢. The above formulation for

(0,1)-forms is due to Demailly.
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Pluricomplex Green Function

Ga(z,w) :=sup{u(z): ue PSH™(2), u <log|-—w|+ C near w}

General assumption Q is a bounded pscvx, 0 € Q, G := Gq(+,0)

> If Q is hyperconvex then G € C(Q\ {0}), G =0 on 0Q
(Demailly)

> If 9Q € C?1, strongly pscvx, then G € C11(Q )\ {0})
(B./Bo Guan)

> If 9Q € C, strongly convex, then G € C*(Q\ {0})
(Lempert)
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Ka(w) := sup{|f(w)[?: f € O(Q), [If|| == [|fll i) < 1}.
e2nt
>___ -
Theorem Kq(0) > NG <)’ t<0

Proof (modified, using Hormander's estimate directly)
Set
¢ :=2nG — log(1 — G).

Then ¢ € PSH™(2) and e ¥ is not locally integrable near 0.
Define o := d(x 0 G) = X’ 0 G G, where x will be determined
later.

iana=(xoG)?idGAdG,

. 1 =

i00p > m/@G A 0G,
hence

iana<(l-G)3x oG)?iddy.
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c(n, t)
0= e <y

where

qmn:< “_”))a Xpa»:[;a—gﬁﬁawi

1+ x(—o0)

We need c(n,t) = e?". Tensor-power trick:

Q=0"=Qx..-xQcCcm,
Then

__— c(nm,t)  c(nm,t)
FalO)"=Ha® = (6 < o) ~ e < oy

But (c(nm, t))V/™ — €2 as m — co.
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Ka(0) > 57 ¢

({6 <1t})

There is a simpler proof due to Lempert. It follows from the
convexity of t > log K;g¢)(0) but this uses d in a hidden
way (Maitani-Yamaguchi/Berndtsson log-(pluri)subharmo-
nicity of the Bergman kernel for sections of a domain).
Lempert's proof uses C"*1 to prove the inequality in C”, the
previous proof (Hérmander + tensor power trick) uses all
dimensions.
If n =1 then e*/A\({G < t}) — (cq(0))?/m as t — —o0,
where

cq(0) = exp lim(G(z) — log |z|)

z—0

is the logarithmic capacity. So (1) gives another proof of the
Suita conjecture cé < mKq. Ohsawa was the first to realize
that this one-dimensional problem needs 9.
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> For arbitrary n we have €™ /A({G < t}) — 1/A(I4) as
t — —o0, where

18 = {v e C": limsup(G(Cv) — log[¢|) < 0}
¢—0

is the Azukawa indicatrix (B.-Zwonek). So

1
A1)

» Using Lempert’s theory one can show that if Q is convex then
lé = lg'z(, where

1§ = {'(0): ¢ € O(D,Q), »(0) =0}

is the Kobayashi indicatrix.
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ODE Question t—liT e c(t) > 0, where

c(t) :=sup{ </_; We%s)z cy e CVXNC*(R_,R_)}
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Monotonicity
Question: Is €2 /A({G < t}) decreasing to 1/A\(I2) as t — —oc?

Monotonicity would follow if log A\({G < t}) was convex in t.

» Fornaess found an example of a triply connected Q C C such
that log A({G < t}) is not convex.

» (B.-Zwonek) If VG(zp) = 0 for some z5 € Q C C (e.g.
annulus) then log A({G < t}) is not convex.

» (Thomas) If Q is a disc not centered at 0 then log A({G < t})
is not convex.

h(t) :=log A\({G < t}) —2nt
By the co-area formula

do

d
E)‘({G < t}) = /{G_t} val
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Lemma If Q is convex, 9Q € C! then for w € Q

2
(w, nw)’

IVG(w)] <

where n,, is the unit outer normal.

Proof Let H be the complex tangent space to Q2 at w. We may
assume that H = {z; = wy}. By €’ denote the projection of Q
along H to {zp = --- = z, = 0}. Let [ be the real line in C
tangent to Q' at wy (so that / x H is the real tangent space to
0 at w). If (o € | is the shortest point to 0 then

21

u(z) :=log TS < G(2).
Then 5
IVG(w)| < [Vu(w)| = 2|o| = oy

Remark The constant 2 cannot be improved (disc).
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do 1/
—_ > = w, ny) do(w
/BQ|VG\_2 6Q< da(w)
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Proposition If Q is convex then

do
> n ().
|z @

Proof

[a9612 3 fqtwene ot =i ©

Corollary If Q is convex then €™ /A({G < t}) is monotone in t.
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Generalizations of Hormander's Estimate

Q pscvx in C", o € L,20_C7(071)(Q), da =0

Looking for u solving du = « with estimates.
© € PSH(Q), ¢, Q are sufficiently regular

Hormander: /]u!ze‘pd)\gf \a|?65 e PdA.
Q Q v

Donnelly-Fefferman: If |5¢\I?85¢ <1 (i.e. iOY A O < id0) then

2,—¢ 2 —
ule d)\§4/oz.—e dA.
I [ Jota,

Twisting (Berndtsson)

If u is a solution to du = o minimal in L?(Q, e=¥/27¥) then
u L kerd and

/ uf e ¥/2=%d\ =0, f € kerd.
Q



This means that v := e¥/2y is a solution to
_ _ 1 -
v =f:=d(e?u) = <a + 2u81/)) e¥/?

minimal in [2(Q, e~¥~%).
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_ _ 1 -
v =f:=d(e?u) = <a + 2u81/)) e¥/?

minimal in L2(Q, e=¥~%¥). By Hormander and since |0%|2 05y < 1,

/qu “PdA = /\v|2 —¥- SDdA</ |B|,88 "/’_“’d)\



This means that v := e¥/2y is a solution to
_ _ 1 -
v =f:=d(e?u) = <a + 2u81/)) e¥/?

minimal in L2(Q, e=¥~%¥). By Hormander and since |0%|2 05y < 1,

/yuy2 P = /\vl2 - Sw</ T
</,

a—i—lu&/} e Pd

9y



This means that v := e¥/2y is a solution to
_ _ 1 -
v =f:=d(e?u) = <a + 2u81/)) e¥/?

minimal in L2(Q, e=¥~%¥). By Hormander and since |0%|2 05y < 1,

/qu “PdA = /\v|2 —¥- S"dA</ |5|,88 —w—wx
_/Q 99
1
2 2 —
< /Q [2|04|;aéw+2|u| ] e YdA.

a—i—lu&/} e Pd




One can generalize Donnelly-Fefferman’s estimate to:



One can generalize Donnelly-Fefferman’s estimate to:
Berndtsson: If |9y o5y <1 and 0 < ¢ < 1 then

/Q|u|2e‘w_“’d)\< /|a|laaw WP g\,



One can generalize Donnelly-Fefferman’s estimate to:
Berndtsson: If |9y|2 sy <1 and 0 < ¢ < 1 then

/Q|u|2e‘w_“’d)\< /|a|laaw WP g\,

» One can show that the constant 4/(1 — §)? is optimal.



One can generalize Donnelly-Fefferman’s estimate to:
Berndtsson: If |9y|2 sy <1 and 0 < ¢ < 1 then

/Q|u|2e‘w_“’d)\< /|a|laaw WP g\,

» One can show that the constant 4/(1 — §)? is optimal.

» If we knew such an estimate for § = 1 then the Ohsawa-
Takegoshi extension theorem could be deduced from it.



One can generalize Donnelly-Fefferman’s estimate to:
Berndtsson: If |9y|2 sy <1 and 0 < ¢ < 1 then

/|u|2 W—ed) < S 5) /|a|186w WP g\,

» One can show that the constant 4/(1 — §)? is optimal.

» If we knew such an estimate for § = 1 then the Ohsawa-
Takegoshi extension theorem could be deduced from it.

Bo-Yong Chen: If |0y|? 05y < 1in Q and [0v)? gy S @< 1 on
supp « then

_ 1
2 2 — 2 _
/Q|u| (1= 09 [25,)e" #dA < (1_\/5)2/9\(1|i85¢e¢ Pd.



One can generalize Donnelly-Fefferman’s estimate to:
Berndtsson: If |9y|2 sy <1 and 0 < ¢ < 1 then

/|u|2 W—ed) < S 5) /|a|186w WP g\,

» One can show that the constant 4/(1 — §)? is optimal.
» If we knew such an estimate for 6 = 1 then the Ohsawa-
Takegoshi extension theorem could be deduced from it.

Bo-Yong Chen: If |0y|? 05y < 1in Q and [0v)? gy S @< 1 on
supp « then

_ 1
2 2 — 2 _
/Q|u| (1= 09 [25,)e" #dA < (1_\/5)2/9\(1|i85¢e¢ Pd.

» This estimate, together with an ODE, can give Suita and
Ohsawa-Takegoshi with the constant 1.95388... (earlier
obtained by Guan-Zhou).
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Q 109

» This estimate, together with a solution of ODE, can give
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B.. If H:= |5w‘?85<p <1linQand H<a<1onsuppa then

1
/u2(1— )e2V =2\ < +f/\ 2 2P,
Q 109

» This estimate, together with a solution of ODE, can give
Suita and Ohsawa-Takegoshi with the optimal constant 1.

» Recovers all previous ones, e.g. Hérmander's () = 0).
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@ psh, ¥ s.th. H = |5¢|?35¢ <1

u minimal solution to Ju = a in L?(Q, eV~ ¥)
/Qufewwd)\ =0, fekerd

v := e¥u minimal solution in L?(Q,e%?) to v = 3, where
B = 0(e¥u) = e¥(a + udy).

By Hormander

2 29—p gy _ 2 _— 2 -
ule d)\—/ve“"d)\</6.—e“’d)\
/Q|| Q’| Q‘ |186<p



@ psh, ¢ s.th. H := |5¢|’?85
u minimal solution to Ju = a in L?(Q, eV~ ¥)
/ ufe?=%dA =0, feckerd
Q
v := e¥u minimal solution in L2(Q, e ¥) to v = B3, where

B = 0(e¥u) = e¥(a + udy).

By Hormander

/Q|u|2621/1_50d)\:/ ’V|2e_(pd)\</96|?85<pe_tpd)\

/ la + u@¢|l88



@ psh, ¢ s.th. H := |5¢|’?85

u minimal solution to Ju = a in L?(Q, eV~ ¥)

/ ufe?=%dA =0, feckerd
Q
v := e¥u minimal solution in L2(Q, e ¥) to v = B3, where

B = 0(e¥u) = e¥(a + udy).

By Hormander

/|u|2e2¢—%0d)\:/ ’v|2e_90d)\</ 155, #dA
¢ Q
/’a+“a¢|,aa
- 5 2H| e2V—¢
S/Q[(lth DlalZg, + (1 +t)]|ul H}e da,

where t > 0.



@ psh, ¢ s.th. H := |5¢|’?65

u minimal solution to Ju = a in L?(Q, eV~ ¥)

/ ufe?=%dA =0, feckerd
Q
v := e¥u minimal solution in L2(Q, e ¥) to v = B3, where

B = 0(e¥u) = e¥(a + udy).

By Hormander

/|u|2e2¢—80d)\:/ ’v|2e_90d)\</ 155, #dA
¢ Q
/a+“a¢|,aa
- 5 2H| e2V—¢
S/Q[(lth DlalZg, + (1 +t)]|ul H}e da,

where t > 0. May take 0 < < 1s.th. 1 — (14 t)H = p(1 — H).
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Theorem Q pscvx, ¢ € PSH(Q), ¢ € W,icz(Q)
He [*(Q)sth. 0<H<1and
io A Oy < Hiddp

peL®(Q)sth. 0<pu<1
Then for a€ LI20c,(0,1)(Q) with da = 0 we can find u € L2 _(Q)
s.th. du = « and

_ 1—p+puH _
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Theorem Q pscvx, ¢ € PSH(Q), ¢ € W,icz(Q)
He [*(Q)sth. 0<H<1and
io A Oy < Hiddp

peL®(Q)sth. 0<pu<1
Then for a€ LI20c,(0,1)(Q) with da = 0 we can find u € L2 _(Q)
s.th. du = « and

_ 1-— ,u—l—,uH _
2 20hp—p 2V
1-H d)\ < d.

» If H<a<1onsuppa then for p =1/(1+ \/a) we recover
the previous result.



Thank you!



