Superforms, convex geometry and valuations.

Bo Berndtsson

Background.

We use coordinates $x=x_{1}, \ldots x_{n}$ on \mathbb{R}^{n} and $x+i \xi=x_{1}+i \xi_{1}, \ldots x_{n}+i \xi_{n}$ on \mathbb{C}^{n}. A superform on \mathbb{R}^{n} is a form

$$
\alpha=\sum \alpha_{I J}(x) d x_{I} \wedge d \xi_{J}
$$

on \mathbb{C}^{n} whose coefficients depend only on x. If all $|I|=p,|J|=q, \alpha$ has bidegree (p, q). If $p=q=n$, its superintegral is

$$
\int \alpha=\int a(x) d x \wedge d \xi:=\int a(x) d x
$$

We can also allow the $\alpha_{/ J}$ to be measures. Then we get supercurrents, dual to the space of continuous superforms.

The ordinary exterior derivative, d, acts on superforms and -currents. We let

$$
d^{\#}=\sum \frac{\partial \alpha_{I J}}{\partial x_{i}} d \xi_{i} \wedge d x_{I} \wedge d \xi_{J}\left(=d^{c} \alpha\right)
$$

If $\psi(x)$ is a function

$$
d d^{\#} \psi=\sum \psi_{i j} d x_{i} \wedge \xi_{j}
$$

ψ is convex if and only if $d d^{\#} \psi \geq 0$. A (p, p)-current

$$
\sum \Omega_{I J} d x_{l} \wedge d \xi_{J}
$$

is symmetric if $\Omega_{I J}=\Omega_{J /}$. There is a notion of positivity for symmetric currents too.
Ω is symmetric if and only if $J(\Omega)=\Omega$, where J is the complex structure on \mathbb{C}^{n}.

Bedford-Taylor

Let Ω be closed, symmetric and positive. The following consequence of the theory of Bedford and Taylor is very useful:

Theorem

If ψ is convex, then

$$
d d^{\#} \psi \wedge \Omega
$$

is again well defined closed symmetric and positive. It depends on ψ continuously.

Corollary

$$
\left(d d^{\#} \psi\right)^{n} / n!=: M A(\psi)
$$

is a well defined positive measure. It depends on ψ continuously.
It coincides with Alexandrov's definition of the Monge-Ampere measure.

Volumes.

Let K be a convex body and

$$
h_{K}(x)=\sup _{y \in K} x \cdot y
$$

its support function. It is 1-homogeneous and convex.

Theorem

$$
M A\left(h_{K}\right)=c_{n}|K| \delta_{0}
$$

where δ_{0} is a unit Dirac measure at the origin and $|K|$ is the volume of K.

Mixed volumes

If $K_{1}, \ldots K_{n}$ are convex bodies and $t=\left(t_{1}, \ldots t_{n}\right), t_{i} \geq 0$, let

$$
K_{t}=t_{1} K_{1}+\ldots t_{n} K_{n}=\left\{\sum t_{i} x_{i} ; x_{i} \in K_{i}\right\}
$$

(Minkowski sum of K_{i}). Notice that

$$
h_{K_{t}}=t_{1} h_{K_{1}}+\ldots t_{n} h_{K_{n}} .
$$

It follows that the volume of K_{t} is a polynomial in t. The coefficient of $t_{1} \ldots t_{n}$ divided by n ! is the mixed volume

$$
V\left(K_{1}, \ldots K_{n}\right)
$$

It is a polarization of the volume in the sense that it is Minkowski linear in each slot and $V(K, \ldots K)=|K|$.

Thus the mixed volumes are

$$
V\left(K_{1}, \ldots K_{n}\right)=\int d d^{\#} h_{K_{1}} \wedge \ldots d d^{\#} h_{K_{n}} / n!
$$

where $h_{K_{i}}$ are the support functions of K_{i}.

An inequality

We will deal mostly with convex functions of linear growth, $\phi \leq A|x|+B$. The indicator of such a function is

$$
\phi^{\circ}(x)=\lim _{t \rightarrow \infty} \phi(t x) / t
$$

The indicator is 1-homogeneous; hence the support function of some convex body.

Proposition

If $\phi_{i}^{\circ} \leq \psi_{i}^{\circ}$, then

$$
\int d d^{\#} \phi_{1} \wedge \ldots d d^{\#} \phi_{n} \leq \int d d^{\#} \psi_{1} \wedge \ldots d d^{\#} \psi_{n}
$$

In particular, such integrals depend only on the indicators of the functions.

Alexandrov-Fenchel

It follows that the mixed volumes are

$$
V\left(K_{1}, \ldots K_{n}\right)=\int d d^{\#} \psi_{1} \wedge \ldots d d^{\#} \psi_{n} / n!
$$

where ψ_{i} are any convex functions with indicators $h_{K_{i}}$.

Theorem

Fix $K_{3}, \ldots K_{n}$. Then

$$
V\left(K, L, K_{3}, \ldots K_{n}\right)^{2} \geq V\left(K, K, K_{3}, \ldots K_{n}\right) V\left(L, L, K_{3}, \ldots K_{n}\right)
$$

This is the Alexandrov-Fenchel inequality, a wrong-way Cauchy inequality.

Valuations

A real valued valuation on convex bodies is a map

$$
K \rightarrow \Theta(K) \in \mathbb{R}
$$

satisfying $\Theta(\emptyset)=0$ and

$$
\Theta(K \cup L)+\Theta(K \cap L)=\Theta(K)+\Theta(L)
$$

if $K \cup L$ is convex. Here are two examples:

$$
\Theta_{n}(K)=|K|=\operatorname{Vol}(K)
$$

the ordinary Lebesgue measure, and

$$
\Theta_{0}(K)=1
$$

if K is nonempty.

Important fact

A valuation extends to a finitely additive measure on the Boolean algebra generated by all convex bodies.

The theory of valuations turns out to have surprising connections to otrher areas of mathematics, like topology, representation theory, Kahler geometry...
Example: Take the trivial valuation; $\Theta(K)=1$ if K is nonempty and extend it to a finitely additive measure. Then

$$
\Theta(A)=\chi(A)
$$

the Euler characteristic of A.

This is because

$$
\chi(A \cup B)+\chi(A \cap B)=\chi(A)+\chi(B)
$$

as follows from the Mayer-Vietoris sequence

$$
0 \rightarrow \mathcal{E}(A \cup B) \rightarrow \mathcal{E}(A) \oplus \mathcal{E}(B) \rightarrow \mathcal{E}(A \cap B) \rightarrow 0
$$

To see more examples we need to find more valuations. Here is one important way to construct new valuations from old ones.

New valuations from old ones

If A is a convex body

$$
\tau_{A}(\Theta)(K):=\Theta(K+A),
$$

the translate of Θ by A, is again a valuation. Apply this to

$$
\Theta_{n}(K)=|K|=\int\left(d d^{\#} h_{K}\right)^{n} / n!=\int \omega_{K}^{n} / n!.
$$

Then

$$
\Theta_{n}(K+A)=\int\left(\omega_{K}+\omega_{A}\right)^{n} / n!=\sum \int \omega_{K}^{k} \wedge \omega_{A}^{n-k} / k!(n-k)!.
$$

It follows that

$$
K \rightarrow \int \omega_{K}^{k} \wedge \omega_{A}^{n-k}
$$

is a valuation for any convex body A.

Hence...

all mixed volumes

$$
K \rightarrow \int \omega_{K}^{k} \wedge \omega_{A_{1}} \wedge \ldots \omega_{A_{n}}=V\left(K[k], A_{1}, \ldots A_{n-k}\right)
$$

are valuations.
These valuations are translation invariant

$$
\Theta(K+a)=\Theta(K)
$$

We assume from now that all valuations we look at are translation invariant and continuous - in some sense.
Alesker introduced the stronger notion of

smooth valuations

Let $g \in G L\left(\mathbb{R}^{n}\right)$, and put

$$
g^{*}(\Theta)(K)=\Theta(g K)
$$

A valuation Θ) is called smooth if $g \rightarrow g^{*}(\Theta)$ is smooth. The next theorem is due to Alesker, Knoerr, van Handel ...

Theorem

Any smooth and translation invariant valuation is a finite linear combination of mixed volumes

$$
\int \omega_{K}^{k} \wedge \omega_{A_{1}} \wedge \ldots \omega_{A_{n-k}}=V\left(K[k], A_{1}, \ldots A_{n-k}\right)
$$

The forms $\omega_{i}=\omega_{A_{i}}$ that appear here have three properties:
a) $d \omega_{i}=0$.
b) $\delta_{E} \omega_{i}=0$, where δ_{E} is contraction with the Euler vector field $E=\sum x_{j} \partial_{j}$.
c) ω_{i} is symmetric; i. e. $J\left(\omega_{i}\right)=\omega_{i}$.

Hence

$$
\Omega_{I}=\omega_{A_{1}} \wedge \ldots \omega_{A_{n-k}}
$$

has the same properties.

Remark

The Euler vector field $E=\sum x_{j} \partial_{j}$ generates the flow on \mathbb{R}^{n}

$$
x \rightarrow F_{t}(x)=t x
$$

By Cartan's 'magic formula' the Lie derivative of a form along this vector field is

$$
L_{E}=d \delta_{E}+\delta_{E} d
$$

Hence, if Ω satisfies $d \Omega=0$ and $\delta_{E} \Omega=0, \Omega$ is invariant under the flow:

$$
F_{t}^{*}(\Omega)=\Omega
$$

Theorem/Conjecture

Theorem

Let Θ be a smooth translation invariant valuation. Then there is a unique superform

$$
\Omega=\Omega_{0}+\ldots \Omega_{n},
$$

where Ω_{p} is of bidegree (p, p), satisfying a, b, c, such that

$$
\Theta(K)=\sum_{k=0}^{k=n} \int \omega_{K}^{k} \wedge \Omega_{n-k} / k!.
$$

Conversely, any such Ω defines a valuation (?)

A rewrite

A nicer way to write the formula is

$$
\Theta(K)=\int e^{\omega_{K}} \wedge \Omega=: \mathcal{F}^{-1}(\Omega)(K)
$$

We think of this as an inverse Fourier transform, mapping superforms to valuations, via the 'character'

$$
K \rightarrow e^{\omega_{K}}
$$

$\Omega=\mathcal{F}(\Theta)$. We have

$$
\tau_{A}(\Theta)(K)=\int e^{\omega_{K}+\omega_{A}} \wedge \Omega=\int e^{\omega_{K}} \wedge e^{\omega_{A}} \wedge \Omega
$$

so

$$
\mathcal{F}\left(\tau_{A} \Theta\right)=e^{\omega_{A}} \wedge \mathcal{F}(\Theta)
$$

Lefschetz theorem for valuations

Let $\omega_{A}=d d^{\#} h_{A}$, where A is strictly convex and smoothly bounded. Define a Lefschetz operator on valuations by

$$
L(\Theta)=\mathcal{F}^{-1}\left(\omega_{A} \wedge \Omega\right)
$$

if $\Theta=\mathcal{F}^{-1}(\Omega)$.
Bernig, Kotrbatý and Wannerer proved a 'Hard Lefschetz theorem':

Theorem

The map

$$
\Theta \rightarrow L^{n-2 p}(\Theta)
$$

is a bijection on the space of valuations of order p.

Approach in terms of superforms

Let $F_{s}(x)=s x$ for $s>0$. We look at (p, p)-forms Ω such that

$$
\Omega^{\infty}:=\lim _{t \rightarrow \infty} F_{t}^{*}(\Omega)
$$

exists. This is an analog of functions of linear growth. If Ω is such a form we define its (cohomology) class by

$$
[\Omega]=\left\{\Omega^{\prime} ; \lim _{t \rightarrow \infty} F_{t}^{*}\left(\Omega^{\prime}\right)=\Omega^{\infty}\right\}
$$

Hodge theorem/conjecture

The Lefschetz map is defined in terms of $d d^{\#} h_{A}$, where A is strictly convex and smoothly bounded. Let ψ be a smooth strictly convex function with indicator h_{A}, and put

$$
\omega=d d^{\#} \psi
$$

The form ω defines a Kahler structure on \mathbb{C}^{n}.

Theorem

Every class $[\Omega]$ contains exactly one harmonic representative.
This would imply the Lefschetz theorem, much like it's proved in Algebraic geometry. I can prove it for $p=1$.

Thanks!

