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Graphs

Definition

A graph Gd = (V, E) is a set of vertices V and edges E .

Assumptions

V and E are at most countable, and Gd is connected

Gd is locally finite (vertex degree: deg(v) <∞, v ∈ V)
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Metric graphs

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Gd = (V, E) is a connected, locally finite graph.

If every edge e ∈ E is assigned with a positive finite length |e| ∈ (0,∞), then

G = (V, E , | · |) is called a metric graph

Metric Graph as ...
a simplicial 1-complex,

a topological space, which looks locally like a star-graph

a length space when equipped with a natural (“geodesic”) path metric – a
distance between two points is the arc-length of “shortest” path,
a (real) 1D manifold with singularities: vertices of degree ≥ 3 are
“branching” points; degree = 1 are “boundary” points,
a non-Archimedean analog of Riemann surfaces

a tropical curve or a degeneration of a smooth family of Riemann surfaces
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Metric graphs

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Gd = (V, E) is a connected, locally finite graph.

If every edge e ∈ E is assigned with a positive finite length |e| ∈ (0,∞), then

G = (V, E , | · |) is called a metric graph

Applications: “thin wire materials” in physics/biology/...

lungs ≈ binary tree of 20-23 generations
approx. 2× 106 − 1.6× 107 vertices

Cast of human lungs (photo by E. Weibel)

P. Joly, M. Kachanovska, and A. Semin, Netw. Heterog. Media (2019)

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, AMS, 2013

P. Exner and H. Kovǎŕık, Quantum waveguides, Springer, 2015
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(Kirchhoff) Laplacians on metric graphs

Given G = (V, E , | · |), identify each edge e ∈ E with Ie = [0, |e|]. Let

L2(G) ∼=
⊕
e∈E

L2(Ie).

Kirchhoff Laplacian (“Laplace–Beltrami” on G)

∆ acts as − d2

dx2
e

on the interior of G, and boundary conditions:

Kirchhoff conditions:

{
f is continuous at v∑

e∈Ev ∂e f (v) = 0
, v ∈ V.

deg(v) = 1: Kirchhoff = Neumann at v , ∂e f (v) = 0,

deg(v) = 2: Kirchhoff = continuity of f and its derivative at v
(“removable” singularity/inessential vertex)
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∆ acts as − d2

dx2
e

on the interior of G, and boundary conditions:

Kirchhoff conditions:

{
f is continuous at v∑

e∈Ev ∂e f (v) = 0
, v ∈ V.

The maximal Kirchhoff Laplacian ∆Kir is defined in L2(G;µ) on the domain

dom(∆Kir) =
{
f ∈ H2(G \ V)| (Kirchhoff) on V

}
.

The minimal Kirchhoff Laplacian ∆Kir,0 is the L2 closure of

∆ � dom(∆Kir) ∩ L2
c(G).
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Self-adjointness (a.k.a. Quantum Completeness)

Problem: Do we need a boundary condition at “infinity”?

When ∆Kir,0 = ∆Kir, i.e., when ∆Kir is self-adjoint?

NOTE: Since ∆Kir,0 ≥ 0,

∆Kir,0 = ∆Kir ⇔ L2-uniqueness for Schrödinger and Wave equations

§VIII.11 Three mathematical problems in quantum mechanics

(1) Self-adjointness: ... The first mathematical problem is to prove essential

self-adjointness or, if the operator is not essentially self-adjoint, to

investigate the various self-adjoint extensions and choose the “right one” to

be the observable.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I:
Functional Analysis, Academic Press, 1980.
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Self-adjointness (a.k.a. Quantum Completeness)

Problem: Do we need a boundary condition at “infinity”?

When ∆Kir,0 = ∆Kir, i.e., when ∆Kir is self-adjoint?

NOTE: Since ∆Kir,0 ≥ 0,

∆Kir,0 = ∆Kir ⇔ L2-uniqueness for Schrödinger and Wave equations

von Neumann formulas

dom(∆Kir) = dom(∆D)u ker (∆Kir − λ), λ ∈ C \ σ(∆D).

∆D is the Dirichlet Laplacian (the Friedrichs extension of ∆Kir,0)

Since ker (∆Kir − λ) = L2 λ-harmonic functions and σ(∆D) ⊆ [0,∞):

self-adjoint uniqueness ⇔ no L2 harmonic f-ns (λ-harmonic with λ < 0),

description of self-adjoint extns = description of L2 λ-harmonic functions!

Graph Boundaries

Poisson = bounded harmonic; Martin = positive harmonic, . . .
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Self-adjointness (a.k.a. Quantum Completeness)

For manifolds: Cauchy boundary ∂CM = M \M; completeness is ∂CM = ∅
completeness ⇒ self-adjoint uniqueness (Gaffney’54; Roelcke’60; Chernoff’73).

Gaffney-type Theorem on Metric graphs

∆Kir,0 = ∆Kir if (G, %intr) is complete.

The proof is based on Yau’s Lp-Liouville theorem for strongly local Dirichlet forms:

K.-T. Sturm, Analysis on local Dirichlet spaces I, Crelle’s J. (1994).

Warning #1: The self-adjointness problem is open even on G with Gd = Z2.

Warning #2: M.P. Gaffney considered ∆ = − div · grad as a product of operators!

dom(∆G ) = {f ∈ dom(∆Kir) | grad f ∈ L2} = dom(∆Kir) ∩ H1(G).

Definition

Markovian uniqueness: H1(G) = H1
0 (G).

• Does e−∆t give rise to a unique positivity preserving and L∞ contractive semigroup?
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Boundaries for infinite graphs: Graph Ends

Definition (Freudenthal, 1944; Halin, 1964):

A ray in G is an infinite path R = (vn)n≥0 without self-intersections.
Two rays are equivalent, if they cannot be separated by cutting out a finite set
of vertices

A graph end is an equivalence class of rays. The set of ends is C(G).

2 ends 1 end ∞ many ends

Theorem (Hopf–Freudenthal, 1940’s; Stallings, 1968):

If G is a Cayley graph of a finitely generated group, then

#C(G) ∈ {0, 1, 2,∞}.
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Finite Volume graph ends

Definition

A graph end γ has finite volume, if γ has a neighborhood U (w.r.t.
the Freudenthal compactification) such that vol(U) <∞.

The set of finite volume ends is denoted by C0(G).

For the following examples, a graph end has finite volume, if...

... its ray has finite
length

... the graph has
finite total volume

... it has a ”subtree”
of finite total volume
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Finite Volume graph ends

Definition

A graph end γ has finite volume, if γ has a neighborhood U (w.r.t.
the Freudenthal compactification) such that vol(U) <∞.

The set of finite volume ends is denoted by C0(G).

Graph ends and H1(G)

C0(G) is a proper boundary for H1-functions!

Every f ∈ H1(G) has a continuous extension to G ∪ C0(G).

General framework: ideal boundaries by Gelfand theory

Theorem (AK–Mugnolo–Nicolussi’ 2022)

H1
0 (G) = {f ∈ H1(G)| f (γ) = 0, γ ∈ C0(G)}.

In particular, H1
0 (G) = H1(G) ⇐⇒ C0(G) = ∅.
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Graph Ends and Markovian extensions

Corollary (AK–Mugnolo–Nicolussi’ 2022)

The following are equivalent:

H1
0 (G) = H1(G),

∆Kir,0 has a unique Markovian extension,

The Gaffney Laplacian ∆G is self-adjoint,

All graph ends have infinite volume, C0(G) = ∅.

If G has only one graph end, #C = 1:

∆Kir,0 has a unique Markovian extension ⇐⇒ vol(G) =
∑

e∈E |e| =∞
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Amenable groups (Γ is not amenable if a Ponzi scheme exists on Γ)

Theorem (Stallings)

If a finitely generated group Γ is amenable, then #C(Γ) <∞.

Corollary

If Γ is amenable(∗), then H1(G) = H1
0 (G) for any G with vol(G) =∞.

Theorem (AK–Nicolussi’ 2019)

Γ is not amenable ⇔ ∆Kir,0 > 0 for any G with supe∈E |e| <∞.

H. Kesten, Symmetric random walks on groups, TAMS (1958).

Understand groups via random walks:

• Tarski monster (A.Yu. Olshanskii’1980); free Burnside group (S.I. Adyan’1982);
• Basilica group (Bartholdi&Virag’2005)

Problem: Is the Thompson group amenable?

Understand groups via Brownian motion? Thank you for your attention!
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