Bergman metric as a pull-back of the Fubini-Study metric

Xiaojun Huang Joint work with Song-Ying Li from UC Irvine

Department of Mathematics, Rutgers University at New Brunswick, USA

June 5- June 9, 2023; Complex Analysis, Geometry and Dynamics, Portoroz, Slovenia

- 4 同 2 4 日 2 4 日 2

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Bergman metrics

- Bergman kernel
- Kähler manifold with a complete constant H.S. curvature

2 Calabi rigidity and extension theorems

- 3 A uniformization Theorem
- 4 Nonnegative constant holomorphic sectional curvature
- 5 More Open Questions

同 ト イ ヨ ト イ ヨ ト

Bergman kernel Kähler manifold with a complete constant H.S. curvature

• Let Ω be a domain in \mathbb{C}^n . Define the Bergman space $A^2(\Omega)$ to be the set of all holomorphic functions f on Ω such that

$$||f||^2 = \int_{\Omega} |f(z)|^2 dA(z) < \infty.$$

イロト イポト イヨト イヨト

• Let Ω be a domain in \mathbb{C}^n . Define the Bergman space $A^2(\Omega)$ to be the set of all holomorphic functions f on Ω such that

$$||f||^2 = \int_{\Omega} |f(z)|^2 dA(z) < \infty.$$

• Assume that $A^2(\Omega) \neq \{0\}$. Then $A^2(\Omega)$ is a non-trivial Hilbert subspace of $L^2(\Omega)$. Let $\{\phi_j\}_{j=1}^N$ be an orthonormal basis for $A^2(\Omega)$ with N being either finite or $+\infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

 \bullet The Bergman kernel function of Ω is defined by

$$K(z,w) = \sum_{j=1}^{M} \phi_j(z) \overline{\phi_j(w)}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

 \bullet The Bergman kernel function of Ω is defined by

$$K(z,w) = \sum_{j=1}^{M} \phi_j(z) \overline{\phi_j(w)}.$$

• When $\Omega = B_n$, the unit ball in \mathbb{C}^n , we have

$$K_{B_n}(z,w) = \frac{1}{v(B_n)} \frac{1}{(1 - \langle z, w \rangle)^{n+1}}.$$

< ロ > < 同 > < 三 > < 三 > 、

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

• Let Ω_j (j = 1, 2) be two domains in \mathbb{C}^n and let $F : \Omega_1 \to \Omega_2$ be a biholomorphic map. Then

$$K_{\Omega_1}(z,w) = \det F'(z)K_{\Omega_2}(F(z),F(w))\overline{\det F'(w)}.$$

イロン 不同 とくほう イロン

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

When K(z) = K(z, z) > 0 over Ω , $\omega_{\Omega} := i\partial\overline{\partial}K(z) \ge 0$, called the Bergman form of Ω .

When $\omega_{\Omega} > 0$, it associates a well-defined Kähler metric over Ω , called the Bergman metric of Ω . The transformation formula now gives the following invariant property of the Bergman metrics:

$$F * (\omega_{\Omega_2}) = \omega_{\Omega_1}.$$

(日)

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Still let $\Omega \subset \mathbb{C}^n$ be a domain. We say that **1.** $A^2(\Omega)$ is base-point free if $K_{\Omega}(z) = K_{\Omega}(z, z) > 0$ on Ω .

(日) (同) (三) (三)

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Still let $\Omega \subset \mathbb{C}^n$ be a domain. We say that **1.** $A^2(\Omega)$ is base-point free if $K_{\Omega}(z) = K_{\Omega}(z, z) > 0$ on Ω .

2. $A^2(\Omega)$ separates holomorphic directions if for any non-zero $X_p \in T_p^{(1,0)}\Omega$ there is a $\phi \in A^2(\Omega)$ such that $X_p(\phi)(p)) \neq 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

3. We say that $A^2(\Omega)$ separates points of Ω if $A^2(\Omega)$ is base-point free and the associated Bergman-Bochner map F defined by

$$F(z) = [\phi_1(z), \cdots, \phi_m(z), \cdots, \cdots, \phi_N] : \Omega \to \mathbb{P}^N(\mathbb{C}).$$

is one-to-one on Ω . Here $\{\phi_j\}_{j=1}^N$ is an orthonormal basis of $A^2(\Omega)$. (N is either finite or $N = \infty$).

伺 ト イ ヨ ト イ ヨ ト

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

• We say that a domain Ω is a Bergman admissible domain if the conditions in ~ 1, 2 and 3 are satisfied.

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

- We say that a domain Ω is a Bergman admissible domain if the conditions in ~ 1, 2 and 3 are satisfied.
- Any bounded domain is an admissible domain.

(日) (同) (日) (日) (日)

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Let F be the Bergman-Bochner map (which is unique up to a linear isometric isomorphism of \mathbb{P}^N . Then

$$\omega_{\Omega} = i\partial\overline{\partial}\log(\sum_{j=1}^{N} |\phi_j(z)|^2) := F^*(\omega_{st}).$$

(日) (同) (三) (三)

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Let F be the Bergman-Bochner map (which is unique up to a linear isometric isomorphism of \mathbb{P}^N . Then

$$\omega_{\Omega} = i\partial\overline{\partial}\log(\sum_{j=1}^{N} |\phi_j(z)|^2) := F^*(\omega_{st}).$$

The Fubini-Study metric, denoted by ω_{st} , of \mathbb{P}^{∞} with homogeneous coordinates $[z_1, \cdots, z_n, \cdots, \cdots]$ is formally defined by

$$\omega_{st} := i\partial\overline{\partial}\log\big(\sum_{j=1}^{\infty} |z_j|^2\big)$$

(日)

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

 \bullet Kobayashi (1959) If Ω is an admissible domain in $\mathbb{C}^n,$ then the Bergman metric

$$\omega_{\Omega} = i\partial\overline{\partial}\log K_{\Omega}(z)$$

is a well-defined Kähler metric.

(日) (同) (三) (三)

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

 \bullet Kobayashi (1959) If Ω is an admissible domain in $\mathbb{C}^n,$ then the Bergman metric

 $\omega_{\Omega} = i\partial\overline{\partial}\log K_{\Omega}(z)$

is a well-defined Kähler metric.

• (Ohsawa, 1981) Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with a C^1 -smooth boundary. Then the Bergman metric ω_{Ω} is complete.

(日)

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

More classical results on the Bergman metrics:

•. (Bergman, 1942; Kobayashi, 1959) Holomorphic sectional curvature of a Bergman metric is always bounded by the one for a complex projective space.

•. (Fuks, 1966) Ricci curvature of the Bergman metric of a bounded domain is bounded by $\left(n+1\right)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

• No example of a domain with no low bound for the Bergman holomorphic sectional curvatures was constructed or known.

イロト イポト イヨト イヨト

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

•. (Klembeck, 1978) The holomorphic sectional curvature of the Bergman metric of a bounded strongly pseudo-convex domain approaches to a negative constant for the ball with the same dimension as the base point approaches to the boundary.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

•. (Fu-Wong, 1997, Shafikov-Nemirovski, 2002 \leq 2; Huang-Xiao, 2022, > 2) Any bounded strongly pseudoconvex domain whose Bergman metric has a constant Ricci-curvature is biholomorphic to the unit ball of the same dimension. Just heard a talk that the result holds for bounded finite type domains in \mathbb{C}^2 by Savale-Xiao.

 \bullet If (M,g) is Kähler then M has constant holomorphic sectional curvatures if and only if

$$R_{\alpha\overline{\beta}\gamma\overline{\delta}}=-\frac{\kappa}{2}(g_{\alpha\overline{\beta}}g_{\gamma\overline{\delta}}+g_{\alpha\overline{\delta}}g_{\gamma\overline{\beta}}),$$

where $R_{\alpha\overline{\beta}\gamma\overline{\delta}}$ is the curvature tensor given by

$$R_{\alpha\overline{\beta}\gamma\overline{\delta}} = \frac{\partial^2 g_{\alpha\overline{\beta}}}{\partial z_{\gamma}\partial\overline{z_{\delta}}} - \sum_{\lambda,\mu} g^{\lambda\overline{\mu}} \frac{\partial g_{\gamma\overline{\mu}}}{\partial z_{\alpha}} \frac{\partial g_{\lambda\overline{\delta}}}{\partial\overline{z_{\beta}}}.$$

イロト イポト イヨト イヨト

Bergman kernel Kähler manifold with a complete constant H.S. curvature

• Bergman metric on the unit ball has a negative constant holomorphic sectional curvature. In fact

$$g_{\alpha\overline{\beta}}(z) = \frac{n+1}{1-|z|^2} (\delta_{\alpha\beta} + \frac{\overline{z}_{\alpha}z_{\beta}}{1-|z|^2})$$

and

$$R_{\alpha\overline{\beta}\gamma\overline{\delta}} = \frac{1}{n+1} \Big(g_{\alpha\overline{\beta}} g_{\gamma\overline{\delta}} + g_{\alpha\overline{\delta}} g_{\gamma\overline{\beta}} \Big)$$

with

$$\kappa = -\frac{2}{n+1} < 0.$$

(a)

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Theorem

Let (M^n, g) be a complete Kähler manifold with constant holomorphic curvature. Then its universal covering space is analytically isometrically equivalent with 1) $(\mathbb{P}^n, \lambda \omega_{st})$ if $\kappa > 0$, where $\lambda > 0$ is a certain positive constant; 2) \mathbb{C}^n if $\kappa = 0$; 3) $(\mathbb{B}_n, \lambda \omega_{Berg})$ if $\kappa < 0$, where $\lambda > 0$ is a certain positive constant.

Calabi rigidity and extension theorems A uniformization Theorem Nonnegative constant holomorphic sectional curvature More Open Questions

Bergman kernel Kähler manifold with a complete constant H.S. curvature

Let n > 1 and let

 $\Omega = \{ z \in \mathbb{C}^n : |z| < 1, z_n \neq 0 \}.$

Then

- a) Ω is pseudoconvex;
- b) the Bergman metric ω_{Ω} is not complete;

c) ω_{Ω} has a constant holomorphic sectional curvature, which is the same as that for ω_{B_n} .

- 4 同 6 4 日 6 4 日 6

1 Bergman metrics

2 Calabi rigidity and extension theorems

3 A uniformization Theorem

4 Nonnegative constant holomorphic sectional curvature

5 More Open Questions

同 ト イ ヨ ト イ ヨ ト

Calabi's theorems

• The Fubini-Study metric, denoted by ω_{st} , of \mathbb{P}^{∞} with homogeneous coordinates $[z_1, \cdots, z_n, \cdots, \cdots]$ is formally defined by

$$\omega_{st} := i\partial\overline{\partial}\log\Big(\sum_{j=1}^{\infty} |z_j|^2\Big)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Calabi's theorems

• Let (M, ω) be a complex manifold and let $F : (M, \omega) \to (\mathbb{P}^{\infty}, \omega_{st})$ be a holomorphic map. We say that F is a local holomorphic isometric embedding from M into \mathbb{P}^{∞} if

$$F^*(\omega_{st}) = i\partial\overline{\partial}\log\left(\sum_{j=1}^{\infty} |f_j(z)|^2\right) = \omega \quad \text{over } U \subset M$$

for any local hol. representation $F = [f_1, \cdots, f_n, \cdots]$ over U.

- 4 同 6 4 日 6 4 日 6

Calabi's theorems

Observation: Let F be a Bergman-Bochner map from $(D, \omega_D) \rightarrow \mathbb{P}^{\infty}$. Assume that D is Bergman admissible. Then F is a holomorphic isometric embedding.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Calabi's theorems

The following two fundamental theorems of Calabi proved in 1953 will play a key role in our study of Bergman metrics.

Theorem

Let (M, ω) be a complex manifold. Let F and $G : (M, \omega) \to (\mathbb{P}, \omega_{st})$ be two holomorphic maps such that

$$F^*(\omega_{st}) = G^*(\omega_{st}).$$

Then there is a linear isometric isomorphism $T : X_F \to X_G$ such that $G = T \circ F$, where X_F and X_G are the smallest closed subspaces containing F(M) and G(M), respectively.

- 4 同 2 4 日 2 4 日 2

Calabi's theorems

Theorem

Let (M^n, ω) be a Kähler manifold of dimension n with a real analytic Kähler metric ω . Let $U \subset M$ be a neighborhood of $z^0 \in U$ and let $F: U \to \mathbb{P}^{\infty}$ be a local holomorphic isometric embedding. Then for any continuous curve $\gamma: [0,1] \to M$ with $\gamma(0) = z^0$, F extends holomorphically along γ as a local holomorphic isometric embedding.

伺 ト イヨト イヨト

History Outline of proof

1 Bergman metrics

- 2 Calabi rigidity and extension theorems
- 3 A uniformization Theorem
 - History
 - Outline of proof

In Nonnegative constant holomorphic sectional curvature

5 More Open Questions

伺 ト イヨト イヨト

History Outline of proof

Negative holomorphic sectional curvature

Using the Bergman-Bochner map as the isometric map and employing Calabi rigidity and extension theorems, we are able to prove the following uniformization theorem.

Theorem

(Huang and Li, 2023) Let Ω be an admissible pseudoconvex domain in \mathbb{C}^n . Then the Bergman metric ω_Ω has a negative constant holomorphic sectional curvature if and only if Ω is biholomorphic to $\mathbb{B}_n \setminus E$, where E is a pluripolar subset which is relatively closed in \mathbb{B}_n .

- 4 同 6 4 日 6 4 日 6

History Outline of proof

Negative holomorphic sectional curvature

Using the Bergman-Bochner map as the isometric map and employing Calabi rigidity and extension theorems, we are able to prove the following uniformization theorem.

Theorem

(Huang and Li, 2023) Let Ω be an admissible pseudoconvex domain in \mathbb{C}^n . Then the Bergman metric ω_Ω has a negative constant holomorphic sectional curvature if and only if Ω is biholomorphic to $\mathbb{B}_n \setminus E$, where E is a pluripolar subset which is relatively closed in \mathbb{B}_n .

Remark: The theorem remains true for Stein manifolds.

History Outline of proof

Negative holomorphic sectional curvature

a) When Ω is bounded and ω_{Ω} is complete, the above uniformization theorem is the classical result by Lu Qi-Keng in 1966, where $E = \emptyset$.

同 ト イ ヨ ト イ ヨ ト

History Outline of proof

Negative holomorphic sectional curvature

a) When Ω is bounded and ω_{Ω} is complete, the above uniformization theorem is the classical result by Lu Qi-Keng in 1966, where $E = \emptyset$.

b) When Ω is bounded and the Bergman kernel satisfies the condition:

$$\frac{K(z,z)K(p,p)}{|K(z,p)|^2} = \infty, z \in \partial \Omega$$

for some $p \in \Omega$, the above uniformization theorem was proved by Dong and Wong in 2020.

c). Our theorem solves a folklore open question.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

History Outline of proof

Negative holomorphic sectional curvature

Let Ω be an admissible pseudo-convex domain such that ω_Ω has constant holomorphic sectional curvature.

Step 1. Use Calabi rigidity theorem and Calabi holomorphic extension theorem to prove: There is a biholomorphic map $F: \Omega \to D$ with D is a subdomain in \mathbb{B}_n .

・ロト ・同ト ・ヨト ・ヨト

History Outline of proof

Negative holomorphic sectional curvature

Step 2. Also, we have $\omega_D = \lambda \omega_{B_n}$ for some $\lambda > 0$. Using the reproducing property of Bergman kernel function, we then prove that there is a non-constant holomorphic function h on B_n such that any function $f \in A^2(D)$ can be extended to a holomorphic function in $\mathcal{O}(B_n \setminus Z(h))$.

・ロト ・得ト ・ヨト ・ヨト

History Outline of proof

Negative holomorphic sectional curvature

Step 3. From the result in Step 2, one dimensional classical result and Ohsawa-Takegoshi theorem, one proves that $E := B_n \setminus D$ is a pluripolar set which is relatively closed in B_n .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

1 Bergman metrics

- 2 Calabi rigidity and extension theorems
- 3 A uniformization Theorem

4 Nonnegative constant holomorphic sectional curvature

- Positive holomorphic sectional curvature
- Zero holomorphic sectional curvatures

5 More Open Questions

同 ト イ ヨ ト イ ヨ ト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Positive holomorphic sectional curvature

Is there an admissible domain $\Omega \subset \mathbb{C}^n$ such that its Bergman metric ω_{Ω} has positive constant holomorphic sectional curvature?

/□ ▶ < 글 ▶ < 글

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Theorem

Let Ω be a complex manifold with its Bergman space being infinite dimensional. Suppose that Ω is Bergman admissible. Then the Bergman metric of Ω cannot have a positive constant holomorphic sectional curvature.

 Ω is Bergman admissible if $A^2(\Omega)$ is base point free, separate points and holomorphic directions.

同 ト イ ヨ ト イ ヨ ト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Positive holomorphic sectional curvature

Let

$$D(\alpha) = \left\{ (z, w) : \left| |w| - |z| \right| < \frac{1}{(1 + |z| + |w|)^{\alpha}} \right\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Positive holomorphic sectional curvature

Let

$$D(\alpha) = \left\{ (z, w) : \left| |w| - |z| \right| < \frac{1}{(1 + |z| + |w|)^{\alpha}} \right\}.$$

Theorem

(H-Li, 2023) For any $2 < \alpha < 3$, the following statements hold: (i) The Bergman space

$$A^2(D(\alpha)) = Span\{1, z, w\}.$$

(ii) The Bergman metric has constant holomorphic sectional curvature 2.

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Positive holomorphic sectional curvature

Conjecture

Let M be a Bergman admissible domain. Then the Bergman metric of M cannot have a constant non-negative holomorphic sectional curvature.

/□ ▶ < 글 ▶ < 글

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Positive holomorphic sectional curvature

Observation 1: There is an old conjecture dating back to Wiegerinck in 1984 that asserts that the Bergman space of a pseudo-convex domain in \mathbb{C}^n is either trivial or of infinite dimension. (It is true in the one dimension case by the work of L. Carleson.) If this conjecture is true, then any pseudoconvex domain in \mathbb{C}^n can not carry a Bergman metric with constant positive HS curvature.

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Positive holomorphic sectional curvature

Observation 1: There is an old conjecture dating back to Wiegerinck in 1984 that asserts that the Bergman space of a pseudo-convex domain in \mathbb{C}^n is either trivial or of infinite dimension. (It is true in the one dimension case by the work of L. Carleson.) If this conjecture is true, then any pseudoconvex domain in \mathbb{C}^n can not carry a Bergman metric with constant positive HS curvature.

Observation 2: Wiegerinck's conjecture holds for Hartogs pseudoconvex domains by the work of P. Jucha (2012).

- 4 回 ト 4 ヨト 4 ヨト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Zero holomorphic sectional curvatures

QUESTION. Is there a domain $\Omega \subset \mathbb{C}^n$ such that its Bergman metric ω_{Ω} has constant zero holomorphic sectional curvature?

伺 ト イヨト イヨト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Zero holomorphic sectional curvatures

Theorem

(Huang-Li, 2023) Let Ω be a complex manifold with a non-constant bounded holomorphic function. Suppose that Ω is admissible. Then the Bergman metric of Ω can not have constant zero holomorphic sectional curvature.

同 ト イ ヨ ト イ ヨ ト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Zero holomorphic sectional curvatures

Define the Hartogs domain D as follows:

$$D = \{ (z, w) \in \mathbb{C}^n \times \mathbb{C} : |w|^2 < e^{-\|z\|^2} \}$$

Then ${\cal D}$ is unbounded pseudoconvex with a real analytic defining function

$$\rho(z, w) = 2\log|w| + ||z||^2$$

Let ω_D be the Bergman metric of D. Then

$$i: (\mathbb{C}^n, \omega_{\mathsf{eucl}}) \to (D, \omega_D)$$

with i(z) = (z, 0) is a totally geodesic embedding.

・ロト ・同ト ・ヨト ・ヨト

Positive holomorphic sectional curvature Zero holomorphic sectional curvatures

Zero holomorphic sectional curvatures

Open Question: Construct an unbounded pseudoconvex domain whose Bergman metric is flat, or prove such a domain does not exist.

/□ ▶ < 글 ▶ < 글

1 Bergman metrics

- 2 Calabi rigidity and extension theorems
- 3 A uniformization Theorem

4 Nonnegative constant holomorphic sectional curvature

5 More Open Questions

伺 ト く ヨ ト く ヨ ト

Four conjectures

Conjecture 1 Let M be a Stein manifold of complex dimension at least two. Suppose that Ω is Bergman admissible. Then the Bergman metric of M cannot have a constant non-negative holomorphic sectional curvature.

- 4 同 6 4 日 6 4 日 6

Four conjectures

Conjecture 1 Let M be a Stein manifold of complex dimension at least two. Suppose that Ω is Bergman admissible. Then the Bergman metric of M cannot have a constant non-negative holomorphic sectional curvature.

Conjecture 2 (Yau's open problem book) Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with $n \geq 2$. If the Bergman metric ω_{Ω} is Einstein and complete, then Ω is biholomorphic to a bounded homogenous domain.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Four conjectures

Conjecture 3 If the Bergman metric in the smooth part of a normal Stein space M with a smoothly compact strongly pseudoconvex boundary is Einstein, then M is non-singular and thus is biholomorphic to the ball by the work of Huang-Xiao.

伺 ト イ ヨ ト イ ヨ ト

The Bergman metric of a smoothly bounded pseudo-convex domain of finite D'Angelo type is pinched by two negative constants near the boundary.

伺 ト イヨト イヨト

THANK YOU!

Xiaojun Huang Bergman metric as a pull-back of the Fubini-Study metric

・ 同 ト ・ ヨ ト ・ ヨ ト