Positivity of Kähler-Einstein currents

Vincent Guedj

Institut de Mathématiques de Toulouse

Complex Analysis, Geometry, and Dynamics, Portoroz, 5 June 2023

Vincent Guedj (IMT)

Positivity of Kähler-Einstein currents

June 5, 2023 1 / 19

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$.

< □ > < 同 > < 回 > < 回 > < 回 >

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

•
$$\omega = \sum_{\alpha,\beta} g_{\alpha\overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$$
 then

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} {\sf g}_{lpha\overlineeta} {\it id} {\sf z}_lpha \wedge {\it d}\overline{\sf z}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{p\overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \operatorname{curvature};$

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} {\sf g}_{lpha\overlineeta} {\it id} {\sf z}_lpha \wedge {\it d}\overline{\sf z}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{\rho \overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \operatorname{curvature};$
- $\operatorname{Ric}(\omega)$ =globally well defined closed (1, 1)-form representing $c_1(X)$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} {\sf g}_{lpha\overlineeta} {\it id} {\sf z}_lpha \wedge {\it d}\overline{\sf z}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{\rho \overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \operatorname{curvature};$
- $\operatorname{Ric}(\omega) = \operatorname{globally}$ well defined closed (1, 1)-form representing $c_1(X)$, $\operatorname{Ric}(\tilde{\omega}) = \operatorname{Ric}(\omega) - dd^c \left[\log \tilde{\omega}^n / \omega^n\right]$ holds globally.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} \mathsf{g}_{lpha\overline{eta}} \mathsf{i} \mathsf{d} \mathsf{z}_lpha \wedge \mathsf{d} \overline{\mathsf{z}}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{p\overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \operatorname{curvature};$
- $\operatorname{Ric}(\omega) =$ globally well defined closed (1, 1)-form representing $c_1(X)$, $\operatorname{Ric}(\tilde{\omega}) = \operatorname{Ric}(\omega) - dd^c \left[\log \tilde{\omega}^n / \omega^n\right]$ holds globally.

Here $d = \partial + \overline{\partial}$, $d^c = (\partial - \overline{\partial})/2i\pi$ so that $dd^c = \frac{i}{\pi}\partial\overline{\partial}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} \mathsf{g}_{lpha\overline{eta}} \mathsf{i} \mathsf{d} \mathsf{z}_lpha \wedge \mathsf{d} \overline{\mathsf{z}}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{p\overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \operatorname{curvature};$
- $\operatorname{Ric}(\omega) = \operatorname{globally}$ well defined closed (1, 1)-form representing $c_1(X)$, $\operatorname{Ric}(\tilde{\omega}) = \operatorname{Ric}(\omega) - dd^c \left[\log \tilde{\omega}^n / \omega^n\right]$ holds globally.

Here $d = \partial + \overline{\partial}$, $d^c = (\partial - \overline{\partial})/2i\pi$ so that $dd^c = \frac{i}{\pi}\partial\overline{\partial}$.

• Conversely, given η a closed differential form representing $c_1(X)$,

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} \mathsf{g}_{lpha\overline{eta}} \mathsf{i} \mathsf{d} \mathsf{z}_lpha \wedge \mathsf{d} \overline{\mathsf{z}}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{p\overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \operatorname{curvature};$
- $\operatorname{Ric}(\omega) = \operatorname{globally}$ well defined closed (1, 1)-form representing $c_1(X)$, $\operatorname{Ric}(\tilde{\omega}) = \operatorname{Ric}(\omega) - dd^c \left[\log \tilde{\omega}^n / \omega^n\right]$ holds globally.

Here $d = \partial + \overline{\partial}$, $d^c = (\partial - \overline{\partial})/2i\pi$ so that $dd^c = \frac{i}{\pi}\partial\overline{\partial}$.

- Conversely, given η a closed differential form representing $c_1(X)$,
- [Calabi 54]: can one find find a Kähler form ω such that

$$\operatorname{Ric}(\omega) = \eta$$
 ?

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. If we write in local complex coordinates

- $\omega = \sum_{lpha,eta} \mathsf{g}_{lpha\overline{eta}} \mathsf{i} \mathsf{d} \mathsf{z}_lpha \wedge \mathsf{d} \overline{\mathsf{z}}_eta$ then
- $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{p\overline{q}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta} = \operatorname{Ricci} \text{ curvature};$
- $\operatorname{Ric}(\omega) = \operatorname{globally}$ well defined closed (1, 1)-form representing $c_1(X)$, $\operatorname{Ric}(\tilde{\omega}) = \operatorname{Ric}(\omega) - dd^c \left[\log \tilde{\omega}^n / \omega^n\right]$ holds globally.

Here $d = \partial + \overline{\partial}$, $d^c = (\partial - \overline{\partial})/2i\pi$ so that $dd^c = \frac{i}{\pi}\partial\overline{\partial}$.

- Conversely, given η a closed differential form representing $c_1(X)$,
- [Calabi 54]: can one find find a Kähler form ω such that

$$\operatorname{Ric}(\omega) = \eta$$
 ?

 \hookrightarrow The Calabi conjecture remained open for two decades [Yau 78].

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Calabi conjecture equivalent to solving a CMAE.

Image: A match a ma

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α .

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

• Then $Ric(\omega) = \eta + dd^c h$ with $h \in \mathcal{C}^{\infty}(X, \mathbb{R})$ s.t. $\int_X e^h \omega^n = \int_X \omega^n$.

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

- Then $Ric(\omega) = \eta + dd^c h$ with $h \in \mathcal{C}^{\infty}(X, \mathbb{R})$ s.t. $\int_X e^h \omega^n = \int_X \omega^n$.
- If $\omega_{\varphi} := \omega + dd^{c}\varphi \in \alpha$, then $Ric(\omega_{\varphi}) = \eta$ iff $(\omega + dd^{c}\varphi)^{n} = e^{h}\omega^{n}$.

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

- Then $Ric(\omega) = \eta + dd^c h$ with $h \in \mathcal{C}^{\infty}(X, \mathbb{R})$ s.t. $\int_X e^h \omega^n = \int_X \omega^n$.
- If $\omega_{\varphi} := \omega + dd^{c}\varphi \in \alpha$, then $Ric(\omega_{\varphi}) = \eta$ iff $(\omega + dd^{c}\varphi)^{n} = e^{h}\omega^{n}$.

Theorem (Yau 78)

The complex Monge-Ampère equation $(\omega + dd^c \varphi)^n = e^h \omega^n$

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

- Then $Ric(\omega) = \eta + dd^c h$ with $h \in \mathcal{C}^{\infty}(X, \mathbb{R})$ s.t. $\int_X e^h \omega^n = \int_X \omega^n$.
- If $\omega_{\varphi} := \omega + dd^{c}\varphi \in \alpha$, then $Ric(\omega_{\varphi}) = \eta$ iff $(\omega + dd^{c}\varphi)^{n} = e^{h}\omega^{n}$.

Theorem (Yau 78)

The complex Monge-Ampère equation $(\omega + dd^c \varphi)^n = e^h \omega^n$

• admits a solution $\varphi \in \mathcal{C}^{\infty}(X, \mathbb{R})$ such that $\omega_{\varphi} := \omega + dd^{c}\varphi$ is Kähler;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

- Then $Ric(\omega) = \eta + dd^c h$ with $h \in \mathcal{C}^{\infty}(X, \mathbb{R})$ s.t. $\int_X e^h \omega^n = \int_X \omega^n$.
- If $\omega_{\varphi} := \omega + dd^{c}\varphi \in \alpha$, then $Ric(\omega_{\varphi}) = \eta$ iff $(\omega + dd^{c}\varphi)^{n} = e^{h}\omega^{n}$.

Theorem (Yau 78)

The complex Monge-Ampère equation $(\omega + dd^c \varphi)^n = e^h \omega^n$

- admits a solution $\varphi \in \mathcal{C}^{\infty}(X, \mathbb{R})$ such that $\omega_{\varphi} := \omega + dd^{c}\varphi$ is Kähler;
- the solution is unique, up to an additive constant.

イロト イポト イヨト イヨト 二日

Calabi conjecture equivalent to solving a CMAE. Fix $\alpha \in H^{1,1}(X, \mathbb{R})$ a Kähler class and ω a Kähler form in α . Fix $\eta \in c_1(X)$.

- Then $Ric(\omega) = \eta + dd^c h$ with $h \in \mathcal{C}^{\infty}(X, \mathbb{R})$ s.t. $\int_X e^h \omega^n = \int_X \omega^n$.
- If $\omega_{\varphi} := \omega + dd^c \varphi \in \alpha$, then $Ric(\omega_{\varphi}) = \eta$ iff $(\omega + dd^c \varphi)^n = e^h \omega^n$.

Theorem (Yau 78)

The complex Monge-Ampère equation $(\omega + dd^c \varphi)^n = e^h \omega^n$

- admits a solution $\varphi \in \mathcal{C}^{\infty}(X, \mathbb{R})$ such that $\omega_{\varphi} := \omega + dd^{c}\varphi$ is Kähler;
- the solution is unique, up to an additive constant.

 \hookrightarrow Construction of Ricci flat Kähler metrics when $c_1(X) = 0$.

イロト 不得 トイラト イラト 一日

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

< □ > < 同 > < 回 > < 回 > < 回 >

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

< □ > < 同 > < 回 > < 回 > < 回 >

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$

A D N A B N A B N A B N

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$ admits a unique smooth solution φ .

イロト イポト イヨト イヨト

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$ admits a unique smooth solution φ . In particular every X such that K_X is ample admits a unique K-E metric.

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$ admits a unique smooth solution φ . In particular every X such that K_X is ample admits a unique K-E metric.

The CMAE $(\omega + dd^c \varphi)^n = e^{-\varphi + h} \omega^n$ does not always admit a solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$ admits a unique smooth solution φ . In particular every X such that K_X is ample admits a unique K-E metric.

The CMAE $(\omega + dd^c \varphi)^n = e^{-\varphi + h} \omega^n$ does not always admit a solution.

Theorem (Chen-Donaldson-Sun 15)

A Fano manifold X (i.e. $-K_X$ is ample)

イロト 不得 トイヨト イヨト 二日

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$ admits a unique smooth solution φ . In particular every X such that K_X is ample admits a unique K-E metric.

The CMAE $(\omega + dd^c \varphi)^n = e^{-\varphi + h} \omega^n$ does not always admit a solution.

Theorem (Chen-Donaldson-Sun 15)

A Fano manifold X (i.e. $-K_X$ is ample) admits a Kähler-Einstein metric if and only if $(X, -K_X)$ is K-stable.

イロト 不得 トイヨト イヨト 二日

Definition

A Kähler form ω is Kähler-Einstein if $\operatorname{Ric}(\omega) = \lambda \omega$ for some $\lambda \in \mathbb{R}$.

 \hookrightarrow By rescaling one can reduce to $\lambda \in \{-1, 0, 1\}$.

Theorem (Aubin-Yau 78)

The CMAE $(\omega + dd^c \varphi)^n = e^{\varphi + h} \omega^n$ admits a unique smooth solution φ . In particular every X such that K_X is ample admits a unique K-E metric.

The CMAE $(\omega + dd^c \varphi)^n = e^{-\varphi + h} \omega^n$ does not always admit a solution.

Theorem (Chen-Donaldson-Sun 15)

A Fano manifold X (i.e. $-K_X$ is ample) admits a Kähler-Einstein metric if and only if $(X, -K_X)$ is K-stable.

 \hookrightarrow Resolution of the (K-E case) of the Y-T-D conjecture.

Vincent Guedj (IMT)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Choose a non-zero local holom. section σ of rK_X .

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Choose a non-zero local holom. section σ of rK_X . The volume form $\mu_X := i^{n^2} (\sigma \wedge \bar{\sigma})^{1/r}$ encodes the key information on the singularities.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Choose a non-zero local holom. section σ of rK_X . The volume form $\mu_X := i^{n^2} (\sigma \wedge \bar{\sigma})^{1/r}$ encodes the key information on the singularities.

Definition

• The Ricci curvature of ω_X is $\operatorname{Ric}(\omega_X) := -dd^c \log(\omega_X^n/\mu_X)$.

イロト 不得 トイラト イラト 一日

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Choose a non-zero local holom. section σ of rK_X . The volume form $\mu_X := i^{n^2} (\sigma \wedge \bar{\sigma})^{1/r}$ encodes the key information on the singularities.

Definition

- The Ricci curvature of ω_X is $\operatorname{Ric}(\omega_X) := -dd^c \log(\omega_X^n/\mu_X)$.
- A singular K-E metric on a \mathbb{Q} -Gorenstein compact Kähler variety X is

イロト 不得 トイラト イラト 一日

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Choose a non-zero local holom. section σ of rK_X . The volume form $\mu_X := i^{n^2} (\sigma \wedge \bar{\sigma})^{1/r}$ encodes the key information on the singularities.

Definition

- The Ricci curvature of ω_X is $\operatorname{Ric}(\omega_X) := -dd^c \log(\omega_X^n/\mu_X)$.
- \bullet A singular K-E metric on a $\mathbb Q ext{-}Gorenstein$ compact Kähler variety X is
 - a Kähler form ω_X on X^{reg} such that $\operatorname{Ric}(\omega_X) = \lambda \omega_X$ for some $\lambda \in \mathbb{R}$;

イロト 不得 トイヨト イヨト 二日

Minimal Model Program \hookrightarrow necessary to consider mildly singular varieties.

Definition

A normal variety X is \mathbb{Q} -Gorenstein if its canonical divisor K_X exists as a \mathbb{Q} -line bundle: $\exists r \in \mathbb{N}$ and a line bundle L on X s.t. $L|_{X_{reg}} = rK_{X_{reg}}$.

Choose a non-zero local holom. section σ of rK_X . The volume form $\mu_X := i^{n^2} (\sigma \wedge \bar{\sigma})^{1/r}$ encodes the key information on the singularities.

Definition

- The Ricci curvature of ω_X is $\operatorname{Ric}(\omega_X) := -dd^c \log(\omega_X^n/\mu_X)$.
- \bullet A singular K-E metric on a $\mathbb Q ext{-}Gorenstein$ compact Kähler variety X is
 - a Kähler form ω_X on X^{reg} such that $\operatorname{Ric}(\omega_X) = \lambda \omega_X$ for some $\lambda \in \mathbb{R}$;
 - extends as a positive closed current with bdd potentials near X_{sing}.

イロト 不得 トイラト イラト 一日

If $\pi: X' \to X$ is log resolution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

< □ > < 同 > < 回 > < 回 > < 回 >

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

イロト イポト イヨト イヨト

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

 \hookrightarrow Definition independent of the choice of a log resolution.

A D N A B N A B N A B N

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

 \hookrightarrow Definition independent of the choice of a log resolution.

Examples

9 S alg. surface has l.t. sing. iff $S \sim \mathbb{C}^2/G$, $G \subset GL_2(\mathbb{C})$ finite subgrp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

 \hookrightarrow Definition independent of the choice of a log resolution.

Examples

S alg. surface has l.t. sing. iff S ~ C²/G, G ⊂ GL₂(C) finite subgrp.
ODP x² + y² + z² + t² = 0 is a log terminal singularity, not quotient.

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

 \hookrightarrow Definition independent of the choice of a log resolution.

Examples

S alg. surface has l.t. sing. iff S ~ C²/G, G ⊂ GL₂(C) finite subgrp.
ODP x² + y² + z² + t² = 0 is a log terminal singularity, not quotient.

Lemma (Eyssidieux-G-Zeriahi 09)

Let z_i be a local equation of E_i , defined in a neighborhood $U \subset X'$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

 \hookrightarrow Definition independent of the choice of a log resolution.

Examples

S alg. surface has l.t. sing. iff S ~ C²/G, G ⊂ GL₂(C) finite subgrp.
ODP x² + y² + z² + t² = 0 is a log terminal singularity, not quotient.

Lemma (Eyssidieux-G-Zeriahi 09)

Let z_i be a local equation of E_i , defined in a neighborhood $U \subset X'$. Then $(\pi^* \mu_X)_{U \setminus E} = \prod_i |z_i|^{2a_i} dV$ for some smooth volume form dV on U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\pi: X' \to X$ is log resolution $\exists ! a_i \in \mathbb{Q}$ s.t. $K_{X'} \sim_{\mathbb{Q}} \pi^* K_X + \sum a_i E_i$.

Definition

X has log terminal singularities if \mathbb{Q} -Gorenstein and $a_i > -1$ for all i.

 \hookrightarrow Definition independent of the choice of a log resolution.

Examples

S alg. surface has l.t. sing. iff S ~ C²/G, G ⊂ GL₂(C) finite subgrp.
ODP x² + y² + z² + t² = 0 is a log terminal singularity, not quotient.

Lemma (Eyssidieux-G-Zeriahi 09)

Let z_i be a local equation of E_i , defined in a neighborhood $U \subset X'$. Then $(\pi^* \mu_X)_{U \setminus E} = \prod_i |z_i|^{2a_i} dV$ for some smooth volume form dV on U. Thus X has l.t. singularities iff μ_X has finite mass near X_{sing} .

Vincent Guedj (IMT)

Positivity of Kähler-Einstein currents

June 5, 2023 6 / 19

イロト 不得下 イヨト イヨト 二日

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

 \hookrightarrow Generalization to log-canonical sing. by [Berman-Guenancia 14].

A D F A B F A B F A B

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

 \hookrightarrow Generalization to log-canonical sing. by [Berman-Guenancia 14].

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and $K_X \sim 0$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

 \hookrightarrow Generalization to log-canonical sing. by [Berman-Guenancia 14].

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and $K_X \sim 0$. Each Kähler class contains a unique singular Ricci flat K-E metric.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

 \hookrightarrow Generalization to log-canonical sing. by [Berman-Guenancia 14].

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and $K_X \sim 0$. Each Kähler class contains a unique singular Ricci flat K-E metric.

 \hookrightarrow Again the Fano case most difficult.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

 \hookrightarrow Generalization to log-canonical sing. by [Berman-Guenancia 14].

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and $K_X \sim 0$. Each Kähler class contains a unique singular Ricci flat K-E metric.

 $\hookrightarrow \mbox{Again the Fano case most difficult. Works of [Spotti-Sun-Yao 16],} [Berman-Boucksom-E-G-Z 19], [B-B-Jonsson 21], [Li-Tian-Wang 21]...$

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and K_X ample. Then X admits a unique singular K-E metric with bounded potentials.

 \hookrightarrow Generalization to log-canonical sing. by [Berman-Guenancia 14].

Theorem (Eyssidieux-G-Zeriahi 09)

Let X be a compact Kähler variety with l.t. singularities and $K_X \sim 0$. Each Kähler class contains a unique singular Ricci flat K-E metric.

 $\hookrightarrow \mbox{Again the Fano case most difficult. Works of [Spotti-Sun-Yao 16], [Berman-Boucksom-E-G-Z 19], [B-B-Jonsson 21], [Li-Tian-Wang 21]...}$

Theorem (Li 22)

A \mathbb{Q} -Fano variety X admits a singular K-E metric iff it is (unif.) K-stable.

Vincent Guedj (IMT)

(日) (四) (日) (日) (日)

A D N A B N A B N A B N

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

 \hookrightarrow Expected=Hölder regularity (many geometric consequences).

(日)

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

 \hookrightarrow Expected=Hölder regularity (many geometric consequences).

Theorem (Rong-Zhang 11)

If X Q-Calabi-Yau admits a crepant resolution of sing. and $\alpha = c_1(L)$ is a Hodge class, then ω_{KE} is a Kähler current (+ extra information).

イロト イボト イヨト イヨト

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

 \hookrightarrow Expected=Hölder regularity (many geometric consequences).

Theorem (Rong-Zhang 11)

If X Q-Calabi-Yau admits a crepant resolution of sing. and $\alpha = c_1(L)$ is a Hodge class, then ω_{KE} is a Kähler current (+ extra information).

 \hookrightarrow Crepant resolutions ($a_i = 0$) are quite rare.

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

 \hookrightarrow Expected=Hölder regularity (many geometric consequences).

Theorem (Rong-Zhang 11)

If X Q-Calabi-Yau admits a crepant resolution of sing. and $\alpha = c_1(L)$ is a Hodge class, then ω_{KE} is a Kähler current (+ extra information).

 \hookrightarrow Crepant resolutions ($a_i = 0$) are quite rare.

Theorem (Hein-Sun 17)

If X smoothable \mathbb{Q} -CY, $\alpha = c_1(L)$ =Hodge class, and isolated sing. isom. to ODP,

イロト 不得 トイヨト イヨト 二日

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

 \hookrightarrow Expected=Hölder regularity (many geometric consequences).

Theorem (Rong-Zhang 11)

If X Q-Calabi-Yau admits a crepant resolution of sing. and $\alpha = c_1(L)$ is a Hodge class, then ω_{KE} is a Kähler current (+ extra information).

 \hookrightarrow Crepant resolutions ($a_i = 0$) are quite rare.

Theorem (Hein-Sun 17)

If X smoothable Q-CY, $\alpha = c_1(L)$ =Hodge class, and isolated sing. isom. to ODP, then ω_{KE} is a Kähler current asymptotic to the Stenzel metric.

イロト 不得 トイヨト イヨト 二日

Theorem (EGZ 09 / Coman-G-Z 13 / Guenancia-G-Z 23)

The K-E potential is continuous if $\{\omega\} \in NS_{\mathbb{R}}(X)$ or if isolated sing.

 \hookrightarrow Expected=Hölder regularity (many geometric consequences).

Theorem (Rong-Zhang 11)

If X Q-Calabi-Yau admits a crepant resolution of sing. and $\alpha = c_1(L)$ is a Hodge class, then ω_{KE} is a Kähler current (+ extra information).

 \hookrightarrow Crepant resolutions ($a_i = 0$) are quite rare.

Theorem (Hein-Sun 17)

If X smoothable Q-CY, $\alpha = c_1(L)$ =Hodge class, and isolated sing. isom. to ODP, then ω_{KE} is a Kähler current asymptotic to the Stenzel metric.

 \hookrightarrow Good understanding of $\omega_{\mathit{K\!E}}$ under strong hyp. on sing.

イロト 不得下 イヨト イヨト 二日

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

イロト イポト イヨト イヨト

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

A D N A B N A B N A B N

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$.

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0 z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c | (x, y) |^2$ is $dd^c |z|_{|X}$

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c |(x, y)|^2$ is $dd^c |z|_{|X} \ge \frac{\omega_{eucl}}{4|z|^2}$.

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c |(x, y)|^2$ is $dd^c |z|_{|X} \ge \frac{\omega_{eucl}}{4|z|^2}$.

Example

Odp
$$X = \{z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_j^2 = 0\}$$
 not a quotient singularity if $n \ge 3$.

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0 z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c |(x, y)|^2$ is $dd^c |z|_{|X} \ge \frac{\omega_{eucl}}{4|z|^2}$.

Example

Odp
$$X = \{z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_j^2 = 0\}$$
 not a quotient singularity if $n \ge 3$.
The Stenzel metric metric $\omega_X = dd^c |z|_{|X|}^{\frac{2(n-1)}{n}}$ is Ricci flat

<ロト <部ト <注入 < 注入 = 二 =

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0 z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c |(x, y)|^2$ is $dd^c |z|_{|X} \ge \frac{\omega_{eucl}}{4|z|^2}$.

Example

Odp
$$X = \{z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_j^2 = 0\}$$
 not a quotient singularity if $n \ge 3$.
The Stenzel metric metric $\omega_X = dd^c |z|_{|X}^{\frac{2(n-1)}{n}}$ is Ricci flat $\ge c_n \frac{\omega_{eucl}}{|z|^{2/n}}$.

<ロト <部ト <注入 < 注入 = 二 =

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0 z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c |(x, y)|^2$ is $dd^c |z|_{|X} \ge \frac{\omega_{eucl}}{4|z|^2}$.

Example

Odp
$$X = \{z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_j^2 = 0\}$$
 not a quotient singularity if $n \ge 3$.
The Stenzel metric metric $\omega_X = dd^c |z|_{|X}^{\frac{2(n-1)}{n}}$ is Ricci flat $\ge c_n \frac{\omega_{eucl}}{|z|^{2/n}}$.

 \hookrightarrow Previous ex. if n = 2 / Hölder reg. /

A D N A B N A B N A B N

Problem

Question we address today: is ω_{KE} strictly positive near X_{sing} ?

 \hookrightarrow OK orbilfold sing. or crepant resolutions, general case open.

Example

The l.t. singularity $\mathbb{C}^2/\pm 1$ realized as $X = \{z \in \mathbb{C}^3, z_2^2 = z_0z_1\}$ by $(x, y) \mapsto (x^2, y^2, xy)$. Ricci flat metric $dd^c|(x, y)|^2$ is $dd^c|z|_{|X} \ge \frac{\omega_{eucl}}{4|z|^2}$.

Example

Odp
$$X = \{z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_j^2 = 0\}$$
 not a quotient singularity if $n \ge 3$.
The Stenzel metric metric $\omega_X = dd^c |z|_{|X}^{\frac{2(n-1)}{n}}$ is Ricci flat $\ge c_n \frac{\omega_{eucl}}{|z|^{2/n}}$.

 \hookrightarrow Previous ex. if n = 2 / Hölder reg. / Lower not upper bdd ω_X .

Calabi-Yau smoothings

Definition

 (X, ω) admits a Q-Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

▲ □ ▶ ▲ □ ▶ ▲ □

Definition

 (X, ω) admits a Q-Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

• the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;

A (10) < A (10) < A (10) </p>

Definition

 (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

- the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;
- $\pi^{-1}(0) \sim X$ and for $t \neq 0$, X_t is smooth;

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

 (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

- the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;
- $\pi^{-1}(0) \sim X$ and for $t \neq 0$, X_t is smooth;
- $\omega_t := \Omega_{|X_t}$ is Kähler and $\omega_0 = \omega$.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

 (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

• the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;

•
$$\pi^{-1}(0) \sim X$$
 and for $t \neq 0$, X_t is smooth;

•
$$\omega_t := \Omega_{|X_t}$$
 is Kähler and $\omega_0 = \omega$.

Example

Consider $X = \{[z] \in \mathbb{P}^{n+1}, P(z) = 0\}$, where P homog. polyn. degree n + 2.

イロト イポト イヨト イヨト 二日

Definition

 (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

• the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;

•
$$\pi^{-1}(0) \sim X$$
 and for $t \neq 0$, X_t is smooth;

•
$$\omega_t := \Omega_{|X_t}$$
 is Kähler and $\omega_0 = \omega$.

Example

Consider $X = \{[z] \in \mathbb{P}^{n+1}, P(z) = 0\}$, where P homog. polyn. degree n + 2. If Q generic homog. polyn. degree n + 2, then $\pi : \mathcal{X} \to \Delta$,

イロト イポト イヨト イヨト 二日

Definition

 (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

• the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;

•
$$\pi^{-1}(0) \sim X$$
 and for $t \neq 0$, X_t is smooth;

•
$$\omega_t := \Omega_{|X_t}$$
 is Kähler and $\omega_0 = \omega$.

Example

Consider $X = \{[z] \in \mathbb{P}^{n+1}, P(z) = 0\}$, where P homog. polyn. degree n + 2. If Q generic homog. polyn. degree n + 2, then $\pi : \mathcal{X} \to \Delta$, $\pi^{-1}(t) = X_t := \{[z] \in \mathbb{P}^{n+1}, P(z) = tQ(z)\}$ is a global CY smoothing of $X \sim X_0$ with $\Omega = \omega_{FS}$.

イロト 不得下 イヨト イヨト 二日

Definition

 (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing if there exists a normal cplx Kähler space (\mathcal{X}, Ω) and a proper holomorphic map $\pi : \mathcal{X} \to \Delta$ such that

• the relative canonical bundle $K_{\mathcal{X}/\Delta}$ is trivial;

•
$$\pi^{-1}(0) \sim X$$
 and for $t \neq 0$, X_t is smooth;

•
$$\omega_t := \Omega_{|X_t}$$
 is Kähler and $\omega_0 = \omega$.

Example

Consider $X = \{[z] \in \mathbb{P}^{n+1}, P(z) = 0\}$, where P homog. polyn. degree n + 2. If Q generic homog. polyn. degree n + 2, then $\pi : \mathcal{X} \to \Delta$, $\pi^{-1}(t) = X_t := \{[z] \in \mathbb{P}^{n+1}, P(z) = tQ(z)\}$ is a global CY smoothing of $X \sim X_0$ with $\Omega = \omega_{FS}$.

 \hookrightarrow Warning: no global smoothing in general; possibly a local one.

Vincent Guedj (IMT)

イロト 不得 トイヨト イヨト 二日

Theorem (G-Guenancia-Zeriahi 23)

If a K-E variety X is globally smoothable, then ω_{KE} is a Kähler current.

A D N A B N A B N A B N

Theorem (G-Guenancia-Zeriahi 23)

If a K-E variety X is globally smoothable, then ω_{KE} is a Kähler current.

 \hookrightarrow Warning: ω_{KE} not a Kähler form on X (unless X smooth).

イロト イポト イヨト イヨト

Theorem (G-Guenancia-Zeriahi 23)

If a K-E variety X is globally smoothable, then ω_{KE} is a Kähler current.

 \hookrightarrow Warning: ω_{KE} not a Kähler form on X (unless X smooth).

Theorem (G-Guenancia-Zeriahi 23)

If isolated smoothable sing. and $\operatorname{Ric}(\omega_{KE}) \leq 0$, then ω_{KE} Kähler current.

イロト 不得 トイヨト イヨト 二日

Theorem (G-Guenancia-Zeriahi 23)

If a K-E variety X is globally smoothable, then ω_{KE} is a Kähler current.

 \hookrightarrow Warning: ω_{KE} not a Kähler form on X (unless X smooth).

Theorem (G-Guenancia-Zeriahi 23)

If isolated smoothable sing. and $\operatorname{Ric}(\omega_{KE}) \leq 0$, then ω_{KE} Kähler current.

 \hookrightarrow NB: also valid (and useful !) for pairs.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem (G-Guenancia-Zeriahi 23)

If a K-E variety X is globally smoothable, then ω_{KE} is a Kähler current.

 \hookrightarrow Warning: ω_{KE} not a Kähler form on X (unless X smooth).

Theorem (G-Guenancia-Zeriahi 23)

If isolated smoothable sing. and $\operatorname{Ric}(\omega_{KE}) \leq 0$, then ω_{KE} Kähler current.

 \hookrightarrow NB: also valid (and useful !) for pairs.

Theorem (G-Guenancia-Zeriahi 23)

If dim_C $X \leq 3$ and Ric(ω_{KE}) ≤ 0 , then ω_{KE} is a Kähler current.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Theorem (G-Guenancia-Zeriahi 23)

If a K-E variety X is globally smoothable, then ω_{KE} is a Kähler current.

 \hookrightarrow Warning: ω_{KE} not a Kähler form on X (unless X smooth).

Theorem (G-Guenancia-Zeriahi 23)

If isolated smoothable sing. and $\operatorname{Ric}(\omega_{KE}) \leq 0$, then ω_{KE} Kähler current.

 \hookrightarrow NB: also valid (and useful !) for pairs.

Theorem (G-Guenancia-Zeriahi 23)

If dim_C $X \leq 3$ and Ric(ω_{KE}) ≤ 0 , then ω_{KE} is a Kähler current.

 \hookrightarrow Log terminal singularities are isolated in dimension 3.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Proofs rely on Chern-Lu inequality and the following observations:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proofs rely on Chern-Lu inequality and the following observations:

Strict positivity is insensitive to finite quotients.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proofs rely on Chern-Lu inequality and the following observations:

- Strict positivity is insensitive to finite quotients.
- **②** Strict positivity can be reached under partial crepant resolutions.

A D F A B F A B F A B

Proofs rely on Chern-Lu inequality and the following observations:

- Strict positivity is insensitive to finite quotients.
- **2** Strict positivity can be reached under partial crepant resolutions.
- **③** Global smoothing OK if L^{∞} -uniform a priori estimates in families.

(I) < (II) <

Proofs rely on Chern-Lu inequality and the following observations:

- Strict positivity is insensitive to finite quotients.
- **2** Strict positivity can be reached under partial crepant resolutions.
- **③** Global smoothing OK if L^{∞} -uniform a priori estimates in families.
- Ocal smoothing OK if L[∞]-uniform a priori estimates in families, together with C²-uniform estimates at the boundary.

< □ > < □ > < □ > < □ > < □ > < □ >

Proofs rely on Chern-Lu inequality and the following observations:

- Strict positivity is insensitive to finite quotients.
- **2** Strict positivity can be reached under partial crepant resolutions.
- **③** Global smoothing OK if L^{∞} -uniform a priori estimates in families.
- Ocal smoothing OK if L[∞]-uniform a priori estimates in families, together with C²-uniform estimates at the boundary.
- \hookrightarrow 3-dimensional setting uses a combination of these 4 ingredients !

< □ > < □ > < □ > < □ > < □ > < □ >

Assume (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing.

Assume (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing.

• Can assume wlog that $K_{\mathcal{X}/\Delta}$ is a Cartier divisor.

• • • • • • • • • • • • •

Assume (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing.

- Can assume wlog that $K_{\mathcal{X}/\Delta}$ is a Cartier divisor.
- Fix α a holomorphic (n, 0)-form nowhere vanishing on \mathcal{X}^{reg} and set

 $\mu_t := (i^{n^2} \alpha \wedge \overline{\alpha})_{|X_t}.$

< □ > < □ > < □ > < □ > < □ > < □ >

Assume (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing.

- Can assume wlog that $K_{\mathcal{X}/\Delta}$ is a Cartier divisor.
- Fix α a holomorphic (n,0)-form nowhere vanishing on $\mathcal{X}^{\textit{reg}}$ and set

 $\mu_t := (i^{n^2} \alpha \wedge \overline{\alpha})_{|X_t}.$

• $\omega_{KE,t} = \omega_t + dd^c \varphi_t$ =unique Ricci flat metric solving, for $t \neq 0$,

 $\omega_{KE,t}^n = \mu_t.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing.

- Can assume wlog that $K_{\mathcal{X}/\Delta}$ is a Cartier divisor.
- Fix α a holomorphic (n, 0)-form nowhere vanishing on \mathcal{X}^{reg} and set $\mu_t := (i^{n^2} \alpha \wedge \overline{\alpha})_{|X_t}.$

• $\omega_{KE,t} = \omega_t + dd^c \varphi_t$ =unique Ricci flat metric solving, for $t \neq 0$,

$$\omega_{\mathsf{KE},t}^n = \mu_t.$$

The plan is to show that

• $\omega_t \leq C \omega_{KE,t}$ for some uniform constant C > 0 and $t \neq 0$;

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Assume (X, ω) admits a \mathbb{Q} -Gorenstein CY smoothing.

- Can assume wlog that $K_{\mathcal{X}/\Delta}$ is a Cartier divisor.
- Fix α a holomorphic (n, 0)-form nowhere vanishing on \mathcal{X}^{reg} and set $\mu_t := (i^{n^2} \alpha \wedge \overline{\alpha})_{|X_t}.$
- $\omega_{KE,t} = \omega_t + dd^c \varphi_t$ =unique Ricci flat metric solving, for $t \neq 0$,

$$\omega_{\mathsf{KE},t}^n = \mu_t.$$

The plan is to show that

- $\omega_t \leq C \omega_{KE,t}$ for some uniform constant C > 0 and $t \neq 0$;
- $\omega_{KE,t} \rightarrow \omega_{KE}$ as $t \rightarrow 0$, hence $\omega_{KE} \ge C^{-1}\omega_0$ is positive.

Theorem (DiNezza-G-Guenancia 20)

Consider, for $t \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ the unique solution to

 $(\omega_t + dd^c \varphi_t)^n = \mu_t \quad \text{with} \quad \sup_{X_t} \varphi_t = 0.$

イロト イポト イヨト イヨト 二日

Theorem (DiNezza-G-Guenancia 20)

Consider, for $t \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ the unique solution to

 $(\omega_t + dd^c \varphi_t)^n = \mu_t \quad \text{with} \quad \sup_{X_t} \varphi_t = 0.$

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

Theorem (DiNezza-G-Guenancia 20)

Consider, for $t \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ the unique solution to

 $(\omega_t + dd^c \varphi_t)^n = \mu_t \quad \text{with} \quad \sup_{X_t} \varphi_t = 0.$

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

The proof relies on Kolodziej's technique together with

• $\mu_t = f_t \omega_t^n$ with $\int_{X_t} f_t^p \omega_t^n \leq C_1$ for uniform constants $p > 1, C_1 > 0$;

Theorem (DiNezza-G-Guenancia 20)

Consider, for $t \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ the unique solution to

 $(\omega_t + dd^c \varphi_t)^n = \mu_t \quad \text{with} \quad \sup_{X_t} \varphi_t = 0.$

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

The proof relies on Kolodziej's technique together with

• $\mu_t = f_t \omega_t^n$ with $\int_{X_t} f_t^p \omega_t^n \le C_1$ for uniform constants $p > 1, C_1 > 0$; • $\int_{X_t} e^{-\alpha \psi_t} \omega_t^n \le C_2$ for $\alpha > 0, C_2 > 0$ indep. of $\psi_t \in PSH_0(X_t, \omega_t)$.

Theorem (DiNezza-G-Guenancia 20)

Consider, for $t \neq 0$, $\varphi_t \in \mathcal{C}^{\infty}(X_t)$ the unique solution to

 $(\omega_t + dd^c \varphi_t)^n = \mu_t \quad \text{with} \quad \sup_{X_t} \varphi_t = 0.$

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

The proof relies on Kolodziej's technique together with

 μ_t = f_tωⁿ_t with ∫_{Xt} f^p_tωⁿ_t ≤ C₁ for uniform constants p > 1, C₁ > 0;
 ∫_{Xt} e^{-αψt}ωⁿ_t ≤ C₂ for α > 0, C₂ > 0 indep. of ψ_t ∈ PSH₀(X_t, ω_t). [α = 1/nd OK if X_t degree d subvariety of ℙ^N]

 \bullet Holomorphic bisec. curv. \sim Kähler analogue of sectional curvature.

• • • • • • • • • • • •

- \bullet Holomorphic bisec. curv. \sim Kähler analogue of sectional curvature.
- $\operatorname{Bisec}(\omega)$ decreases by restriction to holom. subvar.

• • • • • • • • • • • • •

- ullet Holomorphic bisec. curv. \sim Kähler analogue of sectional curvature.
- $\operatorname{Bisec}(\omega)$ decreases by restriction to holom. subvar.

Lemma (Chern 68, Lu 68)

If $\operatorname{Ric}(\theta) \geq \lambda \theta$ and $\operatorname{Bisec}(\omega) \leq B$ then

 $\Delta_{\theta} \log \operatorname{Tr}_{\theta}(\omega) \geq \lambda - 2B \operatorname{Tr}_{\theta}(\omega).$

< □ > < □ > < □ > < □ > < □ > < □ >

- ullet Holomorphic bisec. curv. \sim Kähler analogue of sectional curvature.
- $\operatorname{Bisec}(\omega)$ decreases by restriction to holom. subvar.

Lemma (Chern 68, Lu 68)

If $\operatorname{Ric}(\theta) \geq \lambda \theta$ and $\operatorname{Bisec}(\omega) \leq B$ then

 $\Delta_{\theta} \log \operatorname{Tr}_{\theta}(\omega) \geq \lambda - 2B \operatorname{Tr}_{\theta}(\omega).$

• Here
$$\Delta_{\theta}h := n \frac{dd^c h \wedge \theta^{n-1}}{\theta^n}$$
 and $\operatorname{Tr}_{\theta}(\omega) := n \frac{\omega \wedge \theta^{n-1}}{\theta^n}$.

イロト イボト イヨト イヨト

- ullet Holomorphic bisec. curv. \sim Kähler analogue of sectional curvature.
- $\operatorname{Bisec}(\omega)$ decreases by restriction to holom. subvar.

Lemma (Chern 68, Lu 68)

If $\operatorname{Ric}(\theta) \geq \lambda \theta$ and $\operatorname{Bisec}(\omega) \leq B$ then

 $\Delta_{\theta} \log \operatorname{Tr}_{\theta}(\omega) \geq \lambda - 2B \operatorname{Tr}_{\theta}(\omega).$

• Here $\Delta_{\theta}h := n \frac{dd^c h \wedge \theta^{n-1}}{\theta^n}$ and $\operatorname{Tr}_{\theta}(\omega) := n \frac{\omega \wedge \theta^{n-1}}{\theta^n}$.

• Will apply this formula with $\omega = \omega_t$ and $\theta = \omega_{KE,t} = \omega_t + dd^c \varphi_t$.

- ullet Holomorphic bisec. curv. \sim Kähler analogue of sectional curvature.
- $\operatorname{Bisec}(\omega)$ decreases by restriction to holom. subvar.

Lemma (Chern 68, Lu 68)

If $\operatorname{Ric}(\theta) \geq \lambda \theta$ and $\operatorname{Bisec}(\omega) \leq B$ then

 $\Delta_{\theta} \log \operatorname{Tr}_{\theta}(\omega) \geq \lambda - 2B \operatorname{Tr}_{\theta}(\omega).$

- Here $\Delta_{\theta}h := n \frac{dd^c h \wedge \theta^{n-1}}{\theta^n}$ and $\operatorname{Tr}_{\theta}(\omega) := n \frac{\omega \wedge \theta^{n-1}}{\theta^n}$.
- Will apply this formula with $\omega = \omega_t$ and $\theta = \omega_{KE,t} = \omega_t + dd^c \varphi_t$.
- Observe that $\omega_t \leq C \omega_{\mathsf{KE},t} \iff \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) \leq C$.

• Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .

- Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .
- Using local embeddings $\mathcal{X} \hookrightarrow \mathbb{C}^N$, can assume $\operatorname{Bisec}(\Omega) \leq B$ on \mathcal{X} .

• • • • • • • • • • • •

- Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .
- Using local embeddings $\mathcal{X} \hookrightarrow \mathbb{C}^N$, can assume $\operatorname{Bisec}(\Omega) \leq B$ on \mathcal{X} .
- Therefore $Bisec(\omega_t) \leq B$ on X_t .

• • • • • • • • • • • •

- Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .
- Using local embeddings $\mathcal{X} \hookrightarrow \mathbb{C}^N$, can assume $\operatorname{Bisec}(\Omega) \leq B$ on \mathcal{X} .
- Therefore $Bisec(\omega_t) \leq B$ on X_t . Thus Chern-Lu formula ensures

$$\Delta_{\omega_{KE,t}} \log \operatorname{Tr}_{\omega_{KE,t}}(\omega_t) \geq -2B \operatorname{Tr}_{\omega_{KE,t}}(\omega_t), \quad \text{hence}$$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .
- Using local embeddings $\mathcal{X} \hookrightarrow \mathbb{C}^N$, can assume $\operatorname{Bisec}(\Omega) \leq B$ on \mathcal{X} .
- Therefore $Bisec(\omega_t) \leq B$ on X_t . Thus Chern-Lu formula ensures

$$\Delta_{\omega_{KE,t}} \log \operatorname{Tr}_{\omega_{KE,t}}(\omega_t) \geq -2B \operatorname{Tr}_{\omega_{KE,t}}(\omega_t), \quad ext{hence}$$

 $\Delta_{\omega_{\mathsf{KE},t}}\left(\log \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) - (1+2B)\varphi_t\right) \geq \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) - n(1+2B).$

- Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .
- Using local embeddings $\mathcal{X} \hookrightarrow \mathbb{C}^N$, can assume $\operatorname{Bisec}(\Omega) \leq B$ on \mathcal{X} .
- Therefore $Bisec(\omega_t) \leq B$ on X_t . Thus Chern-Lu formula ensures

$$\Delta_{\omega_{KE,t}} \log \operatorname{Tr}_{\omega_{KE,t}}(\omega_t) \geq -2B \operatorname{Tr}_{\omega_{KE,t}}(\omega_t), \quad ext{hence}$$

$$\Delta_{\omega_{\mathsf{KE},t}}\left(\log \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) - (1+2B)\varphi_t\right) \geq \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) - \mathsf{n}(1+2B).$$

• Max pple : $\log \operatorname{Tr}_{\omega_{KE,t}}(\omega_t) \leq \log n(1+2B) + (1+2B) \operatorname{Osc}_{X_t}(\varphi_t) \leq C.$

- Adding $Add^{c}|t|^{2}$ we can assume that Ω is a Kähler form on \mathcal{X} .
- Using local embeddings $\mathcal{X} \hookrightarrow \mathbb{C}^N$, can assume $\operatorname{Bisec}(\Omega) \leq B$ on \mathcal{X} .
- Therefore $Bisec(\omega_t) \leq B$ on X_t . Thus Chern-Lu formula ensures

$$\Delta_{\omega_{\mathit{KE},t}}\log\mathrm{Tr}_{\omega_{\mathit{KE},t}}(\omega_t)\geq -2B\mathrm{Tr}_{\omega_{\mathit{KE},t}}(\omega_t),$$
 hence

 $\Delta_{\omega_{\mathsf{KE},t}}\left(\log \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) - (1+2B)\varphi_t\right) \geq \operatorname{Tr}_{\omega_{\mathsf{KE},t}}(\omega_t) - \mathit{n}(1+2B).$

- Max pple : $\log \operatorname{Tr}_{\omega_{KE,t}}(\omega_t) \leq \log n(1+2B) + (1+2B) \operatorname{Osc}_{X_t}(\varphi_t) \leq C$.
- Since (ω_{KE,t})ⁿ/ωⁿ_t is uniformly bounded away from X^{sing}₀, we obtain locally unif. higher order estimates in X^{reg} and pass to the lim on X₀.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Consider, for $t \neq 0$, $\lambda \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ canonical solution to $(\omega_t + dd^c \varphi_t)^n = e^{-\lambda \varphi_t} \mu_t.$

Consider, for $t \neq 0$, $\lambda \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ canonical solution to $(\omega_t + dd^c \varphi_t)^n = e^{-\lambda \varphi_t} \mu_t.$

Theorem (DiNezza-G-Guenancia 20 / $\lambda = -1$)

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Consider, for $t \neq 0$, $\lambda \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ canonical solution to $(\omega_t + dd^c \varphi_t)^n = e^{-\lambda \varphi_t} \mu_t.$

Theorem (DiNezza-G-Guenancia 20 / $\lambda = -1$)

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

 $\hookrightarrow C^2$ -estimate OK, Chern-Lu formula applies again.

Consider, for $t \neq 0$, $\lambda \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ canonical solution to $(\omega_t + dd^c \varphi_t)^n = e^{-\lambda \varphi_t} \mu_t.$

Theorem (DiNezza-G-Guenancia 20 / $\lambda = -1$)

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

 $\hookrightarrow \mathcal{C}^2$ -estimate OK, Chern-Lu formula applies again.

Theorem (Spotti-Sun-Yao 16 / $\lambda = 1$)

Assume X_0 admits a unique Kähler-Einstein metric. For t small there exists $C_0 > 0$ indep. of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Consider, for $t \neq 0$, $\lambda \neq 0$, $\varphi_t \in C^{\infty}(X_t)$ canonical solution to $(\omega_t + dd^c \varphi_t)^n = e^{-\lambda \varphi_t} \mu_t.$

Theorem (DiNezza-G-Guenancia 20 / $\lambda = -1$)

There exists $C_0 > 0$ independent of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

 $\hookrightarrow \mathcal{C}^2$ -estimate OK, Chern-Lu formula applies again.

Theorem (Spotti-Sun-Yao 16 / $\lambda = 1$)

Assume X_0 admits a unique Kähler-Einstein metric. For t small there exists $C_0 > 0$ indep. of t such that $||\varphi_t||_{L^{\infty}(X_t)} \leq C_0$.

 \hookrightarrow Quite a difficult estimate ! Extension to pairs by [Pan-Trusiani 23].

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

• For isolated singularities can localize and solve a Dirichlet problem.

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.

A D F A B F A B F A B

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].
- In [GGZ23] we provide uniform estimates in families when $\lambda \leq 0$.

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].
- In [GGZ23] we provide uniform estimates in families when $\lambda \leq 0$.
- Similar strategy for positivity, needs C^2 -control at boundary [CKNS85]

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].
- In [GGZ23] we provide uniform estimates in families when $\lambda \leq 0$.
- Similar strategy for positivity, needs C^2 -control at boundary [CKNS85]

• In dim 3 can reduce to can. sing. by quasi-étale index one cover.

・ロト ・ 同ト ・ ヨト ・ ヨト

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].
- In [GGZ23] we provide uniform estimates in families when $\lambda \leq 0$.
- Similar strategy for positivity, needs C^2 -control at boundary [CKNS85]

- In dim 3 can reduce to can. sing. by quasi-étale index one cover.
- Passing to the terminalization, one reduces to *terminal singularities*.

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].
- In [GGZ23] we provide uniform estimates in families when $\lambda \leq 0$.
- Similar strategy for positivity, needs C^2 -control at boundary [CKNS85]

- In dim 3 can reduce to can. sing. by quasi-étale index one cover.
- Passing to the terminalization, one reduces to *terminal singularities*.
- Reid's classif. of 3-dim terminal singularities \Rightarrow locally smoothable.

- For isolated singularities can localize and solve a Dirichlet problem.
- Requires to adapt classical theories to this singular context.
- First basic steps in [G-Guenancia-Zeriahi 20] and [Datar-Fu-Song 21].
- In [GGZ23] we provide uniform estimates in families when $\lambda \leq 0$.
- Similar strategy for positivity, needs C^2 -control at boundary [CKNS85]

- In dim 3 can reduce to can. sing. by quasi-étale index one cover.
- Passing to the terminalization, one reduces to *terminal singularities*.
- Reid's classif. of 3-dim terminal singularities \Rightarrow locally smoothable.
- Use of pairs necessary in negative curvature (more involved than CY).

(日)

H.Hein, S.Sun

Calabi-Yau manifolds with isolated conical singularities. Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73-130.

• H.Hein, S.Sun

Calabi-Yau manifolds with isolated conical singularities. Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73-130.

• E.DiNezza, V. Guedj, H.Guenancia Families of singular Kähler-Einstein metrics , Preprint 2020, to appear in J.E.M.S.

- H.Hein, S.Sun
 Calabi-Yau manifolds with isolated conical singularities.
 Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73-130.
- E.DiNezza, V. Guedj, H.Guenancia Families of singular Kähler-Einstein metrics, Preprint 2020, to appear in J.E.M.S.
- C.-M.Pan, A.Trusiani, Kähler-Einstein metrics on families of Fano varieties, Preprint arXiv:2304.08155

- H.Hein, S.Sun Calabi-Yau manifolds with isolated conical singularities.
 - Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73-130.
- E.DiNezza, V. Guedj, H.Guenancia Families of singular Kähler-Einstein metrics , Preprint 2020, to appear in J.E.M.S.
- C.-M.Pan, A.Trusiani, Kähler-Einstein metrics on families of Fano varieties, Preprint arXiv:2304.08155
- V. Guedj, H.Guenancia, A. Zeriahi, *Positivity of Kähler-Einstein currents*, Preprint arxiV arXiv:2305.12422