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What is ellipticity?

Definition (?)

Ellipticity is the opposite of hyperbolicity.

In complex analytic geometry,

Kobayashi–Eisenman–Brody hyperbolicity:
@ nondegenerate holomorphic map from Cn

potential theoretic hyperbolicity (⇐⇒ non-Liouvilleness):
∃ nonconstant negative plurisubharmonic function
=⇒ Brody volume hyperbolicity

Example

A Riemann surface Y is Kobayashi hyperbolic if and only if Y is
universally covered by the unit disc D.
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What is Gromov ellipticity?

In algebraic geometry,

(Demailly ’97) Kobayashi hyperbolicity
=⇒ Demailly’s algebraic hyperbolicity:
∃ε > 0∀C ⊂ Y proj : curve 2 genus(C )− 2 ≥ ε deg(C )
=⇒ @ rational curve, elliptic curve ⊂ Y

Mori hyperbolicity (Lu–Zhang ’17):
@ nonconstant morphism from the affine line A1

Example

Every elliptic curve is Mori hyperbolic.

 Ellipticity in these categories should mean:
∃ “many” dominating maps from affine spaces
⇐⇒: Gromov ellipticity
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Gromov ellipticity for complex manifolds

Dominating sprays

Q. How many dominating maps from affine spaces do we need?

A. Many enough to glue together to a dominating spray.

Definition

Let X be a complex space and Y be a complex manifold.

1 A spray over a holomorphic map f : X → Y is a holomorphic
map s : E → Y from a holomorphic vector bundle E over X
such that s(0x) = f (x) for each x ∈ X .

2 A family of sprays sλ : Eλ → Y (λ ∈ Λ) over a holomorphic
map f : X → Y is dominating if∑

λ∈Λ(dsλ)0x (T0x (Eλ)x) = Tf (x)Y for each x ∈ X .

Example

Y: complex homogeneous (:⇐⇒ ∃G y Y : holomorphic transitive)
s : Y × T1GG → Y , s(y , v) = exp(v) · y : dominating spray /idY
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Gromov ellipticity for complex manifolds

Ellipticity conditions

Definition (Gromov ’86, ’89)

Let Y be a complex manifold.

1 Y is elliptic if there exists a dominating spray over idY .

2 Y is subelliptic if there exists a dominating finite family of
sprays over idY .

3 Y satisfies Ell1 if for any Stein space X and any holomorphic
map f : X → Y there exists a dominating spray over f .

Remark

elliptic =⇒ subelliptic =⇒ Ell1 ( =⇒ elliptic if Y is Stein)

We will see later that Ell1 does not imply subellipticity.

Problem (open)

subelliptic =⇒ elliptic?
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Examples of elliptic manifolds

Example

Every complex homogeneous manifold is elliptic.

Corollary

For a Riemann surface Y , the following are equivalent:

1 Y is elliptic.

2 Y is subelliptic.

3 Y satisfies Ell1.

4 Y is not Kobayashi hyperbolic.

5 Y ∼= P1,C,C∗ or elliptic curve.

Example (Lárusson ’13, Lárusson–Truong ’19, K. ’21)

Every smooth toric variety is elliptic.
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Oka principle and Oka manifolds

What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle.

Oka principle = homotopy principle in complex analysis

Oka principle

For a (reduced) Stein space X ,

{analytic objects/X} forgetful−−−−−→ {topological objects/X}

is a “weak equivalence.”

Theorem (Oka ’39, Grauert ’57, ’58)

For a Stein space X and r ∈ N,

{hol. vec. bdl. of rank r/X} forgetful−−−−−→ {top. vec. bdl. of rank r/X}

induces a bijection between the sets of isomorphism classes.



Introduction Ellipticity in complex analytic geometry Ellipticity in algebraic geometry

Oka principle and Oka manifolds

What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle.
Oka principle = homotopy principle in complex analysis

Oka principle

For a (reduced) Stein space X ,

{analytic objects/X} forgetful−−−−−→ {topological objects/X}

is a “weak equivalence.”

Theorem (Oka ’39, Grauert ’57, ’58)

For a Stein space X and r ∈ N,

{hol. vec. bdl. of rank r/X} forgetful−−−−−→ {top. vec. bdl. of rank r/X}

induces a bijection between the sets of isomorphism classes.



Introduction Ellipticity in complex analytic geometry Ellipticity in algebraic geometry

Oka principle and Oka manifolds

What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle.
Oka principle = homotopy principle in complex analysis

Oka principle

For a (reduced) Stein space X ,

{analytic objects/X} forgetful−−−−−→ {topological objects/X}

is a “weak equivalence.”

Theorem (Oka ’39, Grauert ’57, ’58)

For a Stein space X and r ∈ N,

{hol. vec. bdl. of rank r/X} forgetful−−−−−→ {top. vec. bdl. of rank r/X}

induces a bijection between the sets of isomorphism classes.



Introduction Ellipticity in complex analytic geometry Ellipticity in algebraic geometry

Oka principle and Oka manifolds

What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle.
Oka principle = homotopy principle in complex analysis

Oka principle

For a (reduced) Stein space X ,

{analytic objects/X} forgetful−−−−−→ {topological objects/X}

is a “weak equivalence.”

Theorem (Oka ’39, Grauert ’57, ’58)

For a Stein space X and r ∈ N,

{hol. vec. bdl. of rank r/X} forgetful−−−−−→ {top. vec. bdl. of rank r/X}

induces a bijection between the sets of isomorphism classes.



Introduction Ellipticity in complex analytic geometry Ellipticity in algebraic geometry

Oka principle and Oka manifolds

Gromov’s Oka principle

Theorem (Gromov ’89, Forstnerič ’02)

Let X be a Stein space, Z ⊂ X be a closed complex subvariety and
Y be a subelliptic manifold.

Then for any f ∈ O(Z ,Y ),{
f̃ ∈ O(X ,Y ) : f̃ |Z = f

}
↪→

{
f̃ ∈ C(X ,Y ) : f̃ |Z = f

}
is a weak homotopy equivalence (w.r.t. compact-open topology).

They proved the parametric Oka principle also with approximation.
∃ elementary proofs of

extension =⇒ approximation (Lárusson ’05)

approximation =⇒ extension (K. ’20)

The Oka principle for sections of subelliptic submersions also holds.
=⇒ Grauert’s Oka principle for isom. classes of vector bundles
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The Oka principle for sections of subelliptic submersions also holds.
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Elliptic characterization of Oka manifolds

Gromov’s Oka principle: subelliptic =⇒ Oka

Theorem (Gromov’s conjecture ’86, K. ’21)

Oka ⇐⇒ Ell1

Corollary (Localization theorem for Oka manifolds, K. ’21)

Every Zariski locally Oka manifold is an Oka manifold.

Theorem (Negative answer to Gromov’s question ’89,
Andrist–Shcherbina–Wold ’16, K. ’20)

∃ non-subelliptic Oka manifold (e.g. Cn \ Bn for n ≥ 3)

Andersén–Lempert theory plays a crucial role in the proof to
construct a family of Fatou–Bieberbach domains around the graph
of a holomorphic map f , which gives a dominating spray over f .
 Forstnerič–Wold: simpler proof (’20), Cn\(unbdd cvx set) (’23)
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Surjective holomorphic maps onto Oka manifolds

(Fornaess–Stout ’77, ’82) Every connected complex manifold Y
admits surjective holomorphic maps from DdimY and BdimY .

Theorem (Forstnerič ’17)

For any Stein space X and any connected Oka manifold Y with
dimY ≤ dimX , every continuous map X → Y is homotopic to a
holomorphic map f : X → Y such that f (X \ Sing(f )) = Y where
Sing(f ) = {x ∈ X : dfx(TxX ) 6= Tf (x)Y }.

Does the converse hold? (Forstnerič ’17)

Remark

If there exists a surjective holomorphic map Cn → Y , for any Stein
space X and 0-dimensional closed (possibly nonreduced) complex
subspace Z ⊂ X the restriction O(X ,Y )→ O(Z ,Y ) is surjective.
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Gromov ellipticity for smooth algebraic varieties

Algebraic dominating sprays and algebraic ellipticity

Algebraic dominating sprays and algebraic ellipticity conditions can
be defined analogously by replacing analytic objects as follows:

complex space  algebraic variety

holomorphic map  (algebraic) morphism

holomorphic vector bundle  algebraic vector bundle

Stein space  affine variety

Remark

algebraically (sub)elliptic =⇒ analytically (sub)elliptic
The converse does not hold. (e.g. abelian varieties)

Remark

algebraic Ell1 =⇒ unirational and
nondegenerate: @Y → A1 \ {0}: nonconst.
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Gromov ellipticity for smooth algebraic varieties

Equivalences between algebraic ellipticity conditions

Theorem (Gromov ’89, Forstnerič ’06, Lárusson–Truong ’19,
Kaliman–Zaidenberg ’23)

For a smooth complex algebraic variety Y , TFAE:

1 Y is algebraically elliptic.

2 Y is algebraically subelliptic.

3 Y satisfies algebraic Ell1.

4 Y enjoys the algebraic Homotopy Approximation Property:
For any affine variety X , any morphism f : X → Y , any
compact holomorphically convex set K ⊂ X and any
homotopy H : K × [0, 1]→ Y of holomorphic maps such that
H(·, 0) = f |K , there exists a morphism H̃ : X × C→ Y such
that H̃(·, 0) = f and H̃(·, t)|K ≈ H(·, t) for all t ∈ [0, 1].

 algebraic Ell1 =⇒ analytic Ell1
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Gromov ellipticity for smooth algebraic varieties

Examples of algebraically elliptic varieties

Example

For an algebraic curve C , the following are equivalent:

1 C is algebraically elliptic.

2 C ∼= A1 or P1.

Example (..., Arzhantsev ’23)

For a conn. linear algebraic group G and a closed subgroup H ⊂ G ,
G/H is algebraically elliptic ⇐⇒ G/H is nondegenerate.

Theorem (Gromov’s localization theorem ’89)

Zariski locally algebraically elliptic =⇒ algebraically elliptic

Example (Lárusson–Truong ’19)

A smooth toric variety Y is alg. elliptic ⇐⇒ Y is nondegenerate.
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Algebraic Oka theory

algebraic ellipticity ⇐⇒ algebraic Oka property?

Theorem (Lárusson–Truong ’19)

For any proper smooth complex algebraic variety Y there exist a
smooth closed algebraic subvariety Z ⊂ C2 and a null-homotopic
map f ∈ Oalg(Z ,Y ) \ Oalg(C2,Y )|Z . In particular,{

f̃ ∈ Oalg(C2,Y ) : f̃ |Z = f
}
↪→

{
f̃ ∈ C(C2,Y ) : f̃ |Z = f

}
is not a weak homotopy equivalence.

Thus we need to reformulate the alg. Oka principle appropriately.

One way to do this is to enlarge the space of morphisms: hol. maps
of finite order (Cornalba–Griffiths ’75, Forstnerič–Ohsawa ’13, ...)

Another way is to replace the interval object [0, 1] by A1.
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Algebraic Oka theory

Surjective morphisms onto algebraically elliptic varieties

Theorem (K. ’22: arXiv:2212.06412)

For any algebraically elliptic (irreducible) variety Y , there exists a
morphism f : AdimY+1 → Y such that f (AdimY+1 \ Sing(f )) = Y .

Forstnerič (’17) proved that every proper algebraically elliptic
complex variety Y admits a surjective morphism from CdimY by
using the algebraic Homotopy Approximation Property.
Our proof of the above theorem is purely algebro-geometric.

Corollary (The algebraic jet interpolation theorem, K. ’22)

For any affine variety X , any algebraically elliptic variety Y and
any zero-dimensional closed (possibly nonreduced) subscheme
Z ⊂ X the restriction Oalg(X ,Y )→ Oalg(Z ,Y ) is surjective.

Q. How can we generalize this for Z ⊂ X of arbitrary dimension?
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Conjectures

Conjecture (A1-Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,
f : X → Y be a morphism, Z ⊂ X be a closed algebraic subvariety
and H : Z × A1 → Y be a morphism such that H(·, 0) = f |Z .

Then there exists a morphism H̃ : X × A1 → Y such that
H̃(·, 0) = f and H̃(·, t)|Z = H(·, t) for all t ∈ A1.

The algebraic interpolation theorem follows from this conjecture.
O(X ,Y ) ↪→ C(X ,Y ) is a weak homotopy equiv. for any Stein X
⇐⇒ Sing[0,1]O(·,Y ): ∞-sheaf / ∞-Stein site (Lárusson ’03, ’04)

Conjecture (A1-Oka principle)

For any algebraically elliptic variety Y , the ∞-presheaf
SingA

1Oalg(·,Y ) is an ∞-sheaf over the ∞-site of affine varieties.

The analytic versions of the above conjectures hold!
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Thank you for your attention!
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