## Gromov ellipticity in complex analytic geometry and algebraic geometry

#### Yuta Kusakabe

Kyoto University

Complex Analysis, Geometry, and Dynamics - Portorož 2023 7 June 2023



- Gromov ellipticity for complex manifolds
- Oka principle and Oka manifolds

### Ellipticity in algebraic geometry

- Gromov ellipticity for smooth algebraic varieties
- Algebraic Oka theory

Ellipticity in algebraic geometry

### What is ellipticity?

Definition (?)

Ellipticity is the opposite of hyperbolicity.

Ellipticity in algebraic geometry

### What is ellipticity?

#### Definition (?)

Ellipticity is the opposite of hyperbolicity.

In complex analytic geometry,

### What is ellipticity?

### Definition (?)

Ellipticity is the opposite of hyperbolicity.

#### In complex analytic geometry,

Kobayashi–Eisenman–Brody hyperbolicity:

 <sup>1</sup>
 <sup>1</sup>
 nondegenerate holomorphic map from C<sup>n</sup>

### What is ellipticity?

### Definition (?)

Ellipticity is the opposite of hyperbolicity.

#### In complex analytic geometry,

- Kobayashi–Eisenman–Brody hyperbolicity:

   <sup>‡</sup> nondegenerate holomorphic map from C<sup>n</sup>
- potential theoretic hyperbolicity ( ⇔ non-Liouvilleness):
   ∃ nonconstant negative plurisubharmonic function
  - $\implies$  Brody volume hyperbolicity

### What is ellipticity?

### Definition (?)

Ellipticity is the opposite of hyperbolicity.

#### In complex analytic geometry,

- Kobayashi–Eisenman–Brody hyperbolicity:

   <sup>‡</sup> nondegenerate holomorphic map from C<sup>n</sup>
- potential theoretic hyperbolicity ( ⇔ non-Liouvilleness):
   ∃ nonconstant negative plurisubharmonic function
  - $\implies$  Brody volume hyperbolicity

#### Example

A Riemann surface Y is Kobayashi hyperbolic if and only if Y is universally covered by the unit disc  $\mathbb{D}$ .

Ellipticity in algebraic geometry

### What is Gromov ellipticity?

In algebraic geometry,

In algebraic geometry,

(Demailly '97) Kobayashi hyperbolicity
 ⇒ Demailly's algebraic hyperbolicity:
 ∃ε > 0 ∀C ⊂ Y<sup>proj</sup> : curve 2 genus(C) - 2 ≥ ε deg(C)
 ⇒ ∄ rational curve, elliptic curve ⊂ Y

In algebraic geometry,

- (Demailly '97) Kobayashi hyperbolicity
  - $\implies$  Demailly's algebraic hyperbolicity:
  - $\exists \varepsilon > 0 \,\forall C \subset Y^{\text{proj}} : \textit{curve} \quad 2 \, \text{genus}(C) 2 \geq \varepsilon \, \text{deg}(C)$
  - $\implies$   $\nexists$  rational curve, elliptic curve  $\subset$  Y
- Mori hyperbolicity (Lu–Zhang '17):

   <sup>‡</sup> nonconstant morphism from the affine line A<sup>1</sup>

In algebraic geometry,

- (Demailly '97) Kobayashi hyperbolicity
  - $\implies$  Demailly's algebraic hyperbolicity:
  - $\exists \varepsilon > 0 \,\forall C \subset Y^{\text{proj}} : \textit{curve} \quad 2 \, \text{genus}(C) 2 \geq \varepsilon \, \text{deg}(C)$
  - $\implies$   $\nexists$  rational curve, elliptic curve  $\subset$  Y
- Mori hyperbolicity (Lu–Zhang '17):
  - $\nexists$  nonconstant morphism from the affine line  $\mathbb{A}^1$

#### Example

Every elliptic curve is Mori hyperbolic.

In algebraic geometry,

- (Demailly '97) Kobayashi hyperbolicity
  - $\implies$  Demailly's algebraic hyperbolicity:
  - $\exists \varepsilon > 0 \,\forall C \subset Y^{\text{proj}} : \textit{curve} \quad 2 \, \text{genus}(C) 2 \geq \varepsilon \, \text{deg}(C)$
  - $\implies$   $\nexists$  rational curve, elliptic curve  $\subset$  Y
- Mori hyperbolicity (Lu–Zhang '17):
  - $\nexists$  nonconstant morphism from the affine line  $\mathbb{A}^1$

#### Example

Every elliptic curve is Mori hyperbolic.

 $\rightsquigarrow$  Ellipticity in these categories should mean:

 $\exists$  "many" dominating maps from affine spaces

In algebraic geometry,

- (Demailly '97) Kobayashi hyperbolicity
  - $\implies$  Demailly's algebraic hyperbolicity:
  - $\exists \varepsilon > 0 \,\forall C \subset Y^{\text{proj}} : \textit{curve} \quad 2 \, \text{genus}(C) 2 \geq \varepsilon \, \text{deg}(C)$
  - $\implies$   $\nexists$  rational curve, elliptic curve  $\subset$  Y
- Mori hyperbolicity (Lu–Zhang '17):
  - $\nexists$  nonconstant morphism from the affine line  $\mathbb{A}^1$

#### Example

Every elliptic curve is Mori hyperbolic.

→ Ellipticity in these categories should mean:
 ∃ "many" dominating maps from affine spaces
 ⇒: Gromov ellipticity

#### Gromov ellipticity for complex manifolds

1 Introduction

### 2 Ellipticity in complex analytic geometry

- Gromov ellipticity for complex manifolds
- Oka principle and Oka manifolds

### 8 Ellipticity in algebraic geometry

- Gromov ellipticity for smooth algebraic varieties
- Algebraic Oka theory

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Dominating sprays

Q. How many dominating maps from affine spaces do we need?

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Dominating sprays

 $\mathsf{Q}.$  How many dominating maps from affine spaces do we need?

A. Many enough to glue together to a dominating spray.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Gromov ellipticity for complex manifolds

### Dominating sprays

Q. How many dominating maps from affine spaces do we need?

A. Many enough to glue together to a dominating spray.

#### Definition

Let X be a complex space and Y be a complex manifold.

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Dominating sprays

- Q. How many dominating maps from affine spaces do we need?
- A. Many enough to glue together to a dominating spray.

### Definition

Let X be a complex space and Y be a complex manifold.

A spray over a holomorphic map f : X → Y is a holomorphic map s : E → Y from a holomorphic vector bundle E over X such that s(0<sub>x</sub>) = f(x) for each x ∈ X.

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Dominating sprays

- Q. How many dominating maps from affine spaces do we need?
- A. Many enough to glue together to a dominating spray.

### Definition

Let X be a complex space and Y be a complex manifold.

- A spray over a holomorphic map f : X → Y is a holomorphic map s : E → Y from a holomorphic vector bundle E over X such that s(0<sub>x</sub>) = f(x) for each x ∈ X.
- A family of sprays s<sub>λ</sub> : E<sub>λ</sub> → Y (λ ∈ Λ) over a holomorphic map f : X → Y is *dominating* if ∑<sub>λ∈Λ</sub>(ds<sub>λ</sub>)<sub>0<sub>x</sub></sub>(T<sub>0<sub>x</sub></sub>(E<sub>λ</sub>)<sub>x</sub>) = T<sub>f(x)</sub>Y for each x ∈ X.

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Dominating sprays

- Q. How many dominating maps from affine spaces do we need?
- A. Many enough to glue together to a dominating spray.

### Definition

Let X be a complex space and Y be a complex manifold.

- A spray over a holomorphic map f : X → Y is a holomorphic map s : E → Y from a holomorphic vector bundle E over X such that s(0<sub>x</sub>) = f(x) for each x ∈ X.
- A family of sprays s<sub>λ</sub> : E<sub>λ</sub> → Y (λ ∈ Λ) over a holomorphic map f : X → Y is *dominating* if ∑<sub>λ∈Λ</sub>(ds<sub>λ</sub>)<sub>0<sub>x</sub></sub>(T<sub>0<sub>x</sub></sub>(E<sub>λ</sub>)<sub>x</sub>) = T<sub>f(x)</sub>Y for each x ∈ X.

#### Example

Y: complex homogeneous (: $\iff \exists G \frown Y$ : holomorphic transitive)  $s: Y \times T_{1_G}G \rightarrow Y$ ,  $s(y, v) = \exp(v) \cdot y$ : dominating spray /id<sub>Y</sub>

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Gromov ellipticity for complex manifolds

### Ellipticity conditions

### Definition (Gromov '86, '89)

Let Y be a complex manifold.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 000000000

Gromov ellipticity for complex manifolds

### Ellipticity conditions

#### Definition (Gromov '86, '89)

Let Y be a complex manifold.

• Y is *elliptic* if there exists a dominating spray over  $id_Y$ .

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 000000000

Gromov ellipticity for complex manifolds

### Ellipticity conditions

### Definition (Gromov '86, '89)

Let Y be a complex manifold.

- Y is *elliptic* if there exists a dominating spray over  $id_Y$ .
- Y is subelliptic if there exists a dominating finite family of sprays over idy.

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Ellipticity conditions

### Definition (Gromov '86, '89)

Let Y be a complex manifold.

- Y is *elliptic* if there exists a dominating spray over  $id_Y$ .
- Y is subelliptic if there exists a dominating finite family of sprays over idy.
- Y satisfies Ell₁ if for any Stein space X and any holomorphic map f : X → Y there exists a dominating spray over f.

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Ellipticity conditions

### Definition (Gromov '86, '89)

Let Y be a complex manifold.

- Y is *elliptic* if there exists a dominating spray over  $id_Y$ .
- Y is subelliptic if there exists a dominating finite family of sprays over idy.
- Y satisfies Ell₁ if for any Stein space X and any holomorphic map f : X → Y there exists a dominating spray over f.

#### Remark

elliptic 
$$\implies$$
 subelliptic  $\implies$  Ell $_1$  ( $\implies$  elliptic if Y is Stein)

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Ellipticity conditions

### Definition (Gromov '86, '89)

Let Y be a complex manifold.

- Y is *elliptic* if there exists a dominating spray over  $id_Y$ .
- Y is subelliptic if there exists a dominating finite family of sprays over idy.
- Y satisfies Ell₁ if for any Stein space X and any holomorphic map f : X → Y there exists a dominating spray over f.

#### Remark

```
\mathsf{elliptic} \implies \mathsf{subelliptic} \implies \mathsf{Ell}_1 \ (\implies \mathsf{elliptic} \ \text{if} \ Y \ \text{is Stein})
```

We will see later that  $\mathsf{Ell}_1$  does not imply subellipticity.

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Ellipticity conditions

### Definition (Gromov '86, '89)

Let Y be a complex manifold.

- Y is *elliptic* if there exists a dominating spray over  $id_Y$ .
- Y is subelliptic if there exists a dominating finite family of sprays over idy.
- Y satisfies Ell₁ if for any Stein space X and any holomorphic map f : X → Y there exists a dominating spray over f.

#### Remark

 $\mathsf{elliptic} \implies \mathsf{subelliptic} \implies \mathsf{Ell}_1 \ (\implies \mathsf{elliptic} \ \mathsf{if} \ Y \ \mathsf{is} \ \mathsf{Stein})$ 

We will see later that  $\mathsf{Ell}_1$  does not imply subellipticity.

Problem (open)

subelliptic  $\implies$  elliptic?

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

#### Corollary

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

#### Corollary

For a Riemann surface Y, the following are equivalent:

Y is elliptic.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

#### Corollary

- Y is elliptic.
- Y is subelliptic.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

#### Corollary

- Y is elliptic.
- Y is subelliptic.
- Y satisfies Ell<sub>1</sub>.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

#### Corollary

- Y is elliptic.
- Y is subelliptic.
- Y satisfies Ell<sub>1</sub>.
- Y is not Kobayashi hyperbolic.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Gromov ellipticity for complex manifolds

### Examples of elliptic manifolds

#### Example

Every complex homogeneous manifold is elliptic.

#### Corollary

For a Riemann surface Y, the following are equivalent:

- Y is elliptic.
- Y is subelliptic.
- Y satisfies Ell<sub>1</sub>.
- Y is not Kobayashi hyperbolic.
- **6**  $Y \cong \mathbb{P}^1, \mathbb{C}, \mathbb{C}^*$  or elliptic curve.

#### Example (Lárusson '13, Lárusson-Truong '19, K. '21)

Every smooth toric variety is elliptic.

Oka principle and Oka manifolds

# Ellipticity in complex analytic geometry Gromov ellipticity for complex manifolds

• Oka principle and Oka manifolds

### 8 Ellipticity in algebraic geometry

- Gromov ellipticity for smooth algebraic varieties
- Algebraic Oka theory

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle. Oka principle = homotopy principle in complex analysis

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle. Oka principle = homotopy principle in complex analysis

#### Oka principle

For a (reduced) Stein space X,

{analytic objects/X} 
$$\xrightarrow{\text{forgetful}}$$
 {topological objects/X}

is a "weak equivalence."

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### What is the Oka principle?

Gromov introduced ellipticity in the context of the Oka principle. Oka principle = homotopy principle in complex analysis

#### Oka principle

For a (reduced) Stein space X,

{analytic objects/X} 
$$\xrightarrow{\text{forgetful}}$$
 {topological objects/X}

is a "weak equivalence."

#### Theorem (Oka '39, Grauert '57, '58)

For a Stein space X and  $r \in \mathbb{N}$ ,

{hol. vec. bdl. of rank r/X}  $\xrightarrow{\text{forgetful}}$  {top. vec. bdl. of rank r/X}

induces a bijection between the sets of isomorphism classes.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry 00000000

Oka principle and Oka manifolds

### Gromov's Oka principle

### Theorem (Gromov '89, Forstnerič '02)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a subelliptic manifold.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### Gromov's Oka principle

#### Theorem (Gromov '89, Forstnerič '02)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a subelliptic manifold. Then for any  $f \in \mathcal{O}(Z, Y)$ ,

$$\left\{ \tilde{f} \in \mathcal{O}(X,Y) : \tilde{f}|_{Z} = f \right\} \hookrightarrow \left\{ \tilde{f} \in \mathcal{C}(X,Y) : \tilde{f}|_{Z} = f \right\}$$

is a weak homotopy equivalence (w.r.t. compact-open topology).

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Gromov's Oka principle

#### Theorem (Gromov '89, Forstnerič '02)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a subelliptic manifold. Then for any  $f \in \mathcal{O}(Z, Y)$ ,

$$\left\{ ilde{f}\in\mathcal{O}(X,Y): ilde{f}|_{Z}=f
ight\}\hookrightarrow\left\{ ilde{f}\in\mathcal{C}(X,Y): ilde{f}|_{Z}=f
ight\}$$

is a weak homotopy equivalence (w.r.t. compact-open topology).

They proved the parametric Oka principle also with approximation.

Oka principle and Oka manifolds

# Gromov's Oka principle

#### Theorem (Gromov '89, Forstnerič '02)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a subelliptic manifold. Then for any  $f \in \mathcal{O}(Z, Y)$ ,

$$\left\{ \tilde{f} \in \mathcal{O}(X,Y) : \tilde{f}|_{Z} = f \right\} \hookrightarrow \left\{ \tilde{f} \in \mathcal{C}(X,Y) : \tilde{f}|_{Z} = f \right\}$$

is a weak homotopy equivalence (w.r.t. compact-open topology).

They proved the parametric Oka principle also with approximation.  $\exists$  elementary proofs of

- extension  $\implies$  approximation (Lárusson '05)
- approximation  $\implies$  extension (K. '20)

Oka principle and Oka manifolds

# Gromov's Oka principle

#### Theorem (Gromov '89, Forstnerič '02)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a subelliptic manifold. Then for any  $f \in \mathcal{O}(Z, Y)$ ,

$$\left\{ \tilde{f} \in \mathcal{O}(X,Y) : \tilde{f}|_{Z} = f \right\} \hookrightarrow \left\{ \tilde{f} \in \mathcal{C}(X,Y) : \tilde{f}|_{Z} = f \right\}$$

is a weak homotopy equivalence (w.r.t. compact-open topology).

They proved the parametric Oka principle also with approximation.  $\exists$  elementary proofs of

- extension  $\implies$  approximation (Lárusson '05)
- approximation  $\implies$  extension (K. '20)

The Oka principle for sections of *subelliptic submersions* also holds.

 $\implies$  Grauert's Oka principle for isom. classes of vector bundles

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Forstnerič's Oka principle and Oka manifolds

#### Definition

 $\frac{Y \text{ enjoys the } Convex Approximation Property (CAP) if}{\mathcal{O}(\mathbb{C}^n, Y)|_{\mathcal{K}}} = \mathcal{O}(\mathcal{K}, Y) \text{ for any compact convex } \mathcal{K} \subset \mathbb{C}^n \ (n \in \mathbb{N}).$ 

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Forstnerič's Oka principle and Oka manifolds

#### Definition

 $\frac{Y \text{ enjoys the } Convex Approximation Property (CAP) if}{\mathcal{O}(\mathbb{C}^n, Y)|_{\mathcal{K}}} = \mathcal{O}(\mathcal{K}, Y) \text{ for any compact convex } \mathcal{K} \subset \mathbb{C}^n \ (n \in \mathbb{N}).$ 

### Theorem (Forstnerič's Oka principle '09)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a complex manifold with CAP.

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Forstnerič's Oka principle and Oka manifolds

#### Definition

 $\frac{Y \text{ enjoys the } Convex Approximation Property (CAP) if}{\mathcal{O}(\mathbb{C}^n, Y)|_{\mathcal{K}}} = \mathcal{O}(\mathcal{K}, Y) \text{ for any compact convex } \mathcal{K} \subset \mathbb{C}^n \ (n \in \mathbb{N}).$ 

#### Theorem (Forstnerič's Oka principle '09)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a complex manifold with CAP. Then for any  $f \in \mathcal{O}(Z, Y)$ ,

$$\left\{ \widetilde{f} \in \mathcal{O}(X,Y) : \widetilde{f}|_{Z} = f \right\} \hookrightarrow \left\{ \widetilde{f} \in \mathcal{C}(X,Y) : \widetilde{f}|_{Z} = f \right\}$$

is a weak homotopy equivalence.

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Forstnerič's Oka principle and Oka manifolds

#### Definition

 $\frac{Y \text{ enjoys the } Convex Approximation Property (CAP) if}{\mathcal{O}(\mathbb{C}^n, Y)|_{\mathcal{K}}} = \mathcal{O}(\mathcal{K}, Y) \text{ for any compact convex } \mathcal{K} \subset \mathbb{C}^n \ (n \in \mathbb{N}).$ 

#### Theorem (Forstnerič's Oka principle '09)

Let X be a Stein space,  $Z \subset X$  be a closed complex subvariety and Y be a complex manifold with CAP. Then for any  $f \in \mathcal{O}(Z, Y)$ ,

$$\left\{ ilde{f}\in\mathcal{O}(X,Y): ilde{f}|_{Z}=f
ight\}\hookrightarrow\left\{ ilde{f}\in\mathcal{C}(X,Y): ilde{f}|_{Z}=f
ight\}$$

is a weak homotopy equivalence.

#### Definition

Y is an *Oka manifold* if Y enjoys the above property (  $\iff$  CAP).

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### Elliptic characterization of Oka manifolds

Gromov's Oka principle: subelliptic  $\implies$  Oka

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### Elliptic characterization of Oka manifolds

Gromov's Oka principle: subelliptic  $\implies$  Oka

Theorem (Gromov's conjecture '86, K. '21)

 $\mathit{Oka} \iff \mathit{Ell}_1$ 

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Elliptic characterization of Oka manifolds

Gromov's Oka principle: subelliptic  $\implies$  Oka

Theorem (Gromov's conjecture '86, K. '21)

 $\mathit{Oka} \iff \mathit{Ell}_1$ 

Corollary (Localization theorem for Oka manifolds, K. '21)

Every Zariski locally Oka manifold is an Oka manifold.

Ellipticity in complex analytic geometry  ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc }$ 

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### Elliptic characterization of Oka manifolds

Gromov's Oka principle: subelliptic  $\implies$  Oka

Theorem (Gromov's conjecture '86, K. '21)

 $\mathit{Oka} \iff \mathit{Ell}_1$ 

Corollary (Localization theorem for Oka manifolds, K. '21)

Every Zariski locally Oka manifold is an Oka manifold.

Theorem (Negative answer to Gromov's question '89, Andrist–Shcherbina–Wold '16, K. '20)

 $\exists$  non-subelliptic Oka manifold (e.g.  $\mathbb{C}^n \setminus \overline{\mathbb{B}^n}$  for  $n \geq 3$ )

Ellipticity in complex analytic geometry  ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc }$ 

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Elliptic characterization of Oka manifolds

Gromov's Oka principle: subelliptic  $\implies$  Oka

Theorem (Gromov's conjecture '86, K. '21)

 $\mathit{Oka} \iff \mathit{Ell}_1$ 

Corollary (Localization theorem for Oka manifolds, K. '21)

Every Zariski locally Oka manifold is an Oka manifold.

Theorem (Negative answer to Gromov's question '89, Andrist–Shcherbina–Wold '16, K. '20)

 $\exists$  non-subelliptic Oka manifold (e.g.  $\mathbb{C}^n \setminus \overline{\mathbb{B}^n}$  for  $n \geq 3$ )

And ersén-Lempert theory plays a crucial role in the proof to construct a family of Fatou-Bieberbach domains around the graph of a holomorphic map f, which gives a dominating spray over f.

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

# Elliptic characterization of Oka manifolds

Gromov's Oka principle: subelliptic  $\implies$  Oka

Theorem (Gromov's conjecture '86, K. '21)

 $\mathit{Oka} \iff \mathit{Ell}_1$ 

Corollary (Localization theorem for Oka manifolds, K. '21)

Every Zariski locally Oka manifold is an Oka manifold.

Theorem (Negative answer to Gromov's question '89, Andrist–Shcherbina–Wold '16, K. '20)

 $\exists$  non-subelliptic Oka manifold (e.g.  $\mathbb{C}^n \setminus \overline{\mathbb{B}^n}$  for  $n \geq 3$ )

Andersén–Lempert theory plays a crucial role in the proof to construct a family of Fatou–Bieberbach domains around the graph of a holomorphic map f, which gives a dominating spray over f.  $\rightsquigarrow$  Forstnerič–Wold: simpler proof ('20),  $\mathbb{C}^n \setminus (\text{unbdd cvx set})$  ('23)

Ellipticity in algebraic geometry

Oka principle and Oka manifolds

### Surjective holomorphic maps onto Oka manifolds

(Fornaess–Stout '77, '82) Every connected complex manifold Y admits surjective holomorphic maps from  $\mathbb{D}^{\dim Y}$  and  $\mathbb{B}^{\dim Y}$ .

Oka principle and Oka manifolds

### Surjective holomorphic maps onto Oka manifolds

(Fornaess–Stout '77, '82) Every connected complex manifold Y admits surjective holomorphic maps from  $\mathbb{D}^{\dim Y}$  and  $\mathbb{B}^{\dim Y}$ .

#### Theorem (Forstnerič '17)

For any Stein space X and any connected Oka manifold Y with dim  $Y \leq \dim X$ , every continuous map  $X \rightarrow Y$  is homotopic to a holomorphic map  $f : X \rightarrow Y$  such that  $f(X \setminus \text{Sing}(f)) = Y$  where  $\text{Sing}(f) = \{x \in X : df_x(T_xX) \neq T_{f(x)}Y\}.$ 

Oka principle and Oka manifolds

### Surjective holomorphic maps onto Oka manifolds

(Fornaess–Stout '77, '82) Every connected complex manifold Y admits surjective holomorphic maps from  $\mathbb{D}^{\dim Y}$  and  $\mathbb{B}^{\dim Y}$ .

#### Theorem (Forstnerič '17)

For any Stein space X and any connected Oka manifold Y with dim  $Y \leq \dim X$ , every continuous map  $X \rightarrow Y$  is homotopic to a holomorphic map  $f : X \rightarrow Y$  such that  $f(X \setminus \text{Sing}(f)) = Y$  where  $\text{Sing}(f) = \{x \in X : df_x(T_xX) \neq T_{f(x)}Y\}.$ 

Does the converse hold? (Forstnerič '17)

Oka principle and Oka manifolds

### Surjective holomorphic maps onto Oka manifolds

(Fornaess–Stout '77, '82) Every connected complex manifold Y admits surjective holomorphic maps from  $\mathbb{D}^{\dim Y}$  and  $\mathbb{B}^{\dim Y}$ .

#### Theorem (Forstnerič '17)

For any Stein space X and any connected Oka manifold Y with dim  $Y \leq \dim X$ , every continuous map  $X \rightarrow Y$  is homotopic to a holomorphic map  $f : X \rightarrow Y$  such that  $f(X \setminus \text{Sing}(f)) = Y$  where  $\text{Sing}(f) = \{x \in X : df_x(T_xX) \neq T_{f(x)}Y\}.$ 

Does the converse hold? (Forstnerič '17)

#### Remark

If there exists a surjective holomorphic map  $\mathbb{C}^n \to Y$ , for any Stein space X and 0-dimensional closed (possibly nonreduced) complex subspace  $Z \subset X$  the restriction  $\mathcal{O}(X, Y) \to \mathcal{O}(Z, Y)$  is surjective.

Introduction

### 2 Ellipticity in complex analytic geometry

- Gromov ellipticity for complex manifolds
- Oka principle and Oka manifolds
- 3

### Ellipticity in algebraic geometry

- Gromov ellipticity for smooth algebraic varieties
- Algebraic Oka theory

### Algebraic dominating sprays and algebraic ellipticity

Algebraic dominating sprays and algebraic ellipticity conditions can be defined analogously by replacing analytic objects as follows:

- complex space ~ algebraic variety
- holomorphic map ~→ (algebraic) morphism
- holomorphic vector bundle  $\rightsquigarrow$  algebraic vector bundle
- Stein space  $\rightsquigarrow$  affine variety

### Algebraic dominating sprays and algebraic ellipticity

Algebraic dominating sprays and algebraic ellipticity conditions can be defined analogously by replacing analytic objects as follows:

- complex space  $\rightsquigarrow$  algebraic variety
- holomorphic map  $\rightsquigarrow$  (algebraic) morphism
- holomorphic vector bundle  $\rightsquigarrow$  algebraic vector bundle
- Stein space  $\rightsquigarrow$  affine variety

#### Remark

algebraically (sub)elliptic  $\implies$  analytically (sub)elliptic The converse does not hold. (e.g. abelian varieties)

# Algebraic dominating sprays and algebraic ellipticity

Algebraic dominating sprays and algebraic ellipticity conditions can be defined analogously by replacing analytic objects as follows:

- complex space  $\rightsquigarrow$  algebraic variety
- holomorphic map  $\rightsquigarrow$  (algebraic) morphism
- holomorphic vector bundle  $\rightsquigarrow$  algebraic vector bundle
- Stein space  $\rightsquigarrow$  affine variety

#### Remark

algebraically (sub)elliptic  $\implies$  analytically (sub)elliptic The converse does not hold. (e.g. abelian varieties)

#### Remark

 $\mathsf{algebraic}\;\mathsf{Ell}_1\implies\mathsf{unirational}\;\mathsf{and}$ 

nondegenerate:  $\nexists Y \to \mathbb{A}^1 \setminus \{0\}$ : nonconst.

Ellipticity in algebraic geometry

Gromov ellipticity for smooth algebraic varieties

### Equivalences between algebraic ellipticity conditions

Theorem (Gromov '89, Forstnerič '06, Lárusson–Truong '19, Kaliman–Zaidenberg '23)

For a smooth complex algebraic variety Y, TFAE:

Y is algebraically elliptic.

Ellipticity in algebraic geometry

Gromov ellipticity for smooth algebraic varieties

### Equivalences between algebraic ellipticity conditions

Theorem (Gromov '89, Forstnerič '06, Lárusson–Truong '19, Kaliman–Zaidenberg '23)

For a smooth complex algebraic variety Y, TFAE:

- Y is algebraically elliptic.
- **2** Y is algebraically subelliptic.

Gromov ellipticity for smooth algebraic varieties

### Equivalences between algebraic ellipticity conditions

Theorem (Gromov '89, Forstnerič '06, Lárusson–Truong '19, Kaliman–Zaidenberg '23)

For a smooth complex algebraic variety Y, TFAE:

- Y is algebraically elliptic.
- Y is algebraically subelliptic.
- 3 Y satisfies algebraic Ell<sub>1</sub>.

Gromov ellipticity for smooth algebraic varieties

### Equivalences between algebraic ellipticity conditions

Theorem (Gromov '89, Forstnerič '06, Lárusson–Truong '19, Kaliman–Zaidenberg '23)

For a smooth complex algebraic variety Y, TFAE:

- Y is algebraically elliptic.
- 2 Y is algebraically subelliptic.
- 3 Y satisfies algebraic Ell<sub>1</sub>.

 Y enjoys the algebraic Homotopy Approximation Property: For any affine variety X, any morphism f : X → Y, any compact holomorphically convex set K ⊂ X and any homotopy H : K × [0,1] → Y of holomorphic maps such that H(·,0) = f|<sub>K</sub>, there exists a morphism H̃ : X × C → Y such that H̃(·,0) = f and H̃(·,t)|<sub>K</sub> ≈ H(·,t) for all t ∈ [0,1].

Gromov ellipticity for smooth algebraic varieties

### Equivalences between algebraic ellipticity conditions

Theorem (Gromov '89, Forstnerič '06, Lárusson–Truong '19, Kaliman–Zaidenberg '23)

For a smooth complex algebraic variety Y, TFAE:

- Y is algebraically elliptic.
- 2 Y is algebraically subelliptic.
- **3** *Y* satisfies algebraic Ell<sub>1</sub>.

 Y enjoys the algebraic Homotopy Approximation Property: For any affine variety X, any morphism f : X → Y, any compact holomorphically convex set K ⊂ X and any homotopy H : K × [0,1] → Y of holomorphic maps such that H(·,0) = f|<sub>K</sub>, there exists a morphism H̃ : X × C → Y such that H̃(·,0) = f and H̃(·,t)|<sub>K</sub> ≈ H(·,t) for all t ∈ [0,1].

 $\rightsquigarrow \mathsf{algebraic} \ \mathsf{Ell}_1 \implies \mathsf{analytic} \ \mathsf{Ell}_1$ 

Ellipticity in complex analytic geometry 000000000

Ellipticity in algebraic geometry

Gromov ellipticity for smooth algebraic varieties

### Examples of algebraically elliptic varieties

#### Example

For an algebraic curve C, the following are equivalent:

- C is algebraically elliptic.
- $C \cong \mathbb{A}^1 \text{ or } \mathbb{P}^1.$

Gromov ellipticity for smooth algebraic varieties

# Examples of algebraically elliptic varieties

#### Example

For an algebraic curve C, the following are equivalent:

• C is algebraically elliptic.

 $C \cong \mathbb{A}^1 \text{ or } \mathbb{P}^1.$ 

### Example (..., Arzhantsev '23)

For a conn. linear algebraic group G and a closed subgroup  $H \subset G$ , G/H is algebraically elliptic  $\iff G/H$  is nondegenerate.

Gromov ellipticity for smooth algebraic varieties

# Examples of algebraically elliptic varieties

#### Example

For an algebraic curve C, the following are equivalent:

• C is algebraically elliptic.

 $C \cong \mathbb{A}^1 \text{ or } \mathbb{P}^1.$ 

### Example (..., Arzhantsev '23)

For a conn. linear algebraic group G and a closed subgroup  $H \subset G$ , G/H is algebraically elliptic  $\iff G/H$  is nondegenerate.

### Theorem (Gromov's localization theorem '89)

Zariski locally algebraically elliptic  $\implies$  algebraically elliptic

Gromov ellipticity for smooth algebraic varieties

# Examples of algebraically elliptic varieties

#### Example

For an algebraic curve C, the following are equivalent:

• C is algebraically elliptic.

 $C \cong \mathbb{A}^1 \text{ or } \mathbb{P}^1.$ 

### Example (..., Arzhantsev '23)

For a conn. linear algebraic group G and a closed subgroup  $H \subset G$ , G/H is algebraically elliptic  $\iff G/H$  is nondegenerate.

### Theorem (Gromov's localization theorem '89)

Zariski locally algebraically elliptic  $\implies$  algebraically elliptic

### Example (Lárusson-Truong '19)

A smooth toric variety Y is alg. elliptic  $\iff$  Y is nondegenerate.

Algebraic Oka theory

### Introduction

### 2 Ellipticity in complex analytic geometry

- Gromov ellipticity for complex manifolds
- Oka principle and Oka manifolds

#### 3 Ellipticity in algebraic geometry

- Gromov ellipticity for smooth algebraic varieties
- Algebraic Oka theory

# algebraic ellipticity $\iff$ algebraic Oka property?

## Theorem (Lárusson–Truong '19)

For any proper smooth complex algebraic variety Y there exist a smooth closed algebraic subvariety  $Z \subset \mathbb{C}^2$  and a null-homotopic map  $f \in \mathcal{O}_{alg}(Z, Y) \setminus \mathcal{O}_{alg}(\mathbb{C}^2, Y)|_Z$ . In particular,

$$\left\{\tilde{f}\in\mathcal{O}_{\textit{alg}}(\mathbb{C}^2,Y):\tilde{f}|_{Z}=f\right\}\hookrightarrow\left\{\tilde{f}\in\mathcal{C}(\mathbb{C}^2,Y):\tilde{f}|_{Z}=f\right\}$$

is not a weak homotopy equivalence.

# algebraic ellipticity $\iff$ algebraic Oka property?

#### Theorem (Lárusson–Truong '19)

For any proper smooth complex algebraic variety Y there exist a smooth closed algebraic subvariety  $Z \subset \mathbb{C}^2$  and a null-homotopic map  $f \in \mathcal{O}_{alg}(Z, Y) \setminus \mathcal{O}_{alg}(\mathbb{C}^2, Y)|_Z$ . In particular,

$$\left\{\tilde{f}\in\mathcal{O}_{\textit{alg}}(\mathbb{C}^2,Y):\tilde{f}|_{Z}=f\right\}\hookrightarrow\left\{\tilde{f}\in\mathcal{C}(\mathbb{C}^2,Y):\tilde{f}|_{Z}=f\right\}$$

is not a weak homotopy equivalence.

Thus we need to reformulate the alg. Oka principle appropriately.

# algebraic ellipticity $\iff$ algebraic Oka property?

## Theorem (Lárusson–Truong '19)

For any proper smooth complex algebraic variety Y there exist a smooth closed algebraic subvariety  $Z \subset \mathbb{C}^2$  and a null-homotopic map  $f \in \mathcal{O}_{alg}(Z, Y) \setminus \mathcal{O}_{alg}(\mathbb{C}^2, Y)|_Z$ . In particular,

$$\left\{\tilde{f}\in\mathcal{O}_{\textit{alg}}(\mathbb{C}^2,Y):\tilde{f}|_{Z}=f\right\}\hookrightarrow\left\{\tilde{f}\in\mathcal{C}(\mathbb{C}^2,Y):\tilde{f}|_{Z}=f\right\}$$

is not a weak homotopy equivalence.

Thus we need to reformulate the alg. Oka principle appropriately.

One way to do this is to enlarge the space of morphisms: hol. maps of finite order (Cornalba–Griffiths '75, Forstnerič–Ohsawa '13, ...)

Ellipticity in algebraic geometry

Algebraic Oka theory

# algebraic ellipticity $\iff$ algebraic Oka property?

### Theorem (Lárusson–Truong '19)

For any proper smooth complex algebraic variety Y there exist a smooth closed algebraic subvariety  $Z \subset \mathbb{C}^2$  and a null-homotopic map  $f \in \mathcal{O}_{alg}(Z, Y) \setminus \mathcal{O}_{alg}(\mathbb{C}^2, Y)|_Z$ . In particular,

$$\left\{\tilde{f}\in\mathcal{O}_{alg}(\mathbb{C}^2,Y):\tilde{f}|_Z=f\right\}\hookrightarrow\left\{\tilde{f}\in\mathcal{C}(\mathbb{C}^2,Y):\tilde{f}|_Z=f\right\}$$

is not a weak homotopy equivalence.

Thus we need to reformulate the alg. Oka principle appropriately.

One way to do this is to enlarge the space of morphisms: hol. maps of finite order (Cornalba–Griffiths '75, Forstnerič–Ohsawa '13, ...)

Another way is to replace the interval object [0,1] by  $\mathbb{A}^1$ .

Algebraic Oka theory

# Surjective morphisms onto algebraically elliptic varieties

#### Theorem (K. '22: arXiv:2212.06412)

For any algebraically elliptic (irreducible) variety Y, there exists a morphism  $f : \mathbb{A}^{\dim Y+1} \to Y$  such that  $f(\mathbb{A}^{\dim Y+1} \setminus \operatorname{Sing}(f)) = Y$ .

# Surjective morphisms onto algebraically elliptic varieties

#### Theorem (K. '22: arXiv:2212.06412)

For any algebraically elliptic (irreducible) variety Y, there exists a morphism  $f : \mathbb{A}^{\dim Y+1} \to Y$  such that  $f(\mathbb{A}^{\dim Y+1} \setminus \operatorname{Sing}(f)) = Y$ .

Forstnerič ('17) proved that every *proper* algebraically elliptic complex variety Y admits a surjective morphism from  $\mathbb{C}^{\dim Y}$  by using the algebraic Homotopy Approximation Property. Our proof of the above theorem is purely algebro-geometric.

# Surjective morphisms onto algebraically elliptic varieties

#### Theorem (K. '22: arXiv:2212.06412)

For any algebraically elliptic (irreducible) variety Y, there exists a morphism  $f : \mathbb{A}^{\dim Y+1} \to Y$  such that  $f(\mathbb{A}^{\dim Y+1} \setminus \operatorname{Sing}(f)) = Y$ .

Forstnerič ('17) proved that every *proper* algebraically elliptic complex variety Y admits a surjective morphism from  $\mathbb{C}^{\dim Y}$  by using the algebraic Homotopy Approximation Property. Our proof of the above theorem is purely algebro-geometric.

#### Corollary (The algebraic jet interpolation theorem, K. '22)

For any affine variety X, any algebraically elliptic variety Y and any zero-dimensional closed (possibly nonreduced) subscheme  $Z \subset X$  the restriction  $\mathcal{O}_{alg}(X, Y) \to \mathcal{O}_{alg}(Z, Y)$  is surjective.

# Surjective morphisms onto algebraically elliptic varieties

#### Theorem (K. '22: arXiv:2212.06412)

For any algebraically elliptic (irreducible) variety Y, there exists a morphism  $f : \mathbb{A}^{\dim Y+1} \to Y$  such that  $f(\mathbb{A}^{\dim Y+1} \setminus \operatorname{Sing}(f)) = Y$ .

Forstnerič ('17) proved that every *proper* algebraically elliptic complex variety Y admits a surjective morphism from  $\mathbb{C}^{\dim Y}$  by using the algebraic Homotopy Approximation Property. Our proof of the above theorem is purely algebro-geometric.

#### Corollary (The algebraic jet interpolation theorem, K. '22)

For any affine variety X, any algebraically elliptic variety Y and any zero-dimensional closed (possibly nonreduced) subscheme  $Z \subset X$  the restriction  $\mathcal{O}_{alg}(X, Y) \to \mathcal{O}_{alg}(Z, Y)$  is surjective.

Q. How can we generalize this for  $Z \subset X$  of arbitrary dimension?

Algebraic Oka theory

Conjectures

## Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

## Conjecture ( $\mathbb{A}^1$ -Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,  $f: X \to Y$  be a morphism,  $Z \subset X$  be a closed algebraic subvariety and  $H: Z \times \mathbb{A}^1 \to Y$  be a morphism such that  $H(\cdot, 0) = f|_Z$ .

Algebraic Oka theory

## Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

## Conjecture ( $\mathbb{A}^1$ -Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,  $f: X \to Y$  be a morphism,  $Z \subset X$  be a closed algebraic subvariety and  $H: Z \times \mathbb{A}^1 \to Y$  be a morphism such that  $H(\cdot, 0) = f|_Z$ . Then there exists a morphism  $\widetilde{H}: X \times \mathbb{A}^1 \to Y$  such that  $\widetilde{H}(\cdot, 0) = f$  and  $\widetilde{H}(\cdot, t)|_Z = H(\cdot, t)$  for all  $t \in \mathbb{A}^1$ .

Algebraic Oka theory

Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

## Conjecture ( $\mathbb{A}^1$ -Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,  $f: X \to Y$  be a morphism,  $Z \subset X$  be a closed algebraic subvariety and  $H: Z \times \mathbb{A}^1 \to Y$  be a morphism such that  $H(\cdot, 0) = f|_Z$ . Then there exists a morphism  $\widetilde{H}: X \times \mathbb{A}^1 \to Y$  such that  $\widetilde{H}(\cdot, 0) = f$  and  $\widetilde{H}(\cdot, t)|_Z = H(\cdot, t)$  for all  $t \in \mathbb{A}^1$ .

The algebraic interpolation theorem follows from this conjecture.

Algebraic Oka theory

## Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

## Conjecture ( $\mathbb{A}^1$ -Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,  $f: X \to Y$  be a morphism,  $Z \subset X$  be a closed algebraic subvariety and  $H: Z \times \mathbb{A}^1 \to Y$  be a morphism such that  $H(\cdot, 0) = f|_Z$ . Then there exists a morphism  $\widetilde{H}: X \times \mathbb{A}^1 \to Y$  such that  $\widetilde{H}(\cdot, 0) = f$  and  $\widetilde{H}(\cdot, t)|_Z = H(\cdot, t)$  for all  $t \in \mathbb{A}^1$ .

The algebraic interpolation theorem follows from this conjecture.  $\mathcal{O}(X, Y) \hookrightarrow \mathcal{C}(X, Y)$  is a weak homotopy equiv. for any Stein X $\iff$  Sing<sup>[0,1]</sup> $\mathcal{O}(\cdot, Y)$ :  $\infty$ -sheaf /  $\infty$ -Stein site (Lárusson '03, '04)

Algebraic Oka theory

## Ellipticity in complex analytic geometry

# Conjecture (A<sup>1</sup>-Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,  $f: X \to Y$  be a morphism,  $Z \subset X$  be a closed algebraic subvariety and  $H: Z \times \mathbb{A}^1 \to Y$  be a morphism such that  $H(\cdot, 0) = f|_Z$ . Then there exists a morphism  $\widetilde{H}: X \times \mathbb{A}^1 \to Y$  such that  $\widetilde{H}(\cdot, 0) = f$  and  $\widetilde{H}(\cdot, t)|_Z = H(\cdot, t)$  for all  $t \in \mathbb{A}^1$ .

The algebraic interpolation theorem follows from this conjecture.  $\mathcal{O}(X, Y) \hookrightarrow \mathcal{C}(X, Y)$  is a weak homotopy equiv. for any Stein X $\iff \operatorname{Sing}^{[0,1]}\mathcal{O}(\cdot, Y)$ :  $\infty$ -sheaf /  $\infty$ -Stein site (Lárusson '03, '04)

## Conjecture ( $\mathbb{A}^1$ -Oka principle)

For any algebraically elliptic variety Y, the  $\infty$ -presheaf  $\operatorname{Sing}^{\mathbb{A}^1}\mathcal{O}_{\operatorname{alg}}(\cdot, Y)$  is an  $\infty$ -sheaf over the  $\infty$ -site of affine varieties.

Algebraic Oka theory

## Ellipticity in complex analytic geometry

Ellipticity in algebraic geometry

## Conjecture ( $\mathbb{A}^1$ -Homotopy Extension Property)

Let X be an affine variety, Y be an algebraically elliptic variety,  $f: X \to Y$  be a morphism,  $Z \subset X$  be a closed algebraic subvariety and  $H: Z \times \mathbb{A}^1 \to Y$  be a morphism such that  $H(\cdot, 0) = f|_Z$ . Then there exists a morphism  $\widetilde{H}: X \times \mathbb{A}^1 \to Y$  such that  $\widetilde{H}(\cdot, 0) = f$  and  $\widetilde{H}(\cdot, t)|_Z = H(\cdot, t)$  for all  $t \in \mathbb{A}^1$ .

The algebraic interpolation theorem follows from this conjecture.  $\mathcal{O}(X, Y) \hookrightarrow \mathcal{C}(X, Y)$  is a weak homotopy equiv. for any Stein X $\iff \operatorname{Sing}^{[0,1]}\mathcal{O}(\cdot, Y)$ :  $\infty$ -sheaf /  $\infty$ -Stein site (Lárusson '03, '04)

## Conjecture ( $\mathbb{A}^1$ -Oka principle)

For any algebraically elliptic variety Y, the  $\infty$ -presheaf  $\operatorname{Sing}^{\mathbb{A}^1}\mathcal{O}_{\operatorname{alg}}(\cdot, Y)$  is an  $\infty$ -sheaf over the  $\infty$ -site of affine varieties.

## The analytic versions of the above conjectures hold!

# Thank you for your attention!