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A CR mapping is a diffeomorphism between two real manifolds
in complex space that satisfies tangential Cauchy-Riemann
equations. We are concerned with the problem whether a CR
mapping is uniquely determined by its finite jet at a point. This
problem has been popular since 1970-s and the number of
publications on the matter is enormous. Nevertheless, natural
fundamental questions have remained open. I will present a
solution to a version of the problem and discuss old and new
results.



Conditions on the Levi form
Infinitesimal automorphisms of quadrics
Finite jet determination
2-jet determination
Examples



Equation of a generic manifold

Let M ⊂ Cn be a generic submanifold of real codimension
cod M = k and CR dimension dimCR M = m = n − k . We
introduce coordinates (z,w) ∈ Cn, z ∈ Cm, w = u + iv ∈ Ck , so
that M has a local equation

v = h(z,u),

where h = (h1, . . . ,hk ) is a smooth real vector function with
h(0) = 0, dh(0) = 0.

Then T0(M) and T c
0 (M) have have equations respectively v = 0

and w = 0.



Equation of a generic manifold

Let M ⊂ Cn be a generic submanifold of real codimension
cod M = k and CR dimension dimCR M = m = n − k . We
introduce coordinates (z,w) ∈ Cn, z ∈ Cm, w = u + iv ∈ Ck , so
that M has a local equation

v = h(z,u),

where h = (h1, . . . ,hk ) is a smooth real vector function with
h(0) = 0, dh(0) = 0.
Then T0(M) and T c

0 (M) have have equations respectively v = 0
and w = 0.



Equation of a generic manifold

We choose the coordinates so that the equation of M takes the
form

v = h(z,u) = F (z, z) + O(|z|3 + |u|3).

Here

F = (F1, . . . ,Fk ), Fj(z, z) = 〈Ajz, z〉, 〈a,b〉 =
∑

albl ;

Aj -s are Hermitian matrices.

The matrices Aj can be regarded as the components of the
vector valued Levi form of M at 0.
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Conditions on the Levi form

We say M is (Levi) nondegenerate at 0 if
(a) the matrices Aj are linearly independent and
(b) F (z, ζ) = 0 for all z ∈ Cm implies ζ = 0.

If this condition is not fulfilled, then the quadratic manifold
v = F (z, z) has infinite dimensional set of CR maps to
itself.

We say M is strongly nondegenerate at 0 if M is
nondegenerate and there is c ∈ Rk such that
det
(∑

cjAj
)
6= 0. This condition implies that M lies on a

Levi nondegenerate hypersurface.

We say M is strongly pseudoconvex at 0 if there is c ∈ Rk

such that
∑

cjAj > 0. This condition implies that M lies on
a strognly pseudoconvex hypersurface.
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CR mappings

Let M1 and M2 be CR manifolds. A C1 mapping f : M1 → M2 is
called a CR mapping or a CR map if df |T c(M1) is a C-linear
mapping T c(M1)→ T c(M2).

If a CR mapping is a diffeomorphism, then it is called a CR
diffeomorphism. Clearly, if f : M1 → M2 is a CR diffeomorphism
of generic manifolds in Cn, then M1 and M2 should have the
same dimension and CR dimension. We will consider only CR
diffeomorphisms and will call them just CR mappings.
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Finite jet determination

We are concerned with the problem whether a CR mapping is
uniquely determined by its finite jet at a point, which is referred
to as finite jet determination. This problem has been a subject
of work by many authors (Baouendi, Beloshapka, Bertrand,
Ebenfelt, Ezhov, Han, Kim, Lamel, Merker, Meylan, Rothschild,
Schmalz, Sukhov, Zaitsev, ...).

In spite of an enormous volume of publications on the matter,
there have been fundamental open questions, in particular,
when CR mappings are uniquely defined by their 2-jets. We
restrict to Levi nondegenerate CR manifolds.

Beloshapka (1988) proved that a real analytic CR
automorphism of a real analytic nondegenerate CR manifold is
determined by its finite jet at a point.
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2-jet determination

Tanaka (1967) gave a solution to the CR equivalence problem
for nondegenerate CR manifolds of codimensions
k = 1,m2 − 1,m2. His result implies 2-jet determination for real
analytic CR mappings of real analytic nondegenerate manifolds
of said codimensions.

Tanaka’s result for a real hypersurface (k = 1) was later
rediscovered by Chern and Moser (1974).



2-jet determination

Tanaka (1967) gave a solution to the CR equivalence problem
for nondegenerate CR manifolds of codimensions
k = 1,m2 − 1,m2. His result implies 2-jet determination for real
analytic CR mappings of real analytic nondegenerate manifolds
of said codimensions.
Tanaka’s result for a real hypersurface (k = 1) was later
rediscovered by Chern and Moser (1974).



2-jet determination

Bertrand, Blanc-Centi and Meylan (2019-2020), prove 2-jet
determination for C3-smooth CR automorphisms of C4-smooth
generic nondegenerate manifold M with additional condition
that the authors call D-nondegenerate. In particular, it implies
that there is z ∈ Cm such that the vectors {Ajz : 1 ≤ j ≤ k} are
R-linearly independent. This condition is quite restrictive, in
particular, it implies that cod M ≤ 2 dimCR M, whereas the
dimension of the space of all Hermitian forms on Cm is equal to
m2.

Tumanov (2020) proves 2-jet determination for C3-smooth CR
automorphisms of C4-smooth strongly pseudoconvex
manifolds.

Both results above were obtained by using the invariantness of
stationary discs.
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2-jet determination

Blanc-Centi and Meylan (2022) prove 2-jet determination for
holomorphic CR mappings in codimension 2.

Beloshapka (2022) proves 2-jet determination for holomorphic
CR mappings in codimension ≤ 3.

Meylan (2020) constructed a surprising counterexample of a
quadric for which 2-jet determination fails.

For arbitrary large integer p, Gregerovič and Meylan (2020)
constructed counterexamples for which p-jet determination
fails.

We present a sufficient condition for 2-jet determination that
implies all affirmative results on 2-jet determination mentioned
above, that is, for strictly pseudoconvex, D-nondegenerate and
codimension ≤ 3 CR manifolds. Our approach is based on
infinitesimal automorphisms of real quadrics.
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Infinitesimal automorphisms of quadrics

An infinitesimal CR-automorphism of a CR-manifold M is a
vector field on M that generates a local 1-parameter group of
CR-mappings (CR-automorphisms) M → M.

Let M be a nondegenerate quadric defined as before by the
equations

v = F (z, z), z ∈ Cm, w = u + iv ∈ Ck .

Here

F = (F1, . . . ,Fk ), Fj(z, z) = 〈Ajz, z〉, 〈a,b〉 =
∑

albl .

Let G be the group of all CR-mappings (CR-automorphisms)
M → M. Then G is a finite dimensional Lie group and its Lie
algebra g is the set of all infinitesimal automorphisms of M. The
dimension of G has an estimate depending on m and k .
(Beloshapka 1988, Tumanov 1988, Isaev and Kaup 2012, ...)
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It turns out that all elements of G and g are respectively rational
and polynomial. In particular, every vector field X ∈ g has the
form

X = 2Re
(∑

fj
∂

∂zj
+
∑

g`
∂

∂w`

)
= 2Re

(
f
∂

∂z
+ g

∂

∂w

)
=: (f ,g),

where f and g are polynomial vector functions in z and w that
satisfy the equation

Im (g − 2iF (f , z)) = 0, (z,w) ∈ M.

This equation implies

degz f ≤ 2, degz g ≤ 1.
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The graded algebra g

We give the variables and differentiations zj ,wj , ∂/∂zj , ∂/∂wj
the weights 1,2,-1,-2 respectively. Let gp be the set of vector
fields X ∈ g with weighted homogeneous degree p ∈ Z. Then

g =
∞∑

p=−2

gp

is a graded Lie algebra, that is, [gp, gq] ⊂ gp+q. The terms g−2
and g−1 have the same form for all quadrics:

g−2 = {b ∂

∂w
: b ∈ Rk}

g−1 = {a ∂

∂z
+ 2iF (z,a)

∂

∂w
: a ∈ Cm}.



For p ≥ 0, the structure of gp depends significantly on F .

Since F is nondegenerate, it follows that each vector ξ ∈ gp is
uniquely determined by the map ad ξ : g−1 → gp−1, here
(ad ξ)(η) = [ξ, η].

In particular, if gp = 0, then gq = 0 for all q > p.

Thus, the algebra g is the Tanaka prolongation of g−2 + g−1,
that is, the maximal graded Lie algebra with the above unique
determination property.
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Finite jet determination

Let M be a nondegenerate CR manifold with equation

v = h(z,u) = F (z, z) + O(|z|3 + |u|3),

and let M0 be the corresponding quadric with equation

v = F (z, z).

Let g be the graded Lie algebra of infinitesimal automorphisms
of M0. Finite dimensionality of g implies finite jet determination
for CR mappings of M.



Theorem
Let M,M ′ be smooth non-degenerate CR manifolds defined as
above. Suppose gp = 0 for some p > 0. Then every germ at 0
of a smooth CR diffeomorphism Φ = (f ,g) : M → M ′ with
Φ(0) = 0 is uniquely determined by the jets of f and g at 0 of
weights respectively p and p + 1.

Corollary

Let M,M ′ be smooth non-degenerate CR manifolds defined as
above. Suppose g3 = 0. Then every germ at 0 of a smooth CR
diffeomorphism Φ : M → M ′ is uniquely determined by the 2-jet
of Φ at 0. Conversely, if g3 6= 0, then there exists a CR
diffeomorphism Φ : M0 → M0, Φ 6= id, whose 2-jet at 0 is the
identity.

Beloshapka (1988) obtained the real analytic versions.
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Proof

Following Moser (1974) and Beloshapka (1988), we expand the
equations of M and M ′ and the CR mapping Φ = (f ,g) into
Taylor series with remainders and represent them as sums of
weighed homogeneous components.

v = h(z,u) = F + h3 + . . .

v ′ = h′(z ′,u′) = F ′ + h′3 + . . .

z ′ = f (z,w) = f1 + f2 + . . .

w ′ = g(z,w) = g2 + g3 + . . .

Since the derivative of Φ maps the complex tangent plane
w = 0 to the plane w ′ = 0, we have g1 = 0. By linear
transformations of z and w , we can put f1 = z, g2 = w + P(z),
where P is a quadratic polynomial, but one can see that P = 0.
Also, one can see that F ′ = F .



By plugging z ′ and w ′ in terms of z and w = u + ih(z,u) in the
equation of M ′ we obtain an equation for the component
(fp+1,gp+2) of Φ:

Im (gp+2 − 2iF (fp+1, z))|w=u+iF (z,z) = . . . ,

here the dots mean terms that include only fq+1 and gq+2 with
q < p.

Note that the corresponding homogeneous equation describes
(fp+1,gp+2) ∈ gp. Since gp = 0, the component (fp+1,gp+2) is
uniquely determined by the components of Φ of lower weighted
degree.
Since gq = 0 for all q > p, we can successively uniquely
determine all components (fq+1,gq+2) for q > p. This
completes the proof in the real analytic case.
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In the smooth case, we can apply the above argument to pairs
of points (z,w) ∈ M, (z ′,w ′) = Φ(z,w) ∈ M ′. This results in an
overdetermined PDE on Φ whose solution is uniquely
determined by a jet at just one point. This completes the proof.



Vanishing of g3

Let M,F be as above. Let S ⊂ Cm be a set. We define

SF = {z ∈ Cm : ∀z ′ ∈ S,F (z, z ′) = 0}.

We also define a complex subspace

T (z) = {p ∈ Cm : ∃q ∈ Cm : F (z,p) + F (q, z) = 0}.

We say that M and F are T-nondegenerate if for generic z (that
is, for all z in an open dense set) we have

T (z)F = 0.

Note a ∈ T (a) and aF ⊂ T (a), hence T (a)F ⊂ (aF )F ∩ aF .

Theorem
Let M,M ′ be smooth T-nondegenerate CR manifolds. Then
g3 = 0. Hence, 2-jet determination for smooth CR
diffeomorphisms M → M ′ takes place.
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Other conditions

Recall that F is strongly pseudoconvex if there is c ∈ Rk such
that A =

∑k
j=1 cjAj > 0, positive definite. We proved (2020)

2-jet determination for strongly pseudoconvex CR manifolds.
We recover this result here.

Let the form F be strongly pseudoconvex. Then F is
T-nondegenerate, hence g3 = 0.

For a strongly pseudoconvex F , we have F (z, z) = 0 only if
z = 0. Hence the claim follows from a more general one.

Suppose for generic a ∈ Cm, we have (aF )F ∩ aF = 0.
Then F is T-nondegenerate.

Indeed, T (a)F ⊂ (aF )F ∩ aF = 0, and the claim follows.
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Other conditions

Bertrand, Blanc-Centi, and Meylan (2019) prove 2-jet
determination for so called fully nondegenerate CR manifolds in
the smooth case. Their condition, in particular, implies that
there is a ∈ Cm such that the vectors (Aja)k

j=1 are C-linear
independent. We recover this result here.

Suppose there is a ∈ Cm such that the vectors (Aja)k
j=1 are

C-linear independent. Then F is T-nondegenerate.

Indeed, in this case for generic a ∈ Cm, we have T (a) = Cm,
and T (a)F = 0.



Other conditions

Beloshapka (2022) proves a sufficient condition for g3 = 0 that,
in particular, includes the hypothesis that there is a ∈ Cm such
that the vectors (Aja)k

j=1 span Cm over C. We observe that this
hypothesis alone suffices for g3 = 0.

Suppose there is a ∈ Cm such that the vectors (Aja)k
j=1

span Cm over C. Then F is T-nondegenerate.

Indeed, for generic a ∈ Cm, we have aF = 0, hence T (a)F = 0.



Other conditions: D-nondegeneracy

Suppose there is c ∈ Rk such that A =
∑k

j=1 cjAj is
nonsingular, that is, F is strongly nondegenerate.

Let a ∈ Cm.
Following Bertrand and Meylan (2021), we introduce matrices

D = (A1a, . . . ,Aka), B = D∗A−1D.

The form F is called D-nondegenerate if there exist c ∈ Rk and
a ∈ Cm such that the matrix Re B := 1

2(B + B) is nonsingular.
Bertrand and Meylan (2021) prove 2-jet determination for
D-nondegenerate CR manifolds in the smooth case.
We show

If F is D-nondegenerate, then F is T-nondegenerate.
Indeed, one can see that det Re B 6= 0 implies
(aRe F )Re F ∩ aRe F = 0, and T (a)F ⊂ (aRe F )Re F ∩ aRe F .
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Codimension k ≤ 3

By Tanaka (1967) and Chern and Moser (1974), 2-jet
determination holds for codimension k = 1. Blanc-Centi and
Meylan (2022) prove 2-jet determination for holomorphic CR
mappings for k = 2. Beloshapka (2022) proves that g3 = 0 for
k = 3. We recover these results here by proving the following.

Let F be a nondegenerate quadric with k ≤ 3. Then F is
T-nondegenerate, hence g3 = 0.
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Proof of Main result

An element (f ,g) ∈ g3 has the following form

f (z,w) = A(z, z,w) + B(w ,w),

g(z,w) = 2iF (z,B(w ,w)).

Here A and B are complex multilinear forms such that A is
symmetric in the first two arguments and B is symmetric. They
are characterized by the following equations:

F (A(z, z,F (z,b)),b) = 0, (1)
F (A(z, z,w),b) = 4iF (z,B(w ,F (b, z))). (2)

We would like to show that A = 0 and B = 0. The difficulty is
that the equations have repeated arguments.
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The main tool is the following.

Lemma

Let φ : Ck → Cm be a C1 mapping. Suppose for every
a,b ∈ Cm, we have F (φ(F (a,b)),b) = 0. Then for every
a ∈ Cm, we have φ(F (a,a)) ∈ T (a)F . Hence, if F is
T-nondegenerate, then for every a ∈ Cm, we have
φ(F (a,a)) = 0.



We first plug w = F (z,b) in (2) and using (1) we obtain

F (z,B(F (b, z),F (b, z))) = 0. (3)

Put φ(w) = B(w ,w). Then by (3) we have F (φ(F (b, z)), z) = 0
for all b, z ∈ Cm.
Since F is T-nondegenerate, by Lemma, we have
φ(F (b,b)) = 0, that is,

B(F (b,b),F (b,b)) = 0.

By polarization
B(F (b, z),F (b, z)) = 0. (4)
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Plugging w = F (a,b) in (2), using (4) we obtain

F (A(z, z,F (a,b)),b) = 0.

Applying Lemma with φ(w) = A(z, z,w), we obtain

A(z, z,F (a,a)) = 0,

hence A = 0.
Similarly, applying Lemma one more time, we finally show that
B(c,F (b, z)) = 0, hence B = 0.
This completes the proof.
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Example 1 (Meylan)

Francine Meylan found an example of a (strictly) nondegenerate
quadric for which g4 6= 0. Here m = 4, k = 5, F = (F1, . . . ,F5).

F1(z, z) = Re (z1z3 + z2z4),

F2(z, z) = |z1|2,
F3(z, z) = |z2|2,
F4(z, z) = Re (z1z2),

F5(z, z) = Im (z1z2).

In this example, T (z)F 6= 0 for all z 6= 0, that is F is not
T-nondegenerate, all stationary discs are defective, and 2-jet
determination fails.



Example 2

Let m = 4, k = 4, and F = (F1,F2,F3,F4) from Example 1.
Then F is not T-nondegenerate, but one can see that g3 = 0, so
2-jet determination takes place.

This example shows that T-nondegeneracy is not necessary for
g3 = 0 to hold.
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Example 3

Let m = 4, k = 3, and F = (F1,F2,F3) from Example 1. Since
k = 3, the form F is T-nondegenerate, g3 = 0, so 2-jet
determination takes place.

However, one can see that F is not D-nondegenerate and
(aF )F ∩ aF 6= 0 for generic a.
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Example 4

Monomial quadric. We call F monomial if all components of F
have the form Re (zpzq) (in particular, |zp|2) or Im (zpzq)
(p 6= q), and there are no repeated components. A monomial
quadric F is nondegenerate iff each variable zp occurs in at
least one component of F . For such a quadric, the codimension
k can be any integer m

2 ≤ k ≤ m2.

One can see that if a ∈ Cm has no zero components, then
(aF )F ∩ aF = 0. Hence F is T-nondegenerate. However, F can
not be D-nondegenerate if k > 2m.
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Example 5

Monomial antisymmetric quadric of an odd dimension. This is a
special case of the previous example in which m ≥ 3 is an odd
integer, and all components of F have the from Im (zpzq). Then
k ≤ m(m−1)

2 .

Note that F is not strongly nondegenerate, hence not
D-nondegenerate. Indeed, the matrices of the components of F
are antisymmetric, and every linear combination of them is an
antisymmetric matrix of an odd order, hence singular.

As a special case of the previous example, if F is
nondegenerate, then F is T-nondegenerate, and 2-jet
determination holds. However, this result would be difficult to
obtain by means of stationary discs because F is not strongly
nondegenerate.
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Thank you!


