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Some characterizations ... before definitions

Theorem. [Hawley 1953, Igusa 1954]. A complete simply connected Kähler mnfld.
(M, g) with H(g) ≡ cst. is biholomorphic to CPd , Bd or Cd .

Positive curvature

Theorem [Mori 1979, Siu-Yau 1980] Every compact Kähler manifold of positive hol.
bisectional curvature is biholomorphic to the complex projective space.

Conjecture (Yau). A complete noncompact Kähler manifold with positive hol.
bisectional curvature is biholomorphic to Cd .

Flat curvature

Theorem [Siu-Yau, 1977] If (M, g) is a simply connected, complete, Kähler manifold
of complex dimension n with − A

r2+ε ≤ sec(g) ≤ 0, where A, ε > 0 and r is the

distance from a fixed point of M, then M is biholomorphic to Cd .

Negative curvature

Generically, 2 small C∞ deformations of Bd ⊂ Cd are not bihol.
They have neg. pinched hol. bisect. curv. converging asymptotically to that of Bd .
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Question. What information do strong constraints on complete metrics with
negative curvature give on the boundary (at infinity) of a complex manifold ?

• Let g complete Kähler metric on Md , H(g)(z)→z→∞ −c < 0 sufficiently fast.
Then M̃ ' Bd ⊂ Cd .

Theorem[G.-Zimmer, 2022]

Let Xd be a Stein manifold with d ≥ 2 and g0 is a complete Kähler metric on X .
If there exists a compact set K ⊂ X such that g0 has constant negative holomorphic
sectional curvature on X \K , then the universal cover of X is biholomorphic to the unit
ball in Cd .

• Md complete (Kobayashi) hyperbolic complex manifold. Assume kM is Kähler.
Then M̃ ' Bd .

Theorem[G.-Zimmer, 2022]

True if Md is a bounded strictly pseudoconvex domain in Cd .
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For M cplex mnfld., z ∈ M, v ∈ TzM, we define :

• The Kobayashi pseudometric

kM(z ; v) = inf
{
α > 0/ ∃f : D hol.−→ M, f (0) = z , f ′(0) · α = v

}
.

• The Carathéodory pseudometric

cM(z ; v) = sup
{
|f ′(z)(v)|, f : M

hol.−→ D, f (z) = 0
}
.



Curvature characterizations of some complex manifolds
Application. When is the Kobayashi metric Kähler ?

For M cplex mnfld., z ∈ M, v ∈ TzM, we define :

• The Kobayashi pseudometric

kM(z ; v) = inf
{
α > 0/ ∃f : D hol.−→ M, f (0) = z , f ′(0) · α = v

}
.
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Examples.

- All bounded domains in Cd are Carathéodory hyperbolic.
- CPd \ (2d + 1) hyperplanes in general position is Kobayashi hyperbolic
but is not Carathéodory hyperbolic.
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For M cplex mnfld., z ∈ M, v ∈ TzM, we define :

• The Kobayashi pseudometric
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α > 0/ ∃f : D hol.−→ M, f (0) = z , f ′(0) · α = v

}
.

• The Carathéodory pseudometric

cM(z ; v) = sup
{
|f ′(z)(v)|, f : M

hol.−→ D, f (z) = 0
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Theorem [Stanton, 1983] Let M be a connected complete hyperbolic
complex manifold. Assume that there is a point of M at which the
Carathéodory and Kobayashi metrics are equal and that one of these met-
rics is Hermitian and of class C∞. Then M is biholomorphically equivalent
to the open unit ball.
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Kähler metrics : D pseudoconvex, bounded in Cd

The Bergman metric (Bergman, Hörmander, Fefferman)

bi j =
∂2 lnK

∂zi∂zj

The Kähler-Einstein metric (Cheng-Yau, Mok-Yau)

Solution of 
Det[gi j ] = e(n+1)g , on D

g = +∞ on ∂D.

Conj. (Cheng) (D pcvex., BD = KED)⇒ D homogeneous
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Curvature classification in complex dimension greater than one ?

Let (M, g) be a Kähler manifold, let x ∈ M.

Sectional curvature. For X ,Y ∈ TxM \ {0} :

sec(g)(v ,w) =: R(v ,w , v ,w)/
(
g(X ,X )g(Y ,Y )− g(X ,Y )2

)
,

where {
R(X ,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z
R(X ,Y ,Z ,W ) = g(R(X ,Y )Z ,W )

.

Holomorphic (bi)sectional curvature. For X ,Y ∈ TxM \ {0} :

Bisec(g)(X,Y) := R(g)(X , JX ,Y , JY )/(g(X ,X )g(Y ,Y ))

H(g)(X) = Bisec(g)(X ,X ).
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Negative hol. (bi)sectional curvature : some examples.

• In the unit ball Bd ⊂ Cd

- “All” the metrics coincidence

- H(bBd ) = −2/(d + 1) and −2/(d + 1) ≤ Bisec(bBd ) ≤ −1/(d + 1)

• In the bidisk D× D ⊂ C2

- kD×D((z ,w), (X ,Y )) = max(kD(z ,X ), kD(w ,Y ))

- bD×D((z ,w), (X ,Y )) =
(
(kD(z ,X ))2 + (kD(w ,Y ))2

)1/2

- −1 ≤ H(bD×D) ≤ −1/2 but Bisec(bD×D)(0)(e1, e2) = 0

• D ⊂⊂ Cd , D str. pcv., ∂D ∈ C∞

(bD = keD)⇒ D ' Bd [Huang-Xiao].
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Negative hol. (bi)sectional curvature

Question 1. Which domains in Cd admit a complete Kähler metric
with negative (bi)hol. curvature near the boundary ?

- Such a metric is bi-Lipschitz to the Kobayashi metric [Wu-Yau]

- ∃ D ⊂⊂ C3, ∂D ∈ C∞, ∂D of <∞ type, kD not bi-Lipschitz to a
Riemannian metric (Herbort/Fornaess-Rong)

[Wu-Yau] ⇒ D does not admit any complete Kähler metric g , with

−A ≤ H(g) ≤ −B < 0 on D.

Need some CR geometric condition.
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Theorem 1 (Bracci-G.-Zimmer, 2018)

Let D ⊂ Cd , D convex. If D admits a complete Kähler metric g , with
−B ≤ Bisec(g) ≤ −A < 0 outside K ⊂⊂ D, then :

1 D does not contain any non trivial complex line,

2 ∂D does not contain any non trivial analytic disk,

3 ∂D ∈ C∞ ⇒ ∂D has <∞ type in the sense of d’Angelo.

Conjecture. Let D ⊂⊂ Cd , D pseudoconvex, ∂D ∈ C∞. Then D admits
a complete Kähler metric g , with −B ≤ Bisec(g) ≤ −A < 0 outside
K ⊂⊂ D iff. D is of finite type.
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Question 2. Which complex manifolds admit a complete Kähler
metric with constant hol. sect. curvature outside a compact set ?

Theorem 2 (G.-Zimmer, 2022)

Suppose that X is a Stein manifold with dimC X ≥ 2, K ⊂ X is a
compact subset where X \ K is connected, and g0 is a Hermitian metric
on X \ K which is complete at infinity. If g0 is locally symmetric, then
there exists a complete locally symmetric Hermitian metric g on X such
that g = g0 on X \ K.

Pf. Thm.2

Since Kähler metric with cst. hol. sect. curv. is loc. symmetric:

Corollary 1 (G.-Zimmer, 2022)

Suppose that X is a Stein manifold with dimC X ≥ 2 and g0 is a
complete Kähler metric on X . If there exists a compact set K ⊂ X such
that g0 has constant negative holomorphic sectional curvature on X \ K,
then the universal cover of X is biholomorphic to the unit ball in CdimC X .
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Proof of Corollary 1.

Step 1. g0 is loc. symmetric on X \ K .

Let z ∈ X \K and let Bg0 (z , r) normal ball contained in X \K (r << 1).

Let sz := expz ◦(−idTzX ) ◦ exp−1
z : B(z , r)→ B(z , r).

Then sz is a holomorphic local isometry, i.e. (X \ K , g0) Hermitian loc.
symmetric space.

Step 2. By Thm. 2, g0 = g|(X\K) where g complete locally symmetric
Hermitian metric on X . Thm.3

The universal cover of (X , g) is a Hermitian symmetric space, hence has
a transitive group.

Ccl. H(g) = −c on X : X̃ ' BdimCX (Hawley-Igusa).
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Application. Characterize bounded domains in Cd for which the
Kobayashi metric is a Kähler metric.

Theorem 3 (G.-Zimmer, 2022)

Suppose that Ω ⊂ Cd is a bounded strongly pseudoconvex domain with
C2 boundary. Then the following are equivalent:

1 the Kobayashi metric on Ω is a Kähler metric,

2 the Kobayashi metric on Ω is a Kähler metric with constant
holomorphic sectional curvature,

3 the universal cover of Ω is biholomorphic to the unit ball.

Rk. What if Ω is a noncompact complete hyperbolic manifold ?
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Step 1. Locally proper holoporphic embedding Φ : Ω→ D str. convex
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Step 2. Uniform behaviour of tangential complex geodesics in D
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Step 3. “Almost tangential” small complex geodesics in Ω are isometries

from (D, kD) to (Ω, kΩ)
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Step 4. H(kΩ(z , ·) = −4 for z near ∂Ω
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Proof of Theorem 2 Thm.2

Step 1. There exists (M, h) simply connected, Hermitian symmetric

space s.t. : ∀z ∈ U, ∃Oz ⊂ U,∃φz : Oz
loc. isom.−→ M.

- M is Stein and has no compact factor.
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Step 2. Kerner’s Theorem : X̃ = E (Ũ)
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Lemma 1

Let dev : Ũ → M developing map.

(U is Stein, M is Stein) ⇒ ∃F : X̃
loc. bihol.−→ M/ F ◦ αŨ = dev .
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Step 3. The Kähler metric F ∗h descends to a loc. symmetric g on X

and g|U = g0. Finally g is complete on X .
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