# Metric properties and geometry of domains in $\mathbb{C}^d$

Hervé Gaussier, Université Grenoble Alpes Joint work with Andrew Zimmer

Complex Analysis, Geometry and Dynamics

Portoroz 2023

#### Some characterizations ... before definitions

**Theorem.** [Hawley 1953, Igusa 1954]. A complete simply connected Kähler mnfld. (M, g) with  $H(g) \equiv cst$ . is biholomorphic to  $\mathbb{CP}^d$ ,  $\mathbb{B}^d$  or  $\mathbb{C}^d$ .

#### Positive curvature

Theorem [Mori 1979, Siu-Yau 1980] Every compact Kähler manifold of positive hol. bisectional curvature is biholomorphic to the complex projective space.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Yau). A complete noncompact Kähler manifold with positive hol. bisectional curvature is biholomorphic to  $\mathbb{C}^d$ .

#### Some characterizations ... before definitions

**Theorem.** [Hawley 1953, Igusa 1954]. A complete simply connected Kähler mnfld. (M, g) with  $H(g) \equiv cst$ . is biholomorphic to  $\mathbb{CP}^d$ ,  $\mathbb{B}^d$  or  $\mathbb{C}^d$ .

#### Positive curvature

Theorem [Mori 1979, Siu-Yau 1980] Every compact Kähler manifold of positive hol. bisectional curvature is biholomorphic to the complex projective space.

Conjecture (Yau). A complete noncompact Kähler manifold with positive hol. bisectional curvature is biholomorphic to  $\mathbb{C}^d$ .

#### Flat curvature

**Theorem [Siu-Yau, 1977]** If (M, g) is a simply connected, complete, Kähler manifold of complex dimension n with  $-\frac{A}{r^{2+\varepsilon}} \leq sec(g) \leq 0$ , where  $A, \varepsilon > 0$  and r is the distance from a fixed point of M, then M is biholomorphic to  $\mathbb{C}^d$ .

#### Some characterizations ... before definitions

**Theorem.** [Hawley 1953, Igusa 1954]. A complete simply connected Kähler mnfld. (M, g) with  $H(g) \equiv cst$ . is biholomorphic to  $\mathbb{CP}^d$ ,  $\mathbb{B}^d$  or  $\mathbb{C}^d$ .

#### Positive curvature

Theorem [Mori 1979, Siu-Yau 1980] Every compact Kähler manifold of positive hol. bisectional curvature is biholomorphic to the complex projective space.

Conjecture (Yau). A complete noncompact Kähler manifold with positive hol. bisectional curvature is biholomorphic to  $\mathbb{C}^d$ .

#### Flat curvature

**Theorem [Siu-Yau, 1977]** If (M, g) is a simply connected, complete, Kähler manifold of complex dimension n with  $-\frac{A}{r^{2+\varepsilon}} \leq \sec(g) \leq 0$ , where A,  $\varepsilon > 0$  and r is the distance from a fixed point of M, then M is biholomorphic to  $\mathbb{C}^d$ .

#### **Negative curvature**

Generically, 2 small  $\mathcal{C}^{\infty}$  deformations of  $\mathbb{B}^d \subset \mathbb{C}^d$  are not bihol. They have neg. pinched hol. bisect. curv. converging asymptotically to that of  $\mathbb{B}^d$ .

• Let g complete Kähler metric on  $M_d$ ,  $H(g)(z) \rightarrow_{z \rightarrow \infty} -c < 0$  sufficiently fast. Then  $\tilde{M} \simeq \mathbb{B}^d \subset \mathbb{C}^d$ .

- 4 同 6 4 日 6 4 日 6

э

• Let g complete Kähler metric on  $M_d$ ,  $H(g)(z) \rightarrow_{z \rightarrow \infty} -c < 0$  sufficiently fast. Then  $\tilde{M} \simeq \mathbb{B}^d \subset \mathbb{C}^d$ .

#### Theorem[G.-Zimmer, 2022]

Let  $X_d$  be a Stein manifold with  $d \ge 2$  and  $g_0$  is a complete Kähler metric on X. If there exists a compact set  $K \subset X$  such that  $g_0$  has constant negative holomorphic sectional curvature on  $X \setminus K$ , then the universal cover of X is biholomorphic to the unit ball in  $\mathbb{C}^d$ .

• Let g complete Kähler metric on  $M_d$ ,  $H(g)(z) \rightarrow_{z \rightarrow \infty} -c < 0$  sufficiently fast. Then  $\tilde{M} \simeq \mathbb{B}^d \subset \mathbb{C}^d$ .

#### Theorem[G.-Zimmer, 2022]

Let  $X_d$  be a Stein manifold with  $d \ge 2$  and  $g_0$  is a complete Kähler metric on X. If there exists a compact set  $K \subset X$  such that  $g_0$  has constant negative holomorphic sectional curvature on  $X \setminus K$ , then the universal cover of X is biholomorphic to the unit ball in  $\mathbb{C}^d$ .

•  $M_d$  complete (Kobayashi) hyperbolic complex manifold. Assume  $k_M$  is Kähler. Then  $\tilde{M} \simeq \mathbb{B}^d$ .

• Let g complete Kähler metric on  $M_d$ ,  $H(g)(z) \rightarrow_{z \rightarrow \infty} -c < 0$  sufficiently fast. Then  $\tilde{M} \simeq \mathbb{B}^d \subset \mathbb{C}^d$ .

#### Theorem[G.-Zimmer, 2022]

Let  $X_d$  be a Stein manifold with  $d \ge 2$  and  $g_0$  is a complete Kähler metric on X. If there exists a compact set  $K \subset X$  such that  $g_0$  has constant negative holomorphic sectional curvature on  $X \setminus K$ , then the universal cover of X is biholomorphic to the unit ball in  $\mathbb{C}^d$ .

•  $M_d$  complete (Kobayashi) hyperbolic complex manifold. Assume  $k_M$  is Kähler. Then  $\tilde{M} \simeq \mathbb{B}^d$ .

#### Theorem[G.-Zimmer, 2022]

True if  $M_d$  is a bounded strictly pseudoconvex domain in  $\mathbb{C}^d$ .

For *M* cplex mnfld.,  $z \in M$ ,  $v \in T_zM$ , we define :

• The Kobayashi pseudometric

$$k_M(z; v) = \inf \left\{ lpha > 0 / \exists f : \mathbb{D} \xrightarrow{\text{hol}} M, \ f(0) = z, \ f'(0) \cdot lpha = v 
ight\}.$$

• The Carathéodory pseudometric

$$c_M(z; v) = \sup \left\{ |f'(z)(v)|, f: M \xrightarrow{\text{hol}} \mathbb{D}, f(z) = 0 \right\}.$$

For *M* cplex mnfld.,  $z \in M$ ,  $v \in T_z M$ , we define :

• The Kobayashi pseudometric

$$k_M(z; v) = \inf \left\{ \alpha > 0 / \exists f : \mathbb{D} \xrightarrow{\text{hol}} M, \ f(0) = z, \ f'(0) \cdot \alpha = v 
ight\}.$$

## • The Carathéodory pseudometric

$$c_M(z; v) = \sup \left\{ |f'(z)(v)|, f: M \xrightarrow{\text{hol.}} \mathbb{D}, f(z) = 0 \right\}.$$

### Examples.

- All bounded domains in  $\mathbb{C}^d$  are Carathéodory hyperbolic.

-  $\mathbb{CP}^d \setminus (2d + 1)$  hyperplanes in general position is Kobayashi hyperbolic but is not Carathéodory hyperbolic. For *M* cplex mnfld.,  $z \in M$ ,  $v \in T_z M$ , we define :

• The Kobayashi pseudometric

$$k_M(z; v) = \inf \left\{ lpha > 0 / \exists f : \mathbb{D} \xrightarrow{\text{hol}} M, \ f(0) = z, \ f'(0) \cdot lpha = v 
ight\}.$$

• The Carathéodory pseudometric

$$c_M(z;v) = \sup\left\{|f'(z)(v)|, f: M \xrightarrow{\text{hol.}} \mathbb{D}, f(z) = 0\right\}.$$

**Theorem [Stanton, 1983]** Let M be a connected complete hyperbolic complex manifold. Assume that there is a point of M at which the Carathéodory and Kobayashi metrics are equal and that one of these metrics is Hermitian and of class  $C^{\infty}$ . Then M is biholomorphically equivalent to the open unit ball.

# Kähler metrics : D pseudoconvex, bounded in $\mathbb{C}^d$

• The Bergman metric (Bergman, Hörmander, Fefferman)

$$b_{i\bar{j}} = rac{\partial^2 \ln K}{\partial z_i \partial \overline{z_j}}$$

 The Kähler-Einstein metric (Cheng-Yau, Mok-Yau) Solution of

$$\left\{ egin{array}{ll} Det[g_{i\overline{j}}]=e^{(n+1)g}, & {
m on} \ D \\ g=+\infty & {
m on} \ \partial D. \end{array} 
ight.$$

**Conj.** (Cheng) (D pcvex.,  $B_D = KE_D$ )  $\Rightarrow D$  homogeneous

# Curvature classification in complex dimension greater than one ?

Let (M, g) be a Kähler manifold, let  $x \in M$ .

Sectional curvature. For  $X, Y \in T_x M \setminus \{0\}$ :

$$sec(g)(v,w) =: R(v,w,v,w)/(g(X,X)g(Y,Y)-g(X,Y)^2),$$

where

$$\begin{cases} R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \\ R(X, Y, Z, W) = g(R(X, Y)Z, W) \end{cases}$$

.

・ 同 ト ・ ヨ ト ・ ヨ ト

Curvature classification in complex dimension greater than one ? Let (M, g) be a Kähler manifold, let  $x \in M$ .

Sectional curvature. For  $X, Y \in T_x M \setminus \{0\}$ :

$$\operatorname{sec}(g)(v,w) =: R(v,w,v,w) / \left(g(X,X)g(Y,Y) - g(X,Y)^2\right),$$

where

$$\begin{cases} R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \\ R(X,Y,Z,W) = g(R(X,Y)Z,W) \end{cases}$$

Holomorphic (bi)sectional curvature. For  $X, Y \in T_x M \setminus \{0\}$ :

$$\mathsf{Bisec}(\mathbf{g})(\mathbf{X},\mathbf{Y}) := R(g)(X,JX,Y,JY)/(g(X,X)g(Y,Y))$$

$$\mathbf{H}(\mathbf{g})(\mathbf{X}) = Bisec(g)(X, X).$$

٠

# Negative hol. (bi)sectional curvature : some examples.

- In the unit ball  $\mathbb{B}^d \subset \mathbb{C}^d$ 
  - "All" the metrics coincidence
  - $H(b_{\mathbb{B}^d}) = -2/(d+1)$  and  $-2/(d+1) \leq \textit{Bisec}(b_{\mathbb{B}^d}) \leq -1/(d+1)$
- In the bidisk  $\mathbb{D}\times\mathbb{D}\subset\mathbb{C}^2$ 
  - $k_{\mathbb{D} \times \mathbb{D}}((z, w), (X, Y)) = \max(k_{\mathbb{D}}(z, X), k_{\mathbb{D}}(w, Y))$
  - $b_{\mathbb{D} \times \mathbb{D}}((z, w), (X, Y)) = ((k_{\mathbb{D}}(z, X))^2 + (k_{\mathbb{D}}(w, Y))^2)^{1/2}$
  - $-1 \leq H(b_{\mathbb{D} imes \mathbb{D}}) \leq -1/2$  but  $\textit{Bisec}(b_{\mathbb{D} imes \mathbb{D}})(0)(e_1, e_2) = \mathbf{0}$
- $D \subset \subset \mathbb{C}^d$ , D str. pcv.,  $\partial D \in \mathcal{C}^\infty$

 $(b_D = ke_D) \Rightarrow D \simeq \mathbb{B}^d$  [Huang-Xiao].

## Negative hol. (bi)sectional curvature

Question 1. Which domains in  $\mathbb{C}^d$  admit a complete Kähler metric with negative (bi)hol. curvature near the boundary ?

- Such a metric is bi-Lipschitz to the Kobayashi metric [Wu-Yau]

-  $\exists D \subset \mathbb{C}^3$ ,  $\partial D \in \mathcal{C}^{\infty}$ ,  $\partial D$  of  $< \infty$  type,  $k_D$  not bi-Lipschitz to a Riemannian metric (Herbort/Fornaess-Rong)

 $[Wu-Yau] \Rightarrow D$  does not admit any complete Kähler metric g, with

$$-A \leq H(g) \leq -B < 0$$
 on  $D$ .

Need some **CR geometric** condition.

# Theorem 1 (Bracci-G.-Zimmer, 2018)

Let  $D \subset \mathbb{C}^d$ , D convex. If D admits a complete Kähler metric g, with  $-B \leq Bisec(g) \leq -A < 0$  outside  $K \subset C D$ , then :

- D does not contain any non trivial complex line,
- 2  $\partial D$  does not contain any non trivial analytic disk,
- **(3)**  $\partial D \in C^{\infty} \Rightarrow \partial D$  has  $< \infty$  type in the sense of d'Angelo.

# Theorem 1 (Bracci-G.-Zimmer, 2018)

Let  $D \subset \mathbb{C}^d$ , D convex. If D admits a complete Kähler metric g, with  $-B \leq Bisec(g) \leq -A < 0$  outside  $K \subset \subset D$ , then :

- D does not contain any non trivial complex line,
- 2  $\partial D$  does not contain any non trivial analytic disk,
- **(3)**  $\partial D \in C^{\infty} \Rightarrow \partial D$  has  $< \infty$  type in the sense of d'Angelo.

**Conjecture.** Let  $D \subset \mathbb{C}^d$ , D pseudoconvex,  $\partial D \in \mathcal{C}^\infty$ . Then D admits a complete Kähler metric g, with  $-B \leq Bisec(g) \leq -A < 0$  outside  $K \subset C D$  iff. D is of finite type.

Question 2. Which complex manifolds admit a complete Kähler metric with constant hol. sect. curvature outside a compact set ?

Question 2. Which complex manifolds admit a complete Kähler metric with constant hol. sect. curvature outside a compact set ?

# Theorem 2 (G.-Zimmer, 2022)

Suppose that X is a Stein manifold with dim<sub> $\mathbb{C}</sub> X \ge 2$ ,  $K \subset X$  is a compact subset where  $X \setminus K$  is connected, and  $g_0$  is a Hermitian metric on  $X \setminus K$  which is complete at infinity. If  $g_0$  is locally symmetric, then there exists a complete locally symmetric Hermitian metric g on X such that  $g = g_0$  on  $X \setminus K$ .</sub>

Pf. Thm.2

# Question 2. Which complex manifolds admit a complete Kähler metric with constant hol. sect. curvature outside a compact set ?

# Theorem 2 (G.-Zimmer, 2022)

Suppose that X is a Stein manifold with dim<sub> $\mathbb{C}</sub> X \ge 2$ ,  $K \subset X$  is a compact subset where  $X \setminus K$  is connected, and  $g_0$  is a Hermitian metric on  $X \setminus K$  which is complete at infinity. If  $g_0$  is locally symmetric, then there exists a complete locally symmetric Hermitian metric g on X such that  $g = g_0$  on  $X \setminus K$ .</sub>

#### Pf. Thm.2

Since Kähler metric with cst. hol. sect. curv. is loc. symmetric:

# Corollary 1 (G.-Zimmer, 2022)

Suppose that X is a Stein manifold with dim<sub>C</sub>  $X \ge 2$  and  $g_0$  is a complete Kähler metric on X. If there exists a compact set  $K \subset X$  such that  $g_0$  has constant negative holomorphic sectional curvature on  $X \setminus K$ , then the universal cover of X is biholomorphic to the unit ball in  $\mathbb{C}^{\dim_C X}$ 

#### Proof of Corollary 1.

# **Step 1.** $g_0$ is loc. symmetric on $X \setminus K$ .

Let  $z \in X \setminus K$  and let  $B_{g_0}(z, r)$  normal ball contained in  $X \setminus K$  ( $r \ll 1$ ). Let  $s_z := \exp_z \circ (-id_{T_zX}) \circ \exp_z^{-1} : B(z, r) \to B(z, r)$ .

Then  $s_z$  is a holomorphic local isometry, i.e.  $(X \setminus K, g_0)$  Hermitian loc. symmetric space.

**Step 2.** By Thm. 2,  $g_0 = g_{|(X \setminus K)}$  where g complete locally symmetric Hermitian metric on X. Thm.3

The universal cover of (X, g) is a Hermitian symmetric space, hence has a transitive group.

Ccl. H(g) = -c on  $X : \tilde{X} \simeq \mathbb{B}^{dim_{\mathbb{C}}X}$  (Hawley-Igusa).

Application. Characterize bounded domains in  $\mathbb{C}^d$  for which the Kobayashi metric is a Kähler metric.

## Theorem 3 (G.-Zimmer, 2022)

Suppose that  $\Omega \subset \mathbb{C}^d$  is a bounded strongly pseudoconvex domain with  $C^2$  boundary. Then the following are equivalent:

- **1** the Kobayashi metric on  $\Omega$  is a Kähler metric,
- the Kobayashi metric on Ω is a Kähler metric with constant holomorphic sectional curvature,
- $\bigcirc$  the universal cover of  $\Omega$  is biholomorphic to the unit ball.

Rk. What if  $\Omega$  is a noncompact complete hyperbolic manifold ?

# **Step 1.** Locally proper holoporphic embedding $\Phi : \Omega \rightarrow D$ str. convex



## Step 2. Uniform behaviour of tangential complex geodesics in D



**Step 3.** "Almost tangential" small complex geodesics in  $\Omega$  are isometries from  $(\mathbb{D}, k_{\mathbb{D}})$  to  $(\Omega, k_{\Omega})$ 



# **Step 4.** $H(k_{\Omega}(z, \cdot) = -4$ for z near $\partial \Omega$



▲ロ > ▲母 > ▲ 臣 > ▲ 臣 > ▲ 臣 = の Q @

# Proof of Theorem 2 Thm.2



**Step 1.** There exists (M, h) simply connected, Hermitian symmetric space s.t. :  $\forall z \in U, \exists O_z \subset U, \exists \phi_z : O_z \xrightarrow{\text{loc. isom.}} M$ .

- M is Stein and has no compact factor.



# **Step 2.** Kerner's Theorem : $\tilde{X} = E(\tilde{U})$





### Lemma 1

Let  $dev : \tilde{U} \to M$  developing map. (U is Stein, M is Stein)  $\Rightarrow \exists F : \tilde{X} \xrightarrow{\text{loc. bihol.}} M / F \circ \alpha_{\tilde{U}} = dev.$ 

- \* @ \* \* 注 \* \* 注 \*



**Step 3.** The Kähler metric  $F^*h$  descends to a loc. symmetric g on X and  $g_{|U} = g_0$ . Finally g is complete on X.