Sharp subelliptic estimates for the $\bar{\partial}$-Neumann problem joint w. S. Mongodi (Univ. Milano Bicocca)

Gian Maria Dall'Ara

Istituto Nazionale di Alta Matematica
Research unit SNS (Pisa)

Complex Analysis, Geometry, and Dynamics
Portorož, 5-9/6/2023

Let Ω be a domain in \mathbb{C}^{n}. The celebrated $\bar{\partial}$-problem (a.k.a. the inhomogenous C-R eq.'s) is the system of first order PDEs

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \\
\bar{\partial} u=0
\end{array}\right.
$$

where f is a complex-valued function and u is a $(0,1)$-form, both defined on Ω.

Let Ω be a domain in \mathbb{C}^{n}. The celebrated $\bar{\partial}$-problem (a.k.a. the inhomogenous C-R eq.'s) is the system of first order PDEs

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \\
\bar{\partial} u=0
\end{array}\right.
$$

where f is a complex-valued function and u is a $(0,1)$-form, both defined on Ω.

In this talk I want to focus on the local regularity problem for $\bar{\partial}$.

- (Interior) ellipticity:

$$
u \in H^{s} \text { near } x_{0} \in \Omega \quad \Longrightarrow f \in H^{s+1} \text { near } x_{0}
$$

- (Interior) ellipticity:

$$
u \in H^{s} \text { near } x_{0} \in \Omega \quad \Longrightarrow \quad f \in H^{s+1} \text { near } x_{0}
$$

- Lack of uniqueness: f is a sol. iff $f+g$ is a sol., for any holomorphic g \Longrightarrow to talk about regularity at the boundary we need to choose a particular solution.
- (Interior) ellipticity:

$$
u \in H^{s} \text { near } x_{0} \in \Omega \quad \Longrightarrow \quad f \in H^{s+1} \text { near } x_{0}
$$

- Lack of uniqueness: f is a sol. iff $f+g$ is a sol., for any holomorphic g \Longrightarrow to talk about regularity at the boundary we need to choose a particular solution.
- (Spencer's extension of) Hodge theory provides the right framework to do that, leading to the $\bar{\partial}$-Neumann problem, a noncoercive boundary value problem to which the elliptic theory of BVPs cannot be applied.

We have the following basic L^{2} existence result.

We have the following basic L^{2} existence result.
L^{2} Existence Theorem (Hörmander 1965)
If the domain Ω is bounded and pseudoconvex, then the $\bar{\partial}$-problem

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \in L_{0,1}^{2}(\Omega) \\
\bar{\partial} u=0
\end{array}\right.
$$

admits an L^{2} solution.

We have the following basic L^{2} existence result.
L^{2} Existence Theorem (Hörmander 1965)
If the domain Ω is bounded and pseudoconvex, then the $\bar{\partial}$-problem

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \in L_{0,1}^{2}(\Omega) \\
\bar{\partial} u=0
\end{array}\right.
$$

admits an L^{2} solution.
The canonical solution is the one orthogonal to the null-space of $\bar{\partial}$ in $L^{2}(\Omega)$, a.k.a. the Bergman space $A^{2}(\Omega)$.

The L^{2} existence theorem boils down to the global a priori estimate

$$
\underbrace{\|\bar{\partial} u\|^{2}+\left\|\bar{\partial}^{*} u\right\|^{2}} \quad \gtrsim\|u\|^{2} \quad \forall u \in \mathcal{D}_{0,1}=C_{0,1}^{\infty}(\bar{\Omega}) \cap \operatorname{dom}\left(\bar{\partial}^{*}\right)
$$

quad. form of complex Laplacian
where $\|\cdot\|$ are L^{2} norms, and

$$
\mathcal{D}_{0,1}=\left\{u \in C_{0,1}^{\infty}(\bar{\Omega}): \operatorname{int}(\bar{\partial} r) u=0 \text { on } b \Omega\right\} \quad(r \text { def. fct. of } \Omega)
$$

Subellipticity Problem

Assume now that Ω is bdd pscvx and smooth. Is the $\bar{\partial}$-problem

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \in L_{0,1}^{2}(\Omega) \\
\bar{\partial} u=0 \\
f \perp \mathcal{O}(\Omega) \cap L^{2}(\Omega)
\end{array}\right.
$$

locally regular up to the boundary?

Subellipticity Problem

Assume now that Ω is bdd pscvx and smooth. Is the $\bar{\partial}$-problem

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \in L_{0,1}^{2}(\Omega) \\
\bar{\partial} u=0 \\
f \perp \mathcal{O}(\Omega) \cap L^{2}(\Omega)
\end{array}\right.
$$

locally regular up to the boundary?

More precisely, given $x_{0} \in b \Omega$, is there an $s>0$ with the property that (for every $t \geq 0$)

$$
u \in H_{(0,1)}^{t} \text { near } x_{0} \quad \Longrightarrow \quad f \in H^{t+s} \text { near } x_{0} ?
$$

Subellipticity Problem

Assume now that Ω is bdd pscvx and smooth. Is the $\bar{\partial}$-problem

$$
\left\{\begin{array}{l}
\bar{\partial} f=u \in L_{0,1}^{2}(\Omega) \\
\bar{\partial} u=0 \\
f \perp \mathcal{O}(\Omega) \cap L^{2}(\Omega)
\end{array}\right.
$$

locally regular up to the boundary?
More precisely, given $x_{0} \in b \Omega$, is there an $s>0$ with the property that (for every $t \geq 0$)

$$
u \in H_{(0,1)}^{t} \text { near } x_{0} \quad \Longrightarrow \quad f \in H^{t+s} \text { near } x_{0} ?
$$

In this case, one says that the problem is s-subelliptic at the boundary point x_{0}.

It is enough to prove the subelliptic gain of regularity at the level $t=0$.
Theorem (Kohn-Nirenberg 1965)
Let Ω be bdd smooth pscvx and let $x_{0} \in b \Omega$. Assume that the a priori subelliptic estimate of order $s>0$

$$
\|\bar{\partial} u\|^{2}+\left\|\bar{\partial}^{*} u\right\|^{2} \gtrsim\|u\|_{s}^{2} \quad \forall u \in \mathcal{D}_{0,1}: \quad \operatorname{supp} u \subseteq U
$$

holds, where $\|\cdot\|_{s}$ is the H^{s} Sobolev norm, and U is a neighborhood of x_{0}.

It is enough to prove the subelliptic gain of regularity at the level $t=0$.
Theorem (Kohn-Nirenberg 1965)
Let Ω be bdd smooth pscvx and let $x_{0} \in b \Omega$. Assume that the a priori subelliptic estimate of order $s>0$

$$
\|\bar{\partial} u\|^{2}+\left\|\bar{\partial}^{*} u\right\|^{2} \gtrsim\|u\|_{s}^{2} \quad \forall u \in \mathcal{D}_{0,1}: \quad \operatorname{supp} u \subseteq U
$$

holds, where $\|\cdot\|_{s}$ is the H^{s} Sobolev norm, and U is a neighborhood of x_{0}. Then the $\bar{\partial}$-problem on Ω is s-subelliptic at x_{0} :
if the datum $u \in H_{(0,1)}^{t}$ near $x_{0} \quad \Longrightarrow \quad$ canonical sol. $f \in H^{t+s}$ near x_{0}

Subellipticity problem
It comes in three flavors:
(1) Qualitative: determine necessary/sufficient conditions for the validity of an s-subelliptic estimate at a boundary point x_{0}, for some $s>0$ (unquantified).

Subellipticity problem

It comes in three flavors:
(1) Qualitative: determine necessary/sufficient conditions for the validity of an s-subelliptic estimate at a boundary point x_{0}, for some $s>0$ (unquantified).
(2) Quantitative: determine a quantitatively controlled s s.t. an s-subelliptic estimate holds/does not hold at a given boundary point x_{0}.

Subellipticity problem

It comes in three flavors:
(1) Qualitative: determine necessary/sufficient conditions for the validity of an s-subelliptic estimate at a boundary point x_{0}, for some $s>0$ (unquantified).
(2) Quantitative: determine a quantitatively controlled s s.t. an s-subelliptic estimate holds/does not hold at a given boundary point x_{0}.
(3) Sharp: determine the maximal* value $s=s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ such that an s-subelliptic estimate holds at a given boundary point x_{0}.
*actually, supremum.

Subellipticity problem

It comes in three flavors:
(1) Qualitative: determine necessary/sufficient conditions for the validity of an s-subelliptic estimate at a boundary point x_{0}, for some $s>0$ (unquantified).
(2) Quantitative: determine a quantitatively controlled s s.t. an s-subelliptic estimate holds/does not hold at a given boundary point x_{0}.
(3) Sharp: determine the maximal* value $s=s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ such that an s-subelliptic estimate holds at a given boundary point x_{0}.
*actually, supremum.
The answers to these problems are deeply tied to the local CR geometry of the boundary near the point x_{0} of interest.
A lot is known about (1) and (2), but (3) is widely open, and very (unreasonably?) difficult in general (Catlin-D'Angelo 2010).

The semicontinuity issue
A key difficulty in trying to obtain a geometric characterization (or control) of $s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ becomes apparent from the following considerations:

The semicontinuity issue
A key difficulty in trying to obtain a geometric characterization (or control) of $s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ becomes apparent from the following considerations:
(1) the function $x_{0} \longmapsto s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ is lower semicontinuous;
(2) the D'Angelo type $x_{0} \mapsto \Delta^{1}\left(b \Omega ; x_{0}\right)$ is not upper semicontinuous (D'Angelo 1982).
Hence no pointwise continuous "inverse relation" between the two quantities is possible.

The semicontinuity issue
A key difficulty in trying to obtain a geometric characterization (or control) of $s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ becomes apparent from the following considerations:
(1) the function $x_{0} \longmapsto s_{\text {sharp }}\left(\Omega ; x_{0}\right)$ is lower semicontinuous;
(2) the D'Angelo type $x_{0} \mapsto \Delta^{1}\left(b \Omega ; x_{0}\right)$ is not upper semicontinuous (D'Angelo 1982).
Hence no pointwise continuous "inverse relation" between the two quantities is possible.
Upper semicontinuous envelope of the type? More on this later.

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.
(2) Kohn 1972-Greiner 1974: If $\Omega \subset \mathbb{C}^{2}$, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2 m}$, where $2 m$ is the type of $b \Omega$ at x_{0}.

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.
(2) Kohn 1972-Greiner 1974: If $\Omega \subset \mathbb{C}^{2}$, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2 m}$, where $2 m$ is the type of $b \Omega$ at x_{0}.
(3) Kohn 1979: Subelliptic multiplier ideals: if $b \Omega$ is real-analytic near x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)>0$ iff $b \Omega$ contains no (possibly singular) complex curve through x_{0}.

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.
(2) Kohn 1972-Greiner 1974: If $\Omega \subset \mathbb{C}^{2}$, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2 m}$, where $2 m$ is the type of $b \Omega$ at x_{0}.
(3) Kohn 1979: Subelliptic multiplier ideals: if $b \Omega$ is real-analytic near x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)>0$ iff $b \Omega$ contains no (possibly singular) complex curve through x_{0}.
(9) Catlin 1983: $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \leq 1 / \Delta^{1}\left(b \Omega ; x_{0}\right)$, where $\Delta^{1}\left(b \Omega ; x_{0}\right)$ is the maximal order of contact at x_{0} of $b \Omega$ and a (possibly singular) complex curve.

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.
(2) Kohn 1972-Greiner 1974: If $\Omega \subset \mathbb{C}^{2}$, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2 m}$, where $2 m$ is the type of $b \Omega$ at x_{0}.
(3) Kohn 1979: Subelliptic multiplier ideals: if $b \Omega$ is real-analytic near x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)>0$ iff $b \Omega$ contains no (possibly singular) complex curve through x_{0}.
(9) Catlin 1983: $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \leq 1 / \Delta^{1}\left(b \Omega ; x_{0}\right)$, where $\Delta^{1}\left(b \Omega ; x_{0}\right)$ is the maximal order of contact at x_{0} of $b \Omega$ and a (possibly singular) complex curve.

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.
(2) Kohn 1972-Greiner 1974: If $\Omega \subset \mathbb{C}^{2}$, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2 m}$, where $2 m$ is the type of $b \Omega$ at x_{0}.
(3) Kohn 1979: Subelliptic multiplier ideals: if $b \Omega$ is real-analytic near x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)>0$ iff $b \Omega$ contains no (possibly singular) complex curve through x_{0}.
(9) Catlin 1983: $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \leq 1 / \Delta^{1}\left(b \Omega ; x_{0}\right)$, where $\Delta^{1}\left(b \Omega ; x_{0}\right)$ is the maximal order of contact at x_{0} of $b \Omega$ and a (possibly singular) complex curve.

(0) Effectivity in "Kohn's algorithm": Kim-Zaitsev 2021 $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \geq e^{-C_{n} \Delta^{1}\left(b \Omega ; x_{0}\right)^{C_{n}}}$ (also Siu 2010-2017).

A few known results:
(1) Kohn 1963-1964: if $b \Omega$ is strongly pscvx at x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2}$.
(2) Kohn 1972-Greiner 1974: If $\Omega \subset \mathbb{C}^{2}$, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)=\frac{1}{2 m}$, where $2 m$ is the type of $b \Omega$ at x_{0}.
(3) Kohn 1979: Subelliptic multiplier ideals: if $b \Omega$ is real-analytic near x_{0}, then $s_{\text {sharp }}\left(\Omega ; x_{0}\right)>0$ iff $b \Omega$ contains no (possibly singular) complex curve through x_{0}.
(9) Catlin 1983: $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \leq 1 / \Delta^{1}\left(b \Omega ; x_{0}\right)$, where $\Delta^{1}\left(b \Omega ; x_{0}\right)$ is the maximal order of contact at x_{0} of $b \Omega$ and a (possibly singular) complex curve.

(0) Effectivity in "Kohn's algorithm": Kim-Zaitsev 2021 $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \geq e^{-C_{n} \Delta^{1}\left(b \Omega ; x_{0}\right)^{C_{n}}}$ (also Siu 2010-2017).
(3) Zimmer 2022: $s_{\text {sharp }}\left(\Omega ; x_{0}\right) \geq 1 /$ max line type on convex finite type domains (via Gromov hyperbolicity).

In the rest of the talk I am going to:
(1) present an approach to subellipticity on rigid domains

$$
\Omega=\left\{\left(z, z_{n+1}\right): \operatorname{Im}\left(z_{n+1}\right)>\varphi(z)\right\}, \quad \varphi \quad \text { plush }
$$

alternative to Catlin's potential-theoretic method and Kohn's algorithm(s), and based on spectral gap estimates for an appropriate energy form E^{φ}.

In the rest of the talk I am going to:
(1) present an approach to subellipticity on rigid domains

$$
\Omega=\left\{\left(z, z_{n+1}\right): \operatorname{Im}\left(z_{n+1}\right)>\varphi(z)\right\}, \quad \varphi \quad \text { plush },
$$

alternative to Catlin's potential-theoretic method and Kohn's algorithm(s), and based on spectral gap estimates for an appropriate energy form E^{φ}.
(2) apply our method to a class of homogeneous rigid domains, where we are successful in determining the sharp order of subellipticity in terms of the geometry of Ω.

In the rest of the talk I am going to:
(1) present an approach to subellipticity on rigid domains

$$
\Omega=\left\{\left(z, z_{n+1}\right): \operatorname{Im}\left(z_{n+1}\right)>\varphi(z)\right\}, \quad \varphi \quad \text { plush },
$$

alternative to Catlin's potential-theoretic method and Kohn's algorithm(s), and based on spectral gap estimates for an appropriate energy form E^{φ}.
(2) apply our method to a class of homogeneous rigid domains, where we are successful in determining the sharp order of subellipticity in terms of the geometry of Ω.
Let's begin by defining homogeneous rigid domains.

Dfn
A domain $\Omega \subset \mathbb{C}^{n+1}$ is said to be a d-homogeneous special domain if

$$
\Omega=\left\{\left(z, z_{n+1}\right) \in \mathbb{C}^{n+1}: \operatorname{Im}\left(z_{n+1}\right)>\sum_{k=1}^{n}\left|F_{k}(z)\right|^{2}\right\}
$$

where each F_{k} is a homogeneous polynomial of degree d.

Dfn
A domain $\Omega \subset \mathbb{C}^{n+1}$ is said to be a d-homogeneous special domain if

$$
\Omega=\left\{\left(z, z_{n+1}\right) \in \mathbb{C}^{n+1}: \operatorname{Im}\left(z_{n+1}\right)>\sum_{k=1}^{n}\left|F_{k}(z)\right|^{2}\right\}
$$

where each F_{k} is a homogeneous polynomial of degree d. Such a domain is of D'Angelo finite type (everywhere) iff

$$
\left\{F_{1}=\ldots=F_{n}=0\right\}=\{0\}
$$

that is, iff $\left[z_{1}: \cdots: z_{n}\right] \longmapsto\left[F_{1}\left(z_{1}, \ldots, z_{n}\right): \cdots: F_{n}\left(z_{1}, \ldots, z_{n}\right)\right]$ is a globally defined holomorphic self-map of the projective space

$$
F: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}
$$

Homogeneous special domains have various attractive features:
(1) the CR geometry of their boundary (in particular D'Angelo and other "types") boils down to the structure of the singularities of $F: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}$, that is, critical points, rank of the Jacobian at critical points, geometry of the null space of the Jacobian, ...

Homogeneous special domains have various attractive features:
(1) the CR geometry of their boundary (in particular D'Angelo and other "types") boils down to the structure of the singularities of $F: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}$, that is, critical points, rank of the Jacobian at critical points, geometry of the null space of the Jacobian, ...
(2) two symmetries to spend: homogeneity and rigidity (translation invariance in $\left.\operatorname{Re}\left(z_{n+1}\right)\right)$.

Homogeneous special domains have various attractive features:
(1) the CR geometry of their boundary (in particular D'Angelo and other "types") boils down to the structure of the singularities of $\mathrm{F}: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}$, that is, critical points, rank of the Jacobian at critical points, geometry of the null space of the Jacobian, ...
(2) two symmetries to spend: homogeneity and rigidity (translation invariance in $\left.\operatorname{Re}\left(z_{n+1}\right)\right)$.
(3) rich enough to display a variety of behaviors, including the aforementioned lack of semicontinuity of the type. E.g.,

$$
\Omega=\left\{\operatorname{Im}\left(z_{4}\right)>\left|z_{1}^{2}+z_{2} z_{3}\right|^{2}+\left|z_{2}^{2}+z_{1} z_{3}\right|^{2}+\left|z_{3}^{2}\right|^{2}\right\}
$$

has $\Delta^{1}(b \Omega ; 0)=4$ and $\Delta^{1}(b \Omega ; p)=8$ on a 3 -dim submanifold accumulating at 0 .

The key objects in our analysis are the
Energy forms E^{φ}
Given φ plush we define

$$
\mathrm{E}^{\varphi}(u)=\int_{\mathbb{C}^{n}}\left|\nabla^{0,1} u\right|^{2} e^{-2 \varphi}+\int_{\mathbb{C}^{n}} \lambda_{1}|u|^{2} e^{-2 \varphi} \quad\left(u \in C_{c}^{\infty}\left(\mathbb{C}^{n}\right)\right)
$$

where

$$
\lambda_{1}=\text { min. eigenvalue of }\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n} \quad(\text { Levi form })
$$

The key objects in our analysis are the
Energy forms E^{φ}
Given φ plush we define

$$
\mathrm{E}^{\varphi}(u)=\int_{\mathbb{C}^{n}}\left|\nabla^{0,1} u\right|^{2} e^{-2 \varphi}+\int_{\mathbb{C}^{n}} \lambda_{1}|u|^{2} e^{-2 \varphi} \quad\left(u \in C_{c}^{\infty}\left(\mathbb{C}^{n}\right)\right)
$$

where

$$
\lambda_{1}=\text { min. eigenvalue of }\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1}^{n} \quad \text { (Levi form) }
$$

Antecedents: Christ 1991, Berndtsson 1996, Haslinger-Helffer 2007 etc.

The relevance of the energy forms E^{φ} to the subellipticity problem is revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity
Let φ be $2 d$-homogeneous plush, and let Ω be the associated rigid domain. Assume that

$$
\mathrm{E}^{\varphi}(\psi) \gtrsim R^{-2+4 d s} \int_{\mathbb{C}^{n}}|\psi|^{2} e^{-2 \varphi} \quad \forall \psi \in C_{c}^{\infty}(B(R)), \quad \forall R \text { large } .
$$

Then $s_{\text {sharp }}(\Omega ; 0) \geq s$.

The relevance of the energy forms E^{φ} to the subellipticity problem is revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity
Let φ be $2 d$-homogeneous plush, and let Ω be the associated rigid domain. Assume that

$$
\mathrm{E}^{\varphi}(\psi) \gtrsim R^{-2+4 d s} \int_{\mathbb{C}^{n}}|\psi|^{2} e^{-2 \varphi} \quad \forall \psi \in C_{c}^{\infty}(B(R)), \quad \forall R \text { large. }
$$

Then $s_{\text {sharp }}(\Omega ; 0) \geq s$.
Proof uses reduction to a $\bar{\partial}_{b}$ problem, Fourier analysis in the rigid direction, homogeneity, and a bit of microlocal analysis. All ingredients are standard.

Detour: Spectral gaps for Schrödinger operators imply subellipticity for Grushin operators
Let $V: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be a potential and $\hbar>0$. We are interested in the bottom of the spectrum of $-\hbar^{2} \Delta+V(x)$, i.e.,

$$
b_{V}(\hbar)=\inf _{\int_{\mathbb{R}^{n}}|\psi(x)|^{2} d x=1}\{\underbrace{\hbar^{2} \int_{\mathbb{R}^{n}}|\nabla \psi(x)|^{2} d x}_{\text {kinetic en. }}+\underbrace{\int_{\mathbb{R}^{n}} V(x)|\psi(x)|^{2} d x}_{\text {potential en. }}\}
$$

Detour: Spectral gaps for Schrödinger operators imply subellipticity for Grushin operators
Let $V: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be a potential and $\hbar>0$. We are interested in the bottom of the spectrum of $-\hbar^{2} \Delta+V(x)$, i.e.,

$$
b_{V}(\hbar)=\inf _{\int_{\mathbb{R}^{n}}|\psi(x)|^{2} d x=1}\{\underbrace{\hbar^{2} \int_{\mathbb{R}^{n}}|\nabla \psi(x)|^{2} d x}_{\text {kinetic en. }}+\underbrace{\int_{\mathbb{R}^{n}} V(x)|\psi(x)|^{2} d x}_{\text {potential en. }}\}
$$

Model: $V(x) \simeq|x|^{p}(p>0$ is the "type" $)$. By the uncertainty principle

$$
" \delta x \cdot \delta p \gtrsim \hbar " \quad(p=-i \hbar \nabla)
$$

the total energy of a "wave-packet" localized on $B(0, R)$ is about

$$
\frac{\hbar^{2}}{R^{2}}+R^{p} \quad \Longrightarrow \quad \min \simeq \hbar^{\frac{2 p}{p+2}}
$$

This yields sharp sub-elliptic estimates for the degenerate elliptic operator $\mathcal{L}=-\Delta-V(x) \frac{\partial^{2}}{\partial t^{2}}$ on \mathbb{R}^{n+1}.

This yields sharp sub-elliptic estimates for the degenerate elliptic operator $\mathcal{L}=-\Delta-V(x) \frac{\partial^{2}}{\partial t^{2}}$ on \mathbb{R}^{n+1}.

Taking the Fourier transform in t, we get the one-parameter family of PDEs

$$
\widehat{\mathcal{L}}(\xi)=-\Delta+\xi^{2} V(x)=\xi^{2}\left(-\hbar^{2} \Delta+V(x)\right) \quad\left(\hbar=|\xi|^{-1}\right)
$$

For the purposes of regularity theory, the limit $|\xi| \rightarrow+\infty$ is of interest. This coincides with the semiclassical limit $\hbar \rightarrow 0$:

$$
\begin{array}{ll}
& \text { bottom of spectrum of } \widehat{\mathcal{L}}(\xi) \simeq|\xi|^{\frac{4}{p+2}} \\
& (\mathcal{L} f, f)_{L^{2}\left(\mathbb{R}^{n+1}\right)} \gtrsim\|f\|_{W^{\frac{2}{p+2}, 2}}^{2}
\end{array}
$$

Theorem (Grushin)

The operator \mathcal{L} is sub-elliptic of order $\frac{2}{p+2}$ (which is essentially the reciprocal of the type) at points of the degeneracy locus $x=0$.

Inspired by the above we look with new eyes at

$$
\mathrm{E}^{\varphi}(u)=\underbrace{\int_{\mathbb{C}^{n}}\left|\nabla^{0,1} u\right|^{2} e^{-2 \varphi}}_{\bar{\partial} \text {-kinetic en. }}+\underbrace{\int_{\mathbb{C}^{n}} \lambda_{1}|u|^{2} e^{-2 \varphi}}_{\text {potential en. }}
$$

Inspired by the above we look with new eyes at

$$
\mathrm{E}^{\varphi}(u)=\underbrace{\int_{\mathbb{C}^{n}}\left|\nabla^{0,1} u\right|^{2} e^{-2 \varphi}}_{\bar{\partial} \text {-kinetic en. }}+\underbrace{\int_{\mathbb{C}^{n}} \lambda_{1}|u|^{2} e^{-2 \varphi}}_{\text {potential en. }}
$$

Recall that the goal is to lower bound $\mathrm{E}^{\varphi}(u)$.

Inspired by the above we look with new eyes at

$$
\mathrm{E}^{\varphi}(u)=\underbrace{\int_{\mathbb{C}^{n}}\left|\nabla^{0,1} u\right|^{2} e^{-2 \varphi}}_{\bar{\partial}-\text { kinetic en. }}+\underbrace{\int_{\mathbb{C}^{n}} \lambda_{1}|u|^{2} e^{-2 \varphi}}_{\text {potential en. }}
$$

Recall that the goal is to lower bound $\mathrm{E}^{\varphi}(u)$.
The enemies are "wavepackets" u that are sharply localized near the degeneration set

$$
\left\{\lambda_{1}=0\right\}=\left\{\operatorname{det}\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\right)=0\right\}
$$

and have small $\bar{\partial}$-kinetic energy, that is, are "almost holomorphic".

Inspired by the above we look with new eyes at

$$
\mathrm{E}^{\varphi}(u)=\underbrace{\int_{\mathbb{C}^{n}}\left|\nabla^{0,1} u\right|^{2} e^{-2 \varphi}}_{\bar{\partial}-\text { kinetic en. }}+\underbrace{\int_{\mathbb{C}^{n}} \lambda_{1}|u|^{2} e^{-2 \varphi}}_{\text {potential en. }}
$$

Recall that the goal is to lower bound $\mathrm{E}^{\varphi}(u)$.
The enemies are "wavepackets" u that are sharply localized near the degeneration set

$$
\left\{\lambda_{1}=0\right\}=\left\{\operatorname{det}\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\right)=0\right\}
$$

and have small $\bar{\partial}$-kinetic energy, that is, are "almost holomorphic".
Is there an appropriate "uncertainty principle" ruling out their existence?

Lemma 2. One-dimensional Uncertainty Principle for the $\frac{\partial}{\partial \bar{z}}$ Operator Let $\varphi: \mathbb{D} \rightarrow \mathbb{R}$ be subharmonic. Assume that $\Delta \varphi$ is a perturbation of $\left|A z^{d}\right|^{2}(A \in \mathbb{C})$. Then

$$
\int_{\mathbb{D}}\left|\frac{\partial u}{\partial \bar{z}}\right|^{2} e^{-2 \varphi}+\int_{\mathbb{D}} \Delta \varphi|u|^{2} e^{-2 \varphi} \gtrsim|A|^{\frac{2}{d+1}} \int_{\mathbb{D}}|u|^{2} e^{-2 \varphi}
$$

Lemma 2. One-dimensional Uncertainty Principle for the $\frac{\partial}{\partial \bar{z}}$ Operator Let $\varphi: \mathbb{D} \rightarrow \mathbb{R}$ be subharmonic.
Assume that $\Delta \varphi$ is a perturbation of $\left|A z^{d}\right|^{2}(A \in \mathbb{C})$. Then

$$
\int_{\mathbb{D}}\left|\frac{\partial u}{\partial \bar{z}}\right|^{2} e^{-2 \varphi}+\int_{\mathbb{D}} \Delta \varphi|u|^{2} e^{-2 \varphi} \gtrsim|A|^{\frac{2}{d+1}} \int_{\mathbb{D}}|u|^{2} e^{-2 \varphi}
$$

- Unperturbed case uses Hörmander L^{2} solution of $\frac{\partial}{\partial \bar{z}}$ and appeared in

圊 D., Coercivity of weighted Kohn Laplacians: the case of model monomial weights, Trans. Amer. Math. Soc. 2017

Lemma 2. One-dimensional Uncertainty Principle for the $\frac{\partial}{\partial \bar{z}}$ Operator Let $\varphi: \mathbb{D} \rightarrow \mathbb{R}$ be subharmonic.
Assume that $\Delta \varphi$ is a perturbation of $\left|A z^{d}\right|^{2}(A \in \mathbb{C})$. Then

$$
\int_{\mathbb{D}}\left|\frac{\partial u}{\partial \bar{z}}\right|^{2} e^{-2 \varphi}+\int_{\mathbb{D}} \Delta \varphi|u|^{2} e^{-2 \varphi} \gtrsim|A|^{\frac{2}{d+1}} \int_{\mathbb{D}}|u|^{2} e^{-2 \varphi}
$$

- Unperturbed case uses Hörmander L^{2} solution of $\frac{\partial}{\partial \bar{z}}$ and appeared in

圊 D., Coercivity of weighted Kohn Laplacians: the case of model monomial weights, Trans. Amer. Math. Soc. 2017

- The perturbation is quite delicate: need to control clustering of zeros (harmonic analysis techniques).

The second key ingredient in our approach to spectral gap estimates for E^{φ} is the following notion.

Approximate minimal eigenvector fields
Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be plush. An approx. minimal eigenvector field for φ at $p \in \mathbb{C}^{n}$ is a germ at p of holomorphic vector field $X(z)$ with the properties that $X(p) \neq 0$ and

$$
\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} X_{j}(z) \overline{X_{k}(z)} \lesssim \lambda_{1}(z)|X(z)|^{2}
$$

The second key ingredient in our approach to spectral gap estimates for E^{φ} is the following notion.

Approximate minimal eigenvector fields
Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be plush. An approx. minimal eigenvector field for φ at $p \in \mathbb{C}^{n}$ is a germ at p of holomorphic vector field $X(z)$ with the properties that $X(p) \neq 0$ and

$$
\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} X_{j}(z) \overline{X_{k}(z)} \lesssim \lambda_{1}(z)|X(z)|^{2}
$$

Trivial where Levi form is non-degenerate. Need not exist in general $\left(\varphi\left(z_{1}, z_{2}\right)=\left|z_{1}\right|^{4}+\left|z_{2}\right|^{4}\right.$ at the origin $)$.

The second key ingredient in our approach to spectral gap estimates for E^{φ} is the following notion.

Approximate minimal eigenvector fields
Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be plush. An approx. minimal eigenvector field for φ at $p \in \mathbb{C}^{n}$ is a germ at p of holomorphic vector field $X(z)$ with the properties that $X(p) \neq 0$ and

$$
\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} X_{j}(z) \overline{X_{k}(z)} \lesssim \lambda_{1}(z)|X(z)|^{2}
$$

Trivial where Levi form is non-degenerate. Need not exist in general $\left(\varphi\left(z_{1}, z_{2}\right)=\left|z_{1}\right|^{4}+\left|z_{2}\right|^{4}\right.$ at the origin $)$.

Lemma 3. Existence of approx. minim. e. v.-f.'s for co-rank 1
If $\varphi(z)=\sum_{k=1}^{n}\left|F_{k}(z)\right|^{2}$ with F_{k} 's holomorphic, then
approx. minim. e. v.-f.'s exist at every point where the Levi form of φ has co-rank 1.

Lemma 2 and Lemma 3 combined provide lower bounds on E^{φ}, for appropriate φ 's.
The strategy is the following:

- Cut \mathbb{C}^{n} into dyadic shells $\left\{z \in \mathbb{C}^{n}: \lambda^{m} \leq|z| \leq \lambda^{m+1}\right\}$, where $\lambda>1$ is appropriately chosen and $m \geq 1$ (local contribution is easy to deal with).

Lemma 2 and Lemma 3 combined provide lower bounds on E^{φ}, for appropriate φ 's.
The strategy is the following:

- Cut \mathbb{C}^{n} into dyadic shells $\left\{z \in \mathbb{C}^{n}: \lambda^{m} \leq|z| \leq \lambda^{m+1}\right\}$, where $\lambda>1$ is appropriately chosen and $m \geq 1$ (local contribution is easy to deal with).
- If φ is homogeneous the analysis reduces to the unit shell $m=0$. Cover the "bad" region where $\lambda_{1}=0$ (the strongly plush part is trivial).

Lemma 2 and Lemma 3 combined provide lower bounds on E^{φ}, for appropriate φ 's.
The strategy is the following:

- Cut \mathbb{C}^{n} into dyadic shells $\left\{z \in \mathbb{C}^{n}: \lambda^{m} \leq|z| \leq \lambda^{m+1}\right\}$, where $\lambda>1$ is appropriately chosen and $m \geq 1$ (local contribution is easy to deal with).
- If φ is homogeneous the analysis reduces to the unit shell $m=0$. Cover the "bad" region where $\lambda_{1}=0$ (the strongly plush part is trivial).
- At each point where λ_{1} vanishes and Levi corank is one use the complex flow of an approx. minim. eigenvector field to foliate a neighborhood into discs (Lemma 3).

Lemma 2 and Lemma 3 combined provide lower bounds on E^{φ}, for appropriate φ 's.
The strategy is the following:

- Cut \mathbb{C}^{n} into dyadic shells $\left\{z \in \mathbb{C}^{n}: \lambda^{m} \leq|z| \leq \lambda^{m+1}\right\}$, where $\lambda>1$ is appropriately chosen and $m \geq 1$ (local contribution is easy to deal with).
- If φ is homogeneous the analysis reduces to the unit shell $m=0$. Cover the "bad" region where $\lambda_{1}=0$ (the strongly plush part is trivial).
- At each point where λ_{1} vanishes and Levi corank is one use the complex flow of an approx. minim. eigenvector field to foliate a neighborhood into discs (Lemma 3).
- Apply one-dimensional uncertainty principle to each disc (Lemma 2).

The strategy above allows to prove the following
Theorem
Let $\Omega \subset \mathbb{C}^{n+1}$ be d-homogeneous special of finite type (at the origin), with associated map $\mathrm{F}: \mathrm{P}^{n-1} \rightarrow \mathrm{P}^{n-1}$. Assume that co-rank of Jacobian of F is at most one*.

The strategy above allows to prove the following
Theorem
Let $\Omega \subset \mathbb{C}^{n+1}$ be d-homogeneous special of finite type (at the origin), with associated map $\mathrm{F}: \mathrm{P}^{n-1} \rightarrow \mathrm{P}^{n-1}$. Assume that co-rank of Jacobian of F is at most one*. Then

$$
s_{\text {sharp }}(\Omega ; 0)=\frac{1}{2 \max \{d, \mathfrak{t}(F)\}}
$$

where $\mathfrak{t}(\mathrm{F})=\sup _{\gamma} \nu(\mathrm{F} \circ \gamma)$, sup is over non-singular analytic discs $\gamma: \mathbb{D} \rightarrow \mathrm{P}^{n-1}$ and $\nu(G)$ is the order of vanishing of $G-G(0)$.

The strategy above allows to prove the following

Theorem

Let $\Omega \subset \mathbb{C}^{n+1}$ be d-homogeneous special of finite type (at the origin), with associated map $\mathrm{F}: \mathrm{P}^{n-1} \rightarrow \mathrm{P}^{n-1}$. Assume that co-rank of Jacobian of F is at most one*. Then

$$
s_{\text {sharp }}(\Omega ; 0)=\frac{1}{2 \max \{d, \mathfrak{t}(F)\}}
$$

where $\mathfrak{t}(\mathrm{F})=\sup _{\gamma} \nu(\mathrm{F} \circ \gamma)$, sup is over non-singular analytic discs $\gamma: \mathbb{D} \rightarrow \mathrm{P}^{n-1}$ and $\nu(G)$ is the order of vanishing of $G-G(0)$.
The quantity $2 \max \{d, t(F)\}$ equals the upper semicontinuous envelop of the D'Angelo type at the origin.
*This forces low-dimensionality: $n+1 \leq 5$.

The strategy above allows to prove the following

Theorem

Let $\Omega \subset \mathbb{C}^{n+1}$ be d-homogeneous special of finite type (at the origin), with associated map $\mathrm{F}: \mathrm{P}^{n-1} \rightarrow \mathrm{P}^{n-1}$. Assume that co-rank of Jacobian of F is at most one*. Then

$$
s_{\text {sharp }}(\Omega ; 0)=\frac{1}{2 \max \{d, \mathfrak{t}(F)\}}
$$

where $\mathfrak{t}(\mathrm{F})=\sup _{\gamma} \nu(\mathrm{F} \circ \gamma)$, sup is over non-singular analytic discs $\gamma: \mathbb{D} \rightarrow \mathrm{P}^{n-1}$ and $\nu(G)$ is the order of vanishing of $G-G(0)$.
The quantity $2 \max \{d, t(F)\}$ equals the upper semicontinuous envelop of the D'Angelo type at the origin.
*This forces low-dimensionality: $n+1 \leq 5$.
Thanks a lot for your attention!

