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Let Q be a domain in C". The celebrated J-problem (a.k.a. the
inhomogenous C-R eq.’s) is the system of first order PDEs

of =u

ou=0
where f is a complex-valued function and v is a (0, 1)-form, both defined
on €.
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Let Q be a domain in C". The celebrated J-problem (a.k.a. the
inhomogenous C-R eq.’s) is the system of first order PDEs

of =u

ou=0
where f is a complex-valued function and v is a (0, 1)-form, both defined
on €.

In this talk | want to focus on the local regularity problem for 9.
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o (Interior) ellipticity:

u € H® near xg € Q — fe H" near x
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o (Interior) ellipticity:

u € H® near xg € Q — fe H" near x

@ Lack of uniqueness: f is a sol. iff f 4+ g is a sol., for any holomorphic g
— to talk about regularity at the boundary we need to choose a
particular solution.

. Gian Maria Dall'Ara Y=



o (Interior) ellipticity:

u € H® near xg € Q — fe H" near x

@ Lack of uniqueness: f is a sol. iff f + g is a sol., for any holomorphic g
— to talk about regularity at the boundary we need to choose a
particular solution.

@ (Spencer's extension of ) Hodge theory provides the right framework
to do that, leading to the -Neumann problem, a noncoercive
boundary value problem to which the elliptic theory of BVPs cannot
be applied.
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We have the following basic L? existence result.
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We have the following basic L? existence result.

L? Existence Theorem (Hormander 1965)

If the domain € is bounded and pseudoconvex, then the 9-problem

ou=0

admits an L2 solution.
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We have the following basic L? existence result.

L? Existence Theorem (Hormander 1965)

If the domain € is bounded and pseudoconvex, then the 9-problem

ou=0

admits an L2 solution.

The canonical solution is the one orthogonal to the null-space of 9 in
L?(f2), a.k.a. the Bergman space A%(Q).
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The L? existence theorem boils down to the global a priori estimate

[0ul® +1[0"u|?  Z|lul®  VYue Dor = C53(RQ) Ndom(d)

quad. form of complex Laplacian

where || - || are L2 norms, and

Doy = {u e G§3(Q): int(dr)u =0 on bQ} (r def. fct. of Q).
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Subellipticity Problem

Assume now that  is bdd pscvx and smooth. Is the d-problem

ou=0
fLOoQ)NL3Q)

locally regular up to the boundary?
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Subellipticity Problem

Assume now that  is bdd pscvx and smooth. Is the d-problem

ou=0
fLOoQ)NL3Q)

locally regular up to the boundary?

More precisely, given xg € bS2, is there an s > 0 with the property that (for
every t > 0)

ue H(to 1) near xp = f e H"™ near xq ?
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Subellipticity Problem

Assume now that  is bdd pscvx and smooth. Is the d-problem

ou=0
fLOoQ)NL3Q)

locally regular up to the boundary?

More precisely, given xg € bS2, is there an s > 0 with the property that (for
every t > 0)

ue H(to 1) near xp = f e H"™ near xq ?

In this case, one says that the problem is s-subelliptic at the boundary
point xg.

. Gian Maria Dall'Ara =



It is enough to prove the subelliptic gain of regularity at the level t = 0.

Theorem (Kohn—Nirenberg 1965)

Let Q be bdd smooth pscvx and let xg € bS2. Assume that the a priori
subelliptic estimate of order s > 0

[0ul]? + |0 ul|® = ||u]l>  Yu € Doy: suppu C U

holds, where || - ||s is the H® Sobolev norm, and U is a neighborhood of xo.
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It is enough to prove the subelliptic gain of regularity at the level t = 0.

Theorem (Kohn—Nirenberg 1965)

Let Q be bdd smooth pscvx and let xg € bS2. Assume that the a priori
subelliptic estimate of order s > 0

[0ul]? + |0 ul|® = ||u]l>  Yu € Doy: suppu C U

holds, where || - ||s is the H® Sobolev norm, and U is a neighborhood of xo.
Then the 0-problem on Q is s-subelliptic at xg:

if the datum u € H(y,) near g, == canonical sol. f € H*"* near xo

v
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Subellipticity problem
It comes in three flavors:

@ Qualitative: determine necessary/sufficient conditions for the validity
of an s-subelliptic estimate at a boundary point xg, for some s > 0
(unquantified).
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Subellipticity problem
It comes in three flavors:

@ Qualitative: determine necessary/sufficient conditions for the validity
of an s-subelliptic estimate at a boundary point xg, for some s > 0
(unquantified).

@ Quantitative: determine a quantitatively controlled s s.t. an

s-subelliptic estimate holds/does not hold at a given boundary point
X0.-
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Subellipticity problem
It comes in three flavors:

@ Qualitative: determine necessary/sufficient conditions for the validity
of an s-subelliptic estimate at a boundary point xg, for some s > 0
(unquantified).

@ Quantitative: determine a quantitatively controlled s s.t. an
s-subelliptic estimate holds/does not hold at a given boundary point
X0.-

© Sharp: determine the maximal* value s = sg,,:p(€2; Xg) such that an
s-subelliptic estimate holds at a given boundary point xg.

*actually, supremum.
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Subellipticity problem
It comes in three flavors:

© Qualitative: determine necessary/sufficient conditions for the validity
of an s-subelliptic estimate at a boundary point xg, for some s > 0
(unquantified).

@ Quantitative: determine a quantitatively controlled s s.t. an
s-subelliptic estimate holds/does not hold at a given boundary point
X0.-

© Sharp: determine the maximal* value s = sg,,:p(€2; Xg) such that an
s-subelliptic estimate holds at a given boundary point xg.

*actually, supremum.

The answers to these problems are deeply tied to the local CR geometry of
the boundary near the point xg of interest.

A lot is known about (1) and (2), but (3) is widely open, and very
(unreasonably?) difficult in general (Catlin—D'Angelo 2010).
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The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control)
of Ssharp(§2; X0) becomes apparent from the following considerations:
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The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control)
of Ssharp(§2; X0) becomes apparent from the following considerations:

@ the function xp — Ssharp(£2; X0) is lower semicontinuous;

@ the D'Angelo type xp — A(b; x0) is not upper semicontinuous
(D'Angelo 1982).

Hence no pointwise continuous "inverse relation" between the two
quantities is possible.
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The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control)
of Ssharp(§2; X0) becomes apparent from the following considerations:

@ the function xp — Ssharp(£2; X0) is lower semicontinuous;

@ the D'Angelo type xp — A(b; x0) is not upper semicontinuous
(D'Angelo 1982).
Hence no pointwise continuous "inverse relation" between the two
quantities is possible.
Upper semicontinuous envelope of the type? More on this later.
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A few known results:
@ Kohn 1963-1964: if bQ2 is strongly pscvx at xp, then
5sharp(Q;X0) = %
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A few known results:
@ Kohn 1963-1964: if bQ2 is strongly pscvx at xp, then
Ssharp (£2; X0) = %
@ Kohn 1972 - Greiner 1974: If Q C C?, then Ssharp (£2; X0) = %
where 2m is the type of bQ2 at xg.
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A few known results:
@ Kohn 1963-1964: if bQ2 is strongly pscvx at xp, then
Ssharp (£2; X0) = %
@ Kohn 1972 - Greiner 1974: If Q C C?, then Ssharp (£2; X0) = %
where 2m is the type of bQ at xg.

© Kohn 1979: Subelliptic multiplier ideals: if bQ2 is real-analytic near
X0, then Sgharp(£2; x0) > 0 iff bQ contains no (possibly singular)
complex curve through xp.
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A few known results:
@ Kohn 1963-1964: if bQ2 is strongly pscvx at xp, then
Ssharp(£2; X0) = %
@ Kohn 1972 - Greiner 1974: If Q C C?, then Ssharp (£2; X0) = %
where 2m is the type of bQ at xg.

© Kohn 1979: Subelliptic multiplier ideals: if bQ2 is real-analytic near
X0, then Sgharp(£2; x0) > 0 iff bQ contains no (possibly singular)
complex curve through xp.

© Catlin 1983: sy,a:,(2; x0) < 1/AY(bQ; x0), where AL(bQ; xo) is the
maximal order of contact at xp of b2 and a (possibly singular)
complex curve.
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A few known results:
@ Kohn 1963-1964: if bQ2 is strongly pscvx at xp, then
Ssharp(£2; X0) = %
@ Kohn 1972 - Greiner 1974: If Q C C?, then Ssharp (£2; X0) = %
where 2m is the type of bQ at xg.

© Kohn 1979: Subelliptic multiplier ideals: if bQ2 is real-analytic near
X0, then Sgharp(£2; x0) > 0 iff bQ contains no (possibly singular)
complex curve through xp.

© Catlin 1983: sy,a:,(2; x0) < 1/AY(bQ; x0), where AL(bQ; xo) is the
maximal order of contact at xp of b2 and a (possibly singular)
complex curve.

@ Catlin 1987: sgarp(2; x0) > Al(bQ;XO)—”2A1(bQ;xo)n2_

@ Effectivity in "Kohn's algorithm": Kim—Zaitsev 2021
Ssharp (€2 X0) > e~ G2 (B2x0)™ (3lso Siu 2010-2017).
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A few known results:
@ Kohn 1963-1964: if bQ2 is strongly pscvx at xp, then
Ssharp(£2; X0) = %
@ Kohn 1972 - Greiner 1974: If Q C C?, then Ssharp (£2; X0) = %
where 2m is the type of bQ at xg.

© Kohn 1979: Subelliptic multiplier ideals: if bQ2 is real-analytic near
X0, then Sgharp(£2; x0) > 0 iff bQ contains no (possibly singular)
complex curve through xp.

© Catlin 1983: sy,a:,(2; x0) < 1/AY(bQ; x0), where AL(bQ; xo) is the
maximal order of contact at xp of b2 and a (possibly singular)
complex curve.

@ Catlin 1987: sgarp(2; x0) > Al(bQ;XO)—”2A1(bQ;xo)n2_

@ Effectivity in "Kohn's algorithm": Kim—Zaitsev 2021
Ssharp (€2 X0) > e~ G2 (B2x0)™ (3lso Siu 2010-2017).

Q@ Zimmer 2022: Sy (£2; X0) > 1/max line type on convex finite type
domains (via Gromov hyperbolicity).
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In the rest of the talk | am going to:

@ present an approach to subellipticity on rigid domains

Q= {(Z,Zn—i-l): Im(zn—i-l) > 30(2)}’ ¢ plush,

alternative to Catlin's potential-theoretic method and Kohn's
algorithm(s), and based on spectral gap estimates for an
appropriate energy form E¥.
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In the rest of the talk | am going to:
@ present an approach to subellipticity on rigid domains

Q= {(Z,Zn—i-l): Im(zn—i-l) > 30(2)}’ ¢ plush,

alternative to Catlin's potential-theoretic method and Kohn's
algorithm(s), and based on spectral gap estimates for an
appropriate energy form E¥.

@ apply our method to a class of homogeneous rigid domains, where
we are successful in determining the sharp order of subellipticity in
terms of the geometry of Q.

. Gian Maria Dall'Ara RV



In the rest of the talk | am going to:
@ present an approach to subellipticity on rigid domains

Q= {(Z,Zn—i-l): Im(zn—i-l) > 30(2)}’ ¢ plush,

alternative to Catlin's potential-theoretic method and Kohn's
algorithm(s), and based on spectral gap estimates for an
appropriate energy form E¥.

@ apply our method to a class of homogeneous rigid domains, where
we are successful in determining the sharp order of subellipticity in
terms of the geometry of Q.

Let's begin by defining homogeneous rigid domains.
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Dfn

A domain Q € C™*! is said to be a d-homogeneous special domain if

Q= {(z,an) € C"1: Im(zp41) > Z |Fk(z)|2} ,

k=1

where each Fj is a homogeneous polynomial of degree d.
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Dfn

A domain Q € C™*! is said to be a d-homogeneous special domain if
Q= {(z,an) € C"1: Im(zp41) > Z |Fk(z)|2} ,
k=1

where each Fj is a homogeneous polynomial of degree d.
Such a domain is of D'Angelo finite type (everywhere) iff

{F=...=F,=0}={0},

that'is, iff [z1 -+ 1 zp) — [Fi(z1, .- y2n) oo+ Fp(z1,...,25)] is @
globally defined holomorphic self-map of the projective space

F:.pr—1 5 prl
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Homogeneous special domains have various attractive features:

@ the CR geometry of their boundary (in particular D'Angelo and other
"types") boils down to the structure of the singularities of
F:P"~1 — P"1 thatis, critical points, rank of the Jacobian at
critical points, geometry of the null space of the Jacobian, ...
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Homogeneous special domains have various attractive features:

@ the CR geometry of their boundary (in particular D'Angelo and other
"types") boils down to the structure of the singularities of
F:P"~1 — P"1 thatis, critical points, rank of the Jacobian at
critical points, geometry of the null space of the Jacobian, ...

@ two symmetries to spend: homogeneity and rigidity (translation
invariance in Re(zp41))-
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Homogeneous special domains have various attractive features:

@ the CR geometry of their boundary (in particular D'Angelo and other
"types") boils down to the structure of the singularities of
F:P"~1 — P"1 thatis, critical points, rank of the Jacobian at
critical points, geometry of the null space of the Jacobian, ...

@ two symmetries to spend: homogeneity and rigidity (translation
invariance in Re(zp41))-

© rich enough to display a variety of behaviors, including the
aforementioned lack of semicontinuity of the type. E.g.,

Q= {Im(z) > |22 + 223> + |23 + z123]> + | 2>}

has AY(bQ;0) = 4 and A}(bQ; p) = 8 on a 3-dim submanifold
accumulating at 0.
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The key objects in our analysis are the

Energy forms E¥

Given ¢ plush we define
B¢ () = / V012620 4 / MuPe 2 (ue C(CT),
n JCn

where

2

8 n
A1 = min. eigenvalue of < 90_ > (Levi form)
8zjazk j k=1
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The key objects in our analysis are the

Energy forms E¥

Given ¢ plush we define
Eu) = [ [VONPe [ nluPe® (ue (),
Jen Jen

where

92 "
A1 = min. eigenvalue of ('0_ (Levi form)
8zjazk j k=1

Antecedents: Christ 1991, Berndtsson 1996, Haslinger—Helffer 2007
etc.
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The relevance of the energy forms E¥ to the subellipticity problem is
revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity

Let ¢ be 2d-homogeneous plush, and let Q be the associated rigid domain.
Assume that

E°(v) 2 R‘““ds/ p2e™® W e C°(B(R)), VR large.
(Cn

Then sgharp(£2;0) > s.
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The relevance of the energy forms E¥ to the subellipticity problem is
revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity

Let ¢ be 2d-homogeneous plush, and let Q be the associated rigid domain.
Assume that

E°(v) 2 R‘““ds/ p2e™® W e C°(B(R)), VR large.
(Cn

Then sgharp(£2;0) > s.

v

Proof uses reduction to a 9, problem, Fourier analysis in the rigid direction,
homogeneity, and a bit of microlocal analysis. All ingredients are standard.
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Detour: Spectral gaps for Schrédinger operators imply subellipticity for
Grushin operators

Let V : R"” — [0, 400) be a potential and i > 0. We are interested in the
bottom of the spectrum of —h2A + V(x), i.e.,

b (1) 2 [ VeGP der [ VGG b

~
kinetic en. potential en.

= inf
Jrn [9(x)|? dx=1
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Detour: Spectral gaps for Schrédinger operators imply subellipticity for
Grushin operators

Let V : R"” — [0, 400) be a potential and i > 0. We are interested in the
bottom of the spectrum of —h2A + V(x), i.e.,

v(h) inf h? va(x)|2dx+/ V(x)[(x)|? dx
R" R"

T fan ()2 dx=1

~
kinetic en. potential en.

Model: V(x) >~ |x|P (p > 0 is the “type"). By the uncertainty principle
“Ox-0p Z B (p=—ihV)
the total energy of a "wave-packet" localized on B(0, R) is about

K2 2
7 + RP =— min ~ hr+2,
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This yields sharp sub-elliptic estimates for the degenerate elliptic operator

L=-A- V(x)aa—:2 on R+,
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This yields sharp sub-elliptic estimates for the degenerate elliptic operator

L=-A- V(x)aa—:2 on R+,

Taking the Fourier transform in t, we get the one-parameter family of PDEs

L&) =-D+EV(x) =€ (-RPA+V(x)  (h=¢™).

For the purposes of regularity theory, the limit |{| — +o0 is of interest.
This coincides with the semiclassical limit 7 — 0:
~ 4
bottom of spectrum of £(&) ~ |£|r+2
2
— (;Cf, f)L2(Rn+1) z HfHWp%’Z’

Theorem (Grushin)
The operator L is sub-elliptic of order % (which is essentially the

reciprocal of the type) at points of the degeneracy locus x = 0.
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Inspired by the above we look with new eyes at

E‘p(u):/ |VO’1u|2e_2"9+/ M|uf2e2
Ccn Cn

- VvV
O—kinetic en. potential en.
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Inspired by the above we look with new eyes at

E‘p(u):/ |VO’1u|2e_2"9+/ M|uf2e2
Ccn Cn

~~

H—Kkinetic en. potential en.

Recall that the goal is to lower bound E¥(u).
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Inspired by the above we look with new eyes at

E‘p(u):/ |VO’1u|2e_2"9+/ M|uf2e2
n (Cn

d—kinetic en. potential en.

Recall that the goal is to lower bound E¥(u).
The enemies are "wavepackets" v that are sharply localized near the

degeneration set
0%y
P =03= {det (82182k> - 0}

and have small d-kinetic energy, that is, are "almost holomorphic".
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Inspired by the above we look with new eyes at

E‘p(u):/ |VO’1u|2e_2"9+/ M|uf2e2
n (Cn

d—kinetic en. potential en.

Recall that the goal is to lower bound E¥(u).
The enemies are "wavepackets" v that are sharply localized near the

degeneration set
0%y
P =03= {det (82182k> - 0}

and have small d-kinetic energy, that is, are "almost holomorphic".

Is there an appropriate "uncertainty principle" ruling out their existence?

. Gian Maria Dall'Ara T



Lemma 2. One-dimensional Uncertainty Principle for the % Operator

Let ¢ : D — R be subharmonic.
Assume that Ay is a perturbation of |Az9|? (A € C). Then

/

du

2
et [ DpluPer? z 1A [ |uper?
82 D D

. Gian Maria Dall'Ara Y



Lemma 2. One-dimensional Uncertainty Principle for the % Operator

Let ¢ : D — R be subharmonic.
Assume that Ay is a perturbation of |Az9|? (A € C). Then

/

@ Unperturbed case uses Hormander L2 solution of % and appeared in

du

2
et [ DpluPer? z 1A [ |uper?
82 D D

[§ D., Coercivity of weighted Kohn Laplacians: the case of model
monomial weights, Trans. Amer. Math. Soc. 2017

. Gian Maria Dall'Ara Y



Lemma 2. One-dimensional Uncertainty Principle for the % Operator

Let ¢ : D — R be subharmonic.
Assume that Ay is a perturbation of |Az9|? (A € C). Then

/

@ Unperturbed case uses Hormander L2 solution of % and appeared in

du
oz

2
et [ DpluPer? z 1A [ |uper?
D D

[§ D., Coercivity of weighted Kohn Laplacians: the case of model
monomial weights, Trans. Amer. Math. Soc. 2017

@ The perturbation is quite delicate: need to control clustering of zeros
(harmonic analysis techniques).

. Gian Maria Dall'Ara Y



The second key ingredient in our approach to spectral gap estimates for E¥
is the following notion.
Approximate minimal eigenvector fields

Let ¢ : C" — R be plush. An approx. minimal eigenvector field for ¢
at p € C" is a germ at p of holomorphic vector field X(z) with the
properties that X(p) # 0 and

n a2 o
> ﬂ&(z)xk(z) < M(2)X(2)%
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The second key ingredient in our approach to spectral gap estimates for E¥
is the following notion.
Approximate minimal eigenvector fields

Let ¢ : C" — R be plush. An approx. minimal eigenvector field for ¢
at p € C" is a germ at p of holomorphic vector field X(z) with the
properties that X(p) # 0 and

n a2 o
> @dfp-Xj(z)Xk(z) < M(2)[X(2)

Trivial where Levi form is non-degenerate. Need not exist in general
(¢(z1,22) = |z1|* + |z2|* at the origin).

. Gian Maria Dall'Ara Y



The second key ingredient in our approach to spectral gap estimates for E¥
is the following notion.
Approximate minimal eigenvector fields

Let ¢ : C" — R be plush. An approx. minimal eigenvector field for ¢
at p € C" is a germ at p of holomorphic vector field X(z) with the
properties that X(p) # 0 and

n a2 o
> @dfp-Xj(z)Xk(z) < M(2)[X(2)

Trivial where Levi form is non-degenerate. Need not exist in general
(¢(z1,22) = |z1|* + |z2|* at the origin).

Lemma 3. Existence of approx. minim. e. v.-f.’s for co-rank 1

If o(z) = > 7_; |Fk(2)|? with F¢'s holomorphic, then
approx. minim. e. v.-f.’s exist at every point where the Levi form of ¢
has co-rank 1.
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Lemma 2 and Lemma 3 combined provide lower bounds on E¥, for
appropriate ¢’s.
The strategy is the following:
o Cut C" into dyadic shells {z € C": \™ < |z| < A™*1}, where A > 1
is appropriately chosen and m > 1 (local contribution is easy to deal
with).
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Lemma 2 and Lemma 3 combined provide lower bounds on E¥, for
appropriate ¢’s.
The strategy is the following:

o Cut C" into dyadic shells {z € C": \™ < |z| < A™*1}, where A > 1
is appropriately chosen and m > 1 (local contribution is easy to deal
with).

e If ¢ is homogeneous the analysis reduces to the unit shell m = 0.
Cover the "bad" region where \; = 0 (the strongly plush part is
trivial).
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Lemma 2 and Lemma 3 combined provide lower bounds on E¥, for
appropriate ¢’s.
The strategy is the following:

o Cut C" into dyadic shells {z € C": \™ < |z| < A™*1}, where A > 1
is appropriately chosen and m > 1 (local contribution is easy to deal
with).

e If ¢ is homogeneous the analysis reduces to the unit shell m = 0.
Cover the "bad" region where \; = 0 (the strongly plush part is
trivial).

@ At each point where \; vanishes and Levi corank is one use the
complex flow of an approx. minim. eigenvector field to foliate a
neighborhood into discs (Lemma 3).
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Lemma 2 and Lemma 3 combined provide lower bounds on E¥, for
appropriate ¢’s.
The strategy is the following:

o Cut C" into dyadic shells {z € C": \™ < |z| < A™*1}, where A > 1
is appropriately chosen and m > 1 (local contribution is easy to deal
with).

e If ¢ is homogeneous the analysis reduces to the unit shell m = 0.
Cover the "bad" region where \; = 0 (the strongly plush part is
trivial).

@ At each point where \; vanishes and Levi corank is one use the
complex flow of an approx. minim. eigenvector field to foliate a
neighborhood into discs (Lemma 3).

@ Apply one-dimensional uncertainty principle to each disc (Lemma 2).
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The strategy above allows to prove the following

Theorem

Let Q C C"*! be d-homogeneous special of finite type (at the origin), with
associated map F : P"~1 — P"~1_ Assume that co-rank of Jacobian of
F is at most one*.
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The strategy above allows to prove the following

Theorem

Let Q C C"*! be d-homogeneous special of finite type (at the origin), with
associated map F : P"~1 — P"~1_ Assume that co-rank of Jacobian of
F is at most one*. Then

1
Ssharp(Q' 0) = m’

where t(F) = sup,, v(F o), sup is over non-singular analytic discs
v :D — P! and v(G) is the order of vanishing of G — G(0).
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The strategy above allows to prove the following

Theorem

Let Q C C"*! be d-homogeneous special of finite type (at the origin), with
associated map F : P"~1 — P"~1_ Assume that co-rank of Jacobian of
F is at most one*. Then

1
Ssharp(Q' 0) = m’

where t(F) = sup,, v(F o), sup is over non-singular analytic discs
v :D — P! and v(G) is the order of vanishing of G — G(0).

The quantity 2 max{d, t(F)} equals the upper semicontinuous envelop of
the D'Angelo type at the origin.

*This forces low-dimensionality: n+ 1 <5.
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The strategy above allows to prove the following

Theorem

Let Q C C"*! be d-homogeneous special of finite type (at the origin), with
associated map F : P"~1 — P"~1_ Assume that co-rank of Jacobian of
F is at most one*. Then

1
Q0)= ——————,
sharp(40) = 3 ()
where t(F) = sup,, v(F o), sup is over non-singular analytic discs
v :D — P! and v(G) is the order of vanishing of G — G(0).
The quantity 2 max{d, t(F)} equals the upper semicontinuous envelop of
the D'Angelo type at the origin.

*This forces low-dimensionality: n+ 1 <5.
Thanks a lot for your attention!

. Gian Maria Dall'Ara Y



