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Let Ω be a domain in Cn. The celebrated ∂-problem (a.k.a. the
inhomogenous C-R eq.’s) is the system of first order PDEs{

∂̄f = u

∂̄u = 0

where f is a complex-valued function and u is a (0, 1)-form, both defined
on Ω.

In this talk I want to focus on the local regularity problem for ∂̄.
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(Interior) ellipticity:

u ∈ Hs near x0 ∈ Ω =⇒ f ∈ Hs+1 near x0

Lack of uniqueness: f is a sol. iff f + g is a sol., for any holomorphic g
=⇒ to talk about regularity at the boundary we need to choose a
particular solution.
(Spencer’s extension of) Hodge theory provides the right framework
to do that, leading to the ∂-Neumann problem, a noncoercive
boundary value problem to which the elliptic theory of BVPs cannot
be applied.
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We have the following basic L2 existence result.

L2 Existence Theorem (Hörmander 1965)

If the domain Ω is bounded and pseudoconvex, then the ∂-problem{
∂f = u ∈ L2

0,1(Ω)

∂u = 0

admits an L2 solution.

The canonical solution is the one orthogonal to the null-space of ∂ in
L2(Ω), a.k.a. the Bergman space A2(Ω).
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The L2 existence theorem boils down to the global a priori estimate

||∂u||2 + ||∂∗u||2︸ ︷︷ ︸
quad. form of complex Laplacian

& ||u||2 ∀u ∈ D0,1 = C∞0,1(Ω) ∩ dom(∂
∗
)

where || · || are L2 norms, and

D0,1 = {u ∈ C∞0,1(Ω): int(∂r)u = 0 on bΩ} (r def. fct. of Ω).
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Subellipticity Problem

Assume now that Ω is bdd pscvx and smooth. Is the ∂-problem
∂f = u ∈ L2

0,1(Ω)

∂u = 0
f ⊥ O(Ω) ∩ L2(Ω)

locally regular up to the boundary?

More precisely, given x0 ∈ bΩ, is there an s > 0 with the property that (for
every t ≥ 0)

u ∈ Ht
(0,1) near x0 =⇒ f ∈ Ht+s near x0 ?

In this case, one says that the problem is s-subelliptic at the boundary
point x0.
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It is enough to prove the subelliptic gain of regularity at the level t = 0.

Theorem (Kohn–Nirenberg 1965)

Let Ω be bdd smooth pscvx and let x0 ∈ bΩ. Assume that the a priori
subelliptic estimate of order s > 0

||∂u||2 + ||∂∗u||2 & ||u||2s ∀u ∈ D0,1 : suppu ⊆ U

holds, where || · ||s is the Hs Sobolev norm, and U is a neighborhood of x0.

Then the ∂-problem on Ω is s-subelliptic at x0:

if the datum u ∈ Ht
(0,1) near x0 =⇒ canonical sol. f ∈ Ht+s near x0
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Subellipticity problem
It comes in three flavors:

1 Qualitative: determine necessary/sufficient conditions for the validity
of an s-subelliptic estimate at a boundary point x0, for some s > 0
(unquantified).

2 Quantitative: determine a quantitatively controlled s s.t. an
s-subelliptic estimate holds/does not hold at a given boundary point
x0.

3 Sharp: determine the maximal* value s = ssharp(Ω; x0) such that an
s-subelliptic estimate holds at a given boundary point x0.

*actually, supremum.
The answers to these problems are deeply tied to the local CR geometry of
the boundary near the point x0 of interest.
A lot is known about (1) and (2), but (3) is widely open, and very
(unreasonably?) difficult in general (Catlin–D’Angelo 2010).
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The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control)
of ssharp(Ω; x0) becomes apparent from the following considerations:

1 the function x0 7−→ ssharp(Ω; x0) is lower semicontinuous;
2 the D’Angelo type x0 7→ ∆1(bΩ; x0) is not upper semicontinuous

(D’Angelo 1982).
Hence no pointwise continuous "inverse relation" between the two
quantities is possible.
Upper semicontinuous envelope of the type? More on this later.
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A few known results:
1 Kohn 1963-1964: if bΩ is strongly pscvx at x0, then

ssharp(Ω; x0) = 1
2 .

2 Kohn 1972 - Greiner 1974: If Ω ⊂ C2, then ssharp(Ω; x0) = 1
2m ,

where 2m is the type of bΩ at x0.
3 Kohn 1979: Subelliptic multiplier ideals: if bΩ is real-analytic near

x0, then ssharp(Ω; x0) > 0 iff bΩ contains no (possibly singular)
complex curve through x0.

4 Catlin 1983: ssharp(Ω; x0) ≤ 1/∆1(bΩ; x0), where ∆1(bΩ; x0) is the
maximal order of contact at x0 of bΩ and a (possibly singular)
complex curve.

5 Catlin 1987: ssharp(Ω; x0) ≥ ∆1(bΩ; x0)−n
2∆1(bΩ;x0)n

2
.

6 Effectivity in "Kohn’s algorithm": Kim–Zaitsev 2021
ssharp(Ω; x0) ≥ e−Cn∆1(bΩ;x0)Cn (also Siu 2010-2017).

7 Zimmer 2022: ssharp(Ω; x0) ≥ 1/max line type on convex finite type
domains (via Gromov hyperbolicity).
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In the rest of the talk I am going to:
1 present an approach to subellipticity on rigid domains

Ω = {(z , zn+1) : Im(zn+1) > ϕ(z)}, ϕ plush,

alternative to Catlin’s potential-theoretic method and Kohn’s
algorithm(s), and based on spectral gap estimates for an
appropriate energy form Eϕ.

2 apply our method to a class of homogeneous rigid domains, where
we are successful in determining the sharp order of subellipticity in
terms of the geometry of Ω.

Let’s begin by defining homogeneous rigid domains.
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Dfn

A domain Ω ⊂ Cn+1 is said to be a d-homogeneous special domain if

Ω =

{
(z , zn+1) ∈ Cn+1 : Im(zn+1) >

n∑
k=1

|Fk(z)|2
}
,

where each Fk is a homogeneous polynomial of degree d .

Such a domain is of D’Angelo finite type (everywhere) iff

{F1 = . . . = Fn = 0} = {0},

that is, iff [z1 : · · · : zn] 7−→ [F1(z1, . . . , zn) : · · · : Fn(z1, . . . , zn)] is a
globally defined holomorphic self-map of the projective space

F : Pn−1 → Pn−1
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Homogeneous special domains have various attractive features:
1 the CR geometry of their boundary (in particular D’Angelo and other

"types") boils down to the structure of the singularities of
F : Pn−1 → Pn−1, that is, critical points, rank of the Jacobian at
critical points, geometry of the null space of the Jacobian, ...

2 two symmetries to spend: homogeneity and rigidity (translation
invariance in Re(zn+1)).

3 rich enough to display a variety of behaviors, including the
aforementioned lack of semicontinuity of the type. E.g.,

Ω = {Im(z4) > |z2
1 + z2z3|2 + |z2

2 + z1z3|2 + |z2
3 |2}

has ∆1(bΩ; 0) = 4 and ∆1(bΩ; p) = 8 on a 3-dim submanifold
accumulating at 0.
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The key objects in our analysis are the

Energy forms Eϕ

Given ϕ plush we define

Eϕ(u) =

∫
Cn

|∇0,1u|2e−2ϕ +

∫
Cn

λ1|u|2e−2ϕ (u ∈ C∞c (Cn)),

where

λ1 = min. eigenvalue of
(

∂2ϕ

∂zj∂z̄k

)n

j ,k=1
(Levi form)

Antecedents: Christ 1991, Berndtsson 1996, Haslinger–Helffer 2007
etc.
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The relevance of the energy forms Eϕ to the subellipticity problem is
revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity
Let ϕ be 2d-homogeneous plush, and let Ω be the associated rigid domain.
Assume that

Eϕ(ψ) & R−2+4ds
∫
Cn

|ψ|2e−2ϕ ∀ψ ∈ C∞c (B(R)), ∀R large.

Then ssharp(Ω; 0) ≥ s.

Proof uses reduction to a ∂̄b problem, Fourier analysis in the rigid direction,
homogeneity, and a bit of microlocal analysis. All ingredients are standard.

Gian Maria Dall’Ara 15 / 22



The relevance of the energy forms Eϕ to the subellipticity problem is
revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity
Let ϕ be 2d-homogeneous plush, and let Ω be the associated rigid domain.
Assume that

Eϕ(ψ) & R−2+4ds
∫
Cn

|ψ|2e−2ϕ ∀ψ ∈ C∞c (B(R)), ∀R large.

Then ssharp(Ω; 0) ≥ s.

Proof uses reduction to a ∂̄b problem, Fourier analysis in the rigid direction,
homogeneity, and a bit of microlocal analysis. All ingredients are standard.

Gian Maria Dall’Ara 15 / 22



Detour: Spectral gaps for Schrödinger operators imply subellipticity for
Grushin operators

Let V : Rn → [0,+∞) be a potential and ~ > 0. We are interested in the
bottom of the spectrum of −~2∆ + V (x), i.e.,

bV (~) = inf∫
Rn |ψ(x)|2 dx=1

~2
∫
Rn

|∇ψ(x)|2 dx︸ ︷︷ ︸
kinetic en.

+

∫
Rn

V (x)|ψ(x)|2 dx︸ ︷︷ ︸
potential en.



Model: V (x) ' |x |p (p > 0 is the “type"). By the uncertainty principle

“δx · δp & ~” (p = −i~∇)

the total energy of a "wave-packet" localized on B(0,R) is about

~2

R2 + Rp =⇒ min ' ~
2p
p+2 .
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This yields sharp sub-elliptic estimates for the degenerate elliptic operator
L = −∆− V (x) ∂

2

∂t2
on Rn+1.

Taking the Fourier transform in t, we get the one-parameter family of PDEs

L̂(ξ) = −∆ + ξ2V (x) = ξ2
(
−~2∆ + V (x)

)
(~ = |ξ|−1).

For the purposes of regularity theory, the limit |ξ| → +∞ is of interest.
This coincides with the semiclassical limit ~→ 0:

bottom of spectrum of L̂(ξ) ' |ξ|
4

p+2

=⇒ (Lf , f )L2(Rn+1) & ‖f ‖2
W

2
p+2 ,2 ,

Theorem (Grushin)

The operator L is sub-elliptic of order 2
p+2 (which is essentially the

reciprocal of the type) at points of the degeneracy locus x = 0.
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Inspired by the above we look with new eyes at

Eϕ(u) =

∫
Cn

|∇0,1u|2e−2ϕ︸ ︷︷ ︸
∂̄−kinetic en.

+

∫
Cn

λ1|u|2e−2ϕ︸ ︷︷ ︸
potential en.

Recall that the goal is to lower bound Eϕ(u).
The enemies are "wavepackets" u that are sharply localized near the
degeneration set

{λ1 = 0} =

{
det

(
∂2ϕ

∂zj∂z̄k

)
= 0
}

and have small ∂̄-kinetic energy, that is, are "almost holomorphic".

Is there an appropriate "uncertainty principle" ruling out their existence?
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Lemma 2. One-dimensional Uncertainty Principle for the ∂
∂z̄ Operator

Let ϕ : D→ R be subharmonic.
Assume that ∆ϕ is a perturbation of |Azd |2 (A ∈ C). Then∫

D

∣∣∣∣∂u∂z̄
∣∣∣∣2 e−2ϕ +

∫
D

∆ϕ|u|2e−2ϕ & |A|
2

d+1

∫
D
|u|2e−2ϕ

Unperturbed case uses Hörmander L2 solution of ∂
∂z̄ and appeared in

D., Coercivity of weighted Kohn Laplacians: the case of model
monomial weights, Trans. Amer. Math. Soc. 2017

The perturbation is quite delicate: need to control clustering of zeros
(harmonic analysis techniques).
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The second key ingredient in our approach to spectral gap estimates for Eϕ

is the following notion.

Approximate minimal eigenvector fields
Let ϕ : Cn → R be plush. An approx. minimal eigenvector field for ϕ
at p ∈ Cn is a germ at p of holomorphic vector field X (z) with the
properties that X (p) 6= 0 and

n∑
j ,k=1

∂2ϕ

∂zj∂z̄k
Xj(z)Xk(z) . λ1(z)|X (z)|2.

Trivial where Levi form is non-degenerate. Need not exist in general
(ϕ(z1, z2) = |z1|4 + |z2|4 at the origin).

Lemma 3. Existence of approx. minim. e. v.-f.’s for co-rank 1

If ϕ(z) =
∑n

k=1 |Fk(z)|2 with Fk ’s holomorphic, then
approx. minim. e. v.-f.’s exist at every point where the Levi form of ϕ
has co-rank 1.
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Lemma 2 and Lemma 3 combined provide lower bounds on Eϕ, for
appropriate ϕ’s.
The strategy is the following:

Cut Cn into dyadic shells {z ∈ Cn : λm ≤ |z | ≤ λm+1}, where λ > 1
is appropriately chosen and m ≥ 1 (local contribution is easy to deal
with).

If ϕ is homogeneous the analysis reduces to the unit shell m = 0.
Cover the "bad" region where λ1 = 0 (the strongly plush part is
trivial).
At each point where λ1 vanishes and Levi corank is one use the
complex flow of an approx. minim. eigenvector field to foliate a
neighborhood into discs (Lemma 3).
Apply one-dimensional uncertainty principle to each disc (Lemma 2).
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The strategy above allows to prove the following

Theorem

Let Ω ⊂ Cn+1 be d-homogeneous special of finite type (at the origin), with
associated map F : Pn−1 → Pn−1. Assume that co-rank of Jacobian of
F is at most one*.

Then

ssharp(Ω; 0) =
1

2max{d , t(F)}
,

where t(F) = supγ ν(F ◦ γ), sup is over non-singular analytic discs
γ : D→ Pn−1 and ν(G ) is the order of vanishing of G − G (0).
The quantity 2max{d , t(F)} equals the upper semicontinuous envelop of
the D’Angelo type at the origin.

*This forces low-dimensionality: n + 1 ≤ 5.
Thanks a lot for your attention!
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