Sharp subelliptic estimates for the $\bar{\partial}$ -Neumann problem joint w. S. Mongodi (Univ. Milano Bicocca)

Gian Maria Dall'Ara

Istituto Nazionale di Alta Matematica Research unit SNS (Pisa)

Complex Analysis, Geometry, and Dynamics Portorož, 5-9/6/2023

Let Ω be a domain in \mathbb{C}^n . The celebrated $\overline{\partial}$ -problem (a.k.a. the inhomogenous C-R eq.'s) is the system of first order PDEs

$$\begin{cases} \bar{\partial}f = u\\ \bar{\partial}u = 0 \end{cases}$$

where f is a complex-valued function and u is a (0, 1)-form, both defined on Ω .

Let Ω be a domain in \mathbb{C}^n . The celebrated $\overline{\partial}$ -problem (a.k.a. the inhomogenous C-R eq.'s) is the system of first order PDEs

$$\begin{cases} \bar{\partial}f = u\\ \bar{\partial}u = 0 \end{cases}$$

where f is a complex-valued function and u is a (0, 1)-form, both defined on Ω .

In this talk I want to focus on the local regularity problem for $\bar{\partial}$.

• (Interior) ellipticity:

$$u \in H^s$$
 near $x_0 \in \Omega \implies f \in H^{s+1}$ near x_0

2

イロン イ団 と イヨン イヨン

• (Interior) ellipticity:

$$u \in H^s$$
 near $x_0 \in \Omega \implies f \in H^{s+1}$ near x_0

Lack of uniqueness: f is a sol. iff f + g is a sol., for any holomorphic g ⇒ to talk about regularity at the boundary we need to choose a particular solution.

A B M A B M

• (Interior) ellipticity:

$$u \in H^s$$
 near $x_0 \in \Omega \implies f \in H^{s+1}$ near x_0

- Lack of uniqueness: f is a sol. iff f + g is a sol., for any holomorphic g ⇒ to talk about regularity at the boundary we need to choose a particular solution.
- (Spencer's extension of) Hodge theory provides the right framework to do that, leading to the ∂-Neumann problem, a noncoercive boundary value problem to which the elliptic theory of BVPs cannot be applied.

A B F A B F

We have the following basic L^2 existence result.

글 🕨 🔺 글 🕨

We have the following basic L^2 existence result.

L² Existence Theorem (Hörmander 1965)

If the domain Ω is bounded and **pseudoconvex**, then the $\overline{\partial}$ -problem

$$\begin{cases} \overline{\partial} f = u \in L^2_{0,1}(\Omega) \\ \overline{\partial} u = 0 \end{cases}$$

admits an L^2 solution.

We have the following basic L^2 existence result.

L² Existence Theorem (Hörmander 1965)

If the domain Ω is bounded and **pseudoconvex**, then the $\overline{\partial}$ -problem

$$\begin{cases} \overline{\partial} f = u \in L^2_{0,1}(\Omega) \\ \overline{\partial} u = 0 \end{cases}$$

admits an L^2 solution.

The **canonical solution** is the one orthogonal to the null-space of $\overline{\partial}$ in $L^2(\Omega)$, a.k.a. the Bergman space $A^2(\Omega)$.

The L^2 existence theorem boils down to the global a priori estimate

$$\underbrace{||\overline{\partial} u||^2 + ||\overline{\partial}^* u||^2}_{\text{form of complex Laplacian}} \gtrsim ||u||^2 \qquad \forall u \in \mathcal{D}_{0,1} = C_{0,1}^{\infty}(\overline{\Omega}) \cap \operatorname{dom}(\overline{\partial}^*)$$

where $|| \cdot ||$ are L^2 norms, and

quad

 $\mathcal{D}_{0,1}=\{u\in C^\infty_{0,1}(\overline{\Omega})\colon \ \mathrm{int}(\overline{\partial} r)u=0 \ \mathrm{on} \ b\Omega\} \qquad (r \ \mathrm{def.} \ \mathrm{fct.} \ \mathrm{of} \ \Omega).$

イロト 不得下 イヨト イヨト 二日

Assume now that Ω is bdd pscvx and **smooth**. Is the $\overline{\partial}$ -problem

$$\left\{egin{aligned} &\overline{\partial}f = u \in L^2_{0,1}(\Omega) \ &\overline{\partial}u = 0 \ &f \perp \mathcal{O}(\Omega) \cap L^2(\Omega) \end{aligned}
ight.$$

locally regular up to the boundary?

Assume now that Ω is bdd pscvx and **smooth**. Is the $\overline{\partial}$ -problem

$$egin{cases} \overline{\partial} f = u \in L^2_{0,1}(\Omega) \ \overline{\partial} u = 0 \ f \perp \mathcal{O}(\Omega) \cap L^2(\Omega) \end{cases}$$

locally regular up to the boundary?

More precisely, given $x_0 \in b\Omega$, is there an s > 0 with the property that (for every $t \ge 0$)

$$u \in H_{(0,1)}^t$$
 near $x_0 \implies f \in H^{t+s}$ near x_0 ?

Assume now that Ω is bdd pscvx and **smooth**. Is the $\overline{\partial}$ -problem

$$egin{cases} \overline{\partial} f = u \in L^2_{0,1}(\Omega) \ \overline{\partial} u = 0 \ f \perp \mathcal{O}(\Omega) \cap L^2(\Omega) \end{cases}$$

locally regular up to the boundary?

More precisely, given $x_0 \in b\Omega$, is there an s > 0 with the property that (for every $t \ge 0$)

$$u \in H^t_{(0,1)}$$
 near $x_0 \implies f \in H^{t+s}$ near x_0 ?

In this case, one says that the problem is *s*-subelliptic at the boundary point x_0 .

It is enough to prove the subelliptic gain of regularity at the level t = 0.

Theorem (Kohn-Nirenberg 1965)

Let Ω be bdd smooth pscvx and let $x_0 \in b\Omega$. Assume that the a priori subelliptic estimate of order s > 0

$$||\overline{\partial}u||^2 + ||\overline{\partial}^*u||^2 \gtrsim ||u||_{\mathbf{s}}^2 \qquad \forall u \in \mathcal{D}_{0,1}: \text{ supp} u \subseteq U$$

holds, where $|| \cdot ||_s$ is the H^s Sobolev norm, and U is a neighborhood of x_0 .

It is enough to prove the subelliptic gain of regularity at the level t = 0.

Theorem (Kohn-Nirenberg 1965)

Let Ω be bdd smooth pscvx and let $x_0 \in b\Omega$. Assume that the a priori subelliptic estimate of order s > 0

$$||\overline{\partial}u||^2 + ||\overline{\partial}^*u||^2 \gtrsim ||u||_{\mathbf{s}}^2 \qquad \forall u \in \mathcal{D}_{0,1}: \text{ supp} u \subseteq U$$

holds, where $|| \cdot ||_s$ is the H^s Sobolev norm, and U is a neighborhood of x_0 . Then the $\overline{\partial}$ -problem on Ω is *s*-subelliptic at x_0 :

 $\text{ if the datum } u \in H^t_{(0,1)} \text{ near } x_0 \implies \quad \text{canonical sol. } f \in H^{t+s} \text{ near } x_0 \\$

It comes in three flavors:

Qualitative: determine necessary/sufficient conditions for the validity of an *s*-subelliptic estimate at a boundary point x₀, for some s > 0 (unquantified).

It comes in three flavors:

- Qualitative: determine necessary/sufficient conditions for the validity of an *s*-subelliptic estimate at a boundary point x₀, for some s > 0 (unquantified).
- Quantitative: determine a quantitatively controlled s s.t. an s-subelliptic estimate holds/does not hold at a given boundary point x₀.

It comes in three flavors:

- Qualitative: determine necessary/sufficient conditions for the validity of an *s*-subelliptic estimate at a boundary point x₀, for some s > 0 (unquantified).
- Quantitative: determine a quantitatively controlled s s.t. an s-subelliptic estimate holds/does not hold at a given boundary point x₀.
- Sharp: determine the maximal* value s = s_{sharp}(Ω; x₀) such that an s-subelliptic estimate holds at a given boundary point x₀.

*actually, supremum.

.

It comes in three flavors:

- Qualitative: determine necessary/sufficient conditions for the validity of an *s*-subelliptic estimate at a boundary point x₀, for some s > 0 (unquantified).
- Quantitative: determine a quantitatively controlled s s.t. an s-subelliptic estimate holds/does not hold at a given boundary point x₀.
- Sharp: determine the maximal* value s = s_{sharp}(Ω; x₀) such that an s-subelliptic estimate holds at a given boundary point x₀.

*actually, supremum.

The answers to these problems are deeply tied to the local CR geometry of the boundary near the point x_0 of interest.

A lot is known about (1) and (2), but (3) is widely open, and very (unreasonably?) difficult in general (Catlin–D'Angelo 2010).

・ロト ・四ト ・ヨト ・ヨト

The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control) of $s_{\text{sharp}}(\Omega; x_0)$ becomes apparent from the following considerations:

The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control) of $s_{sharp}(\Omega; x_0)$ becomes apparent from the following considerations:

- the function $x_0 \mapsto s_{sharp}(\Omega; x_0)$ is lower semicontinuous;
- 3 the D'Angelo type $x_0 \mapsto \Delta^1(b\Omega; x_0)$ is not upper semicontinuous (D'Angelo 1982).

Hence no pointwise continuous "inverse relation" between the two quantities is possible.

The semicontinuity issue

A key difficulty in trying to obtain a geometric characterization (or control) of $s_{sharp}(\Omega; x_0)$ becomes apparent from the following considerations:

- the function $x_0 \mapsto s_{sharp}(\Omega; x_0)$ is lower semicontinuous;
- ② the D'Angelo type $x_0 → \Delta^1(b\Omega; x_0)$ is not upper semicontinuous (D'Angelo 1982).

Hence no pointwise continuous "inverse relation" between the two quantities is possible.

Upper semicontinuous envelope of the type? More on this later.

• Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.

3

イロト イヨト イヨト イヨト

- Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.
- **2** Kohn 1972 Greiner 1974: If $\Omega \subset \mathbb{C}^2$, then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2m}$, where 2m is the type of $b\Omega$ at x_0 .

- Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.
- **2** Kohn 1972 Greiner 1974: If $\Omega \subset \mathbb{C}^2$, then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2m}$, where 2m is the type of $b\Omega$ at x_0 .
- Stohn 1979: Subelliptic multiplier ideals: if bΩ is real-analytic near x₀, then s_{sharp}(Ω; x₀) > 0 iff bΩ contains no (possibly singular) complex curve through x₀.

- Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.
- **2** Kohn 1972 Greiner 1974: If $\Omega \subset \mathbb{C}^2$, then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2m}$, where 2m is the type of $b\Omega$ at x_0 .
- Stohn 1979: Subelliptic multiplier ideals: if bΩ is real-analytic near x₀, then s_{sharp}(Ω; x₀) > 0 iff bΩ contains no (possibly singular) complex curve through x₀.
- Catlin 1983: s_{sharp}(Ω; x₀) ≤ 1/Δ¹(bΩ; x₀), where Δ¹(bΩ; x₀) is the maximal order of contact at x₀ of bΩ and a (possibly singular) complex curve.

- Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.
- **2** Kohn 1972 Greiner 1974: If $\Omega \subset \mathbb{C}^2$, then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2m}$, where 2m is the type of $b\Omega$ at x_0 .
- Stohn 1979: Subelliptic multiplier ideals: if bΩ is real-analytic near x₀, then s_{sharp}(Ω; x₀) > 0 iff bΩ contains no (possibly singular) complex curve through x₀.
- Catlin 1983: s_{sharp}(Ω; x₀) ≤ 1/Δ¹(bΩ; x₀), where Δ¹(bΩ; x₀) is the maximal order of contact at x₀ of bΩ and a (possibly singular) complex curve.
- Catlin 1987: $s_{\text{sharp}}(\Omega; x_0) \ge \Delta^1(b\Omega; x_0)^{-n^2 \Delta^1(b\Omega; x_0)^{n^2}}$.

・ロト ・四ト ・ヨト ・ ヨト …

- Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.
- **2** Kohn 1972 Greiner 1974: If $\Omega \subset \mathbb{C}^2$, then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2m}$, where 2m is the type of $b\Omega$ at x_0 .
- Stohn 1979: Subelliptic multiplier ideals: if bΩ is real-analytic near x₀, then s_{sharp}(Ω; x₀) > 0 iff bΩ contains no (possibly singular) complex curve through x₀.
- Catlin 1983: s_{sharp}(Ω; x₀) ≤ 1/Δ¹(bΩ; x₀), where Δ¹(bΩ; x₀) is the maximal order of contact at x₀ of bΩ and a (possibly singular) complex curve.
- **5** Catlin 1987: $s_{\text{sharp}}(\Omega; x_0) \ge \Delta^1(b\Omega; x_0)^{-n^2 \Delta^1(b\Omega; x_0)^{n^2}}$.
- Effectivity in "Kohn's algorithm": Kim–Zaitsev 2021 $s_{\text{sharp}}(\Omega; x_0) \ge e^{-C_n \Delta^1(b\Omega; x_0)^{C_n}}$ (also Siu 2010-2017).

- Kohn 1963-1964: if $b\Omega$ is strongly pscvx at x_0 , then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2}$.
- **3** Kohn 1972 Greiner 1974: If $\Omega \subset \mathbb{C}^2$, then $s_{\text{sharp}}(\Omega; x_0) = \frac{1}{2m}$, where 2m is the type of $b\Omega$ at x_0 .
- Stohn 1979: Subelliptic multiplier ideals: if bΩ is real-analytic near x₀, then s_{sharp}(Ω; x₀) > 0 iff bΩ contains no (possibly singular) complex curve through x₀.
- Catlin 1983: s_{sharp}(Ω; x₀) ≤ 1/Δ¹(bΩ; x₀), where Δ¹(bΩ; x₀) is the maximal order of contact at x₀ of bΩ and a (possibly singular) complex curve.
- **5** Catlin 1987: $s_{\text{sharp}}(\Omega; x_0) \ge \Delta^1(b\Omega; x_0)^{-n^2 \Delta^1(b\Omega; x_0)^{n^2}}$.
- Effectivity in "Kohn's algorithm": Kim–Zaitsev 2021 $s_{\text{sharp}}(\Omega; x_0) \ge e^{-C_n \Delta^1(b\Omega; x_0)^{C_n}}$ (also Siu 2010-2017).
- Zimmer 2022: s_{sharp}(Ω; x₀) ≥ 1/max line type on convex finite type domains (via Gromov hyperbolicity).

In the rest of the talk I am going to:

present an approach to subellipticity on rigid domains

$$\Omega = \{(z, z_{n+1}): \operatorname{Im}(z_{n+1}) > \varphi(z)\}, \quad \varphi \quad \text{plush},$$

alternative to Catlin's potential-theoretic method and Kohn's algorithm(s), and based on **spectral gap estimates** for an appropriate energy form E^{φ} .

In the rest of the talk I am going to:

present an approach to subellipticity on rigid domains

$$\Omega = \{(z, z_{n+1}): \operatorname{Im}(z_{n+1}) > \varphi(z)\}, \quad \varphi \quad \text{plush},$$

alternative to Catlin's potential-theoretic method and Kohn's algorithm(s), and based on **spectral gap estimates** for an appropriate energy form E^{φ} .

apply our method to a class of homogeneous rigid domains, where we are successful in determining the sharp order of subellipticity in terms of the geometry of Ω. In the rest of the talk I am going to:

present an approach to subellipticity on rigid domains

$$\Omega = \{(z, z_{n+1}): \operatorname{Im}(z_{n+1}) > \varphi(z)\}, \quad \varphi \quad \text{plush},$$

alternative to Catlin's potential-theoretic method and Kohn's algorithm(s), and based on **spectral gap estimates** for an appropriate energy form E^{φ} .

- apply our method to a class of homogeneous rigid domains, where we are successful in determining the sharp order of subellipticity in terms of the geometry of Ω.
- Let's begin by defining homogeneous rigid domains.

Dfn

A domain $\Omega \subset \mathbb{C}^{n+1}$ is said to be a *d*-homogeneous special domain if

$$\Omega = \left\{ (z, z_{n+1}) \in \mathbb{C}^{n+1} \colon \operatorname{Im}(z_{n+1}) > \sum_{k=1}^{n} |F_k(z)|^2
ight\},$$

where each F_k is a homogeneous polynomial of degree d.

< 注 → < 注 →

Dfn

A domain $\Omega \subset \mathbb{C}^{n+1}$ is said to be a *d*-homogeneous special domain if

$$\Omega = \left\{ (z, z_{n+1}) \in \mathbb{C}^{n+1} \colon \operatorname{Im}(z_{n+1}) > \sum_{k=1}^{n} |F_k(z)|^2 \right\},$$

where each F_k is a homogeneous polynomial of degree d. Such a domain is of D'Angelo finite type (everywhere) iff

$$\{F_1 = \ldots = F_n = 0\} = \{0\},\$$

that is, iff $[z_1 : \cdots : z_n] \mapsto [F_1(z_1, \ldots, z_n) : \cdots : F_n(z_1, \ldots, z_n)]$ is a globally defined holomorphic self-map of the projective space

$$\mathsf{F}: \mathbb{P}^{n-1} \to \mathbb{P}^{n-1}$$

Homogeneous special domains have various attractive features:

 the CR geometry of their boundary (in particular D'Angelo and other "types") boils down to the structure of the singularities of F : Pⁿ⁻¹ → Pⁿ⁻¹, that is, critical points, rank of the Jacobian at critical points, geometry of the null space of the Jacobian, ...

< 回 > < 三 > < 三 >

Homogeneous special domains have various attractive features:

- the CR geometry of their boundary (in particular D'Angelo and other "types") boils down to the structure of the singularities of F : Pⁿ⁻¹ → Pⁿ⁻¹, that is, critical points, rank of the Jacobian at critical points, geometry of the null space of the Jacobian, ...
- **2** two symmetries to spend: homogeneity and rigidity (translation invariance in $\operatorname{Re}(z_{n+1})$).

・ロト ・ 四ト ・ 日下 ・ 一日 ・

Homogeneous special domains have various attractive features:

- the CR geometry of their boundary (in particular D'Angelo and other "types") boils down to the structure of the singularities of $F : \mathbb{P}^{n-1} \to \mathbb{P}^{n-1}$, that is, critical points, rank of the Jacobian at critical points, geometry of the null space of the Jacobian, ...
- 2 two symmetries to spend: homogeneity and rigidity (translation invariance in $\operatorname{Re}(z_{n+1})$).
- rich enough to display a variety of behaviors, including the aforementioned lack of semicontinuity of the type. E.g.,

$$\Omega = \{ \operatorname{Im}(z_4) > |z_1^2 + z_2 z_3|^2 + |z_2^2 + z_1 z_3|^2 + |z_3^2|^2 \}$$

has $\Delta^1(b\Omega; 0) = 4$ and $\Delta^1(b\Omega; p) = 8$ on a 3-dim submanifold accumulating at 0.

The key objects in our analysis are the

Energy forms E^φ

Given φ plush we define

$$\mathsf{E}^{\varphi}(u) = \int_{\mathbb{C}^n} |\nabla^{0,1}u|^2 e^{-2\varphi} + \int_{\mathbb{C}^n} \lambda_1 |u|^2 e^{-2\varphi} \qquad (u \in C^{\infty}_c(\mathbb{C}^n)),$$

where

$$\lambda_1 = \min. \text{ eigenvalue of } \left(\frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k}\right)_{j,k=1}^n$$
 (Levi form)

э

→ < ∃ →</p>

The key objects in our analysis are the

Energy forms E^φ

Given φ plush we define

$$\mathsf{E}^{\varphi}(u) = \int_{\mathbb{C}^n} |\nabla^{0,1}u|^2 e^{-2\varphi} + \int_{\mathbb{C}^n} \lambda_1 |u|^2 e^{-2\varphi} \qquad (u \in C^{\infty}_c(\mathbb{C}^n)),$$

where

$$\lambda_1 = \min. \text{ eigenvalue of } \left(\frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k}\right)_{j,k=1}^n$$
 (Levi form)

Antecedents: Christ 1991, Berndtsson 1996, Haslinger-Helffer 2007 etc.

The relevance of the energy forms E^φ to the subellipticity problem is revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity

Let φ be 2d-homogeneous plush, and let Ω be the associated rigid domain. Assume that

$$\mathsf{E}^{\varphi}(\psi)\gtrsim R^{-2+4ds}\int_{\mathbb{C}^n}|\psi|^2e^{-2arphi}\qquad orall\psi\in C^\infty_c(B(R)),\quad orall R\, ext{ large}.$$

Then $s_{\text{sharp}}(\Omega; 0) \geq s$.

The relevance of the energy forms E^φ to the subellipticity problem is revealed by the following

Lemma 1. Spectral gap estimates imply subellipticity

Let φ be 2d-homogeneous plush, and let Ω be the associated rigid domain. Assume that

$$\mathsf{E}^{\varphi}(\psi)\gtrsim R^{-2+4ds}\int_{\mathbb{C}^n}|\psi|^2e^{-2arphi}\qquadorall\psi\in C^\infty_c(B(R)),\quadorall R\, ext{ large}.$$

Then $s_{sharp}(\Omega; 0) \geq s$.

Proof uses reduction to a $\bar{\partial}_b$ problem, Fourier analysis in the rigid direction, homogeneity, and a bit of microlocal analysis. All ingredients are standard.

Detour: Spectral gaps for Schrödinger operators imply subellipticity for Grushin operators

Let $V : \mathbb{R}^n \to [0, +\infty)$ be a potential and $\hbar > 0$. We are interested in the bottom of the spectrum of $-\hbar^2 \Delta + V(x)$, i.e.,

$$b_{V}(\hbar) = \inf_{\int_{\mathbb{R}^{n}} |\psi(x)|^{2} dx = 1} \left\{ \underbrace{\hbar^{2} \int_{\mathbb{R}^{n}} |\nabla \psi(x)|^{2} dx}_{\text{kinetic en.}} + \underbrace{\int_{\mathbb{R}^{n}} V(x) |\psi(x)|^{2} dx}_{\text{potential en.}} \right\}$$

Detour: Spectral gaps for Schrödinger operators imply subellipticity for Grushin operators

Let $V : \mathbb{R}^n \to [0, +\infty)$ be a potential and $\hbar > 0$. We are interested in the bottom of the spectrum of $-\hbar^2 \Delta + V(x)$, i.e.,

$$b_{V}(\hbar) = \inf_{\int_{\mathbb{R}^{n}} |\psi(x)|^{2} dx = 1} \left\{ \underbrace{\hbar^{2} \int_{\mathbb{R}^{n}} |\nabla \psi(x)|^{2} dx}_{\text{kinetic en.}} + \underbrace{\int_{\mathbb{R}^{n}} V(x) |\psi(x)|^{2} dx}_{\text{potential en.}} \right\}$$

Model: $V(x) \simeq |x|^p$ (p > 0 is the "type"). By the uncertainty principle

$$\delta x \cdot \delta p \gtrsim \hbar \qquad (p = -i\hbar \nabla)$$

the total energy of a "wave-packet" localized on B(0, R) is about

$$\frac{\hbar^2}{R^2} + R^p \implies \min \simeq \hbar^{\frac{2p}{p+2}}.$$

This yields sharp sub-elliptic estimates for the degenerate elliptic operator $\mathcal{L} = -\Delta - V(x) \frac{\partial^2}{\partial t^2}$ on \mathbb{R}^{n+1} .

3

イロト イヨト イヨト イヨト

This yields sharp sub-elliptic estimates for the degenerate elliptic operator $\mathcal{L} = -\Delta - V(x) \frac{\partial^2}{\partial t^2}$ on \mathbb{R}^{n+1} .

Taking the Fourier transform in t, we get the one-parameter family of PDEs

$$\widehat{\mathcal{L}}(\xi) = -\Delta + \xi^2 V(x) = \xi^2 \left(-\hbar^2 \Delta + V(x)
ight) \qquad (\hbar = |\xi|^{-1}).$$

For the purposes of regularity theory, the limit $|\xi| \to +\infty$ is of interest. This coincides with the **semiclassical limit** $\hbar \to 0$:

$$\begin{array}{l} \text{bottom of spectrum of } \widehat{\mathcal{L}}(\xi) \simeq |\xi|^{\frac{4}{p+2}} \\ \Longrightarrow \qquad (\mathcal{L}f,f)_{L^2(\mathbb{R}^{n+1})} \gtrsim \|f\|^2_{W^{\frac{2}{p+2},2}}, \end{array}$$

Theorem (Grushin)

The operator \mathcal{L} is sub-elliptic of order $\frac{2}{p+2}$ (which is essentially the reciprocal of the type) at points of the degeneracy locus x = 0.

$$\mathsf{E}^{\varphi}(u) = \underbrace{\int_{\mathbb{C}^n} |\nabla^{0,1}u|^2 e^{-2\varphi}}_{\bar{\partial}-\text{kinetic en.}} + \underbrace{\int_{\mathbb{C}^n} \lambda_1 |u|^2 e^{-2\varphi}}_{\text{potential en.}}$$

2

イロン イ団 と イヨン イヨン

Recall that the goal is to lower bound $E^{\varphi}(u)$.

Recall that the goal is to **lower bound** $E^{\varphi}(u)$.

The enemies are "wavepackets" *u* that are **sharply localized near the degeneration set**

$$\{\lambda_1 = 0\} = \left\{ \det\left(\frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k}\right) = 0 \right\}$$

and have small $\bar{\partial}$ -kinetic energy, that is, are "almost holomorphic".

・ロト ・四ト ・ヨト ・ヨト

Recall that the goal is to lower bound $E^{\varphi}(u)$.

The enemies are "wavepackets" *u* that are **sharply localized near the degeneration set**

$$\{\lambda_1 = 0\} = \left\{ \det\left(\frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k}\right) = 0 \right\}$$

and have small $\bar{\partial}$ -kinetic energy, that is, are "almost holomorphic".

Is there an appropriate "uncertainty principle" ruling out their existence?

Lemma 2. One-dimensional Uncertainty Principle for the $\frac{\partial}{\partial \bar{z}}$ Operator Let $\varphi : \mathbb{D} \to \mathbb{R}$ be subharmonic. Assume that $\Delta \varphi$ is a perturbation of $|Az^d|^2$ ($A \in \mathbb{C}$). Then

$$\int_{\mathbb{D}} \left| \frac{\partial u}{\partial \bar{z}} \right|^2 e^{-2\varphi} + \int_{\mathbb{D}} \Delta \varphi |u|^2 e^{-2\varphi} \gtrsim |A|^{\frac{2}{d+1}} \int_{\mathbb{D}} |u|^2 e^{-2\varphi}$$

Lemma 2. One-dimensional Uncertainty Principle for the $\frac{\partial}{\partial \overline{z}}$ Operator Let $\varphi : \mathbb{D} \to \mathbb{R}$ be subharmonic. Assume that $\Delta \varphi$ is a perturbation of $|Az^d|^2$ ($A \in \mathbb{C}$). Then

$$\int_{\mathbb{D}} \left| \frac{\partial u}{\partial \bar{z}} \right|^2 e^{-2\varphi} + \int_{\mathbb{D}} \Delta \varphi |u|^2 e^{-2\varphi} \gtrsim |A|^{\frac{2}{d+1}} \int_{\mathbb{D}} |u|^2 e^{-2\varphi}$$

- Unperturbed case uses Hörmander L^2 solution of $\frac{\partial}{\partial \overline{z}}$ and appeared in
 - D., Coercivity of weighted Kohn Laplacians: the case of model monomial weights, Trans. Amer. Math. Soc. 2017

Lemma 2. One-dimensional Uncertainty Principle for the $\frac{\partial}{\partial \bar{z}}$ Operator Let $\varphi : \mathbb{D} \to \mathbb{R}$ be subharmonic. Assume that $\Delta \varphi$ is a perturbation of $|Az^d|^2$ ($A \in \mathbb{C}$). Then

$$\int_{\mathbb{D}} \left| \frac{\partial u}{\partial \bar{z}} \right|^2 e^{-2\varphi} + \int_{\mathbb{D}} \Delta \varphi |u|^2 e^{-2\varphi} \gtrsim |A|^{\frac{2}{d+1}} \int_{\mathbb{D}} |u|^2 e^{-2\varphi}$$

• Unperturbed case uses Hörmander L^2 solution of $\frac{\partial}{\partial \bar{z}}$ and appeared in

- D., Coercivity of weighted Kohn Laplacians: the case of model monomial weights, Trans. Amer. Math. Soc. 2017
- The perturbation is quite delicate: need to control clustering of zeros (harmonic analysis techniques).

The second key ingredient in our approach to spectral gap estimates for E^φ is the following notion.

Approximate minimal eigenvector fields

Let $\varphi : \mathbb{C}^n \to \mathbb{R}$ be plush. An approx. minimal eigenvector field for φ at $p \in \mathbb{C}^n$ is a germ at p of holomorphic vector field X(z) with the properties that $X(p) \neq 0$ and

$$\sum_{j,k=1}^n rac{\partial^2 arphi}{\partial z_j \partial ar z_k} X_j(z) \overline{X_k(z)} \lesssim \lambda_1(z) |X(z)|^2.$$

The second key ingredient in our approach to spectral gap estimates for E^φ is the following notion.

Approximate minimal eigenvector fields

Let $\varphi : \mathbb{C}^n \to \mathbb{R}$ be plush. An approx. minimal eigenvector field for φ at $p \in \mathbb{C}^n$ is a germ at p of holomorphic vector field X(z) with the properties that $X(p) \neq 0$ and

$$\sum_{i,k=1}^n \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} X_j(z) \overline{X_k(z)} \lesssim \lambda_1(z) |X(z)|^2.$$

Trivial where Levi form is non-degenerate. Need not exist in general $(\varphi(z_1, z_2) = |z_1|^4 + |z_2|^4$ at the origin).

The second key ingredient in our approach to spectral gap estimates for E^φ is the following notion.

Approximate minimal eigenvector fields

Let $\varphi : \mathbb{C}^n \to \mathbb{R}$ be plush. An approx. minimal eigenvector field for φ at $p \in \mathbb{C}^n$ is a germ at p of holomorphic vector field X(z) with the properties that $X(p) \neq 0$ and

$$\sum_{i,k=1}^n \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} X_j(z) \overline{X_k(z)} \lesssim \lambda_1(z) |X(z)|^2.$$

Trivial where Levi form is non-degenerate. Need not exist in general $(\varphi(z_1, z_2) = |z_1|^4 + |z_2|^4$ at the origin).

Lemma 3. Existence of approx. minim. e. v.-f.'s for co-rank 1 If $\varphi(z) = \sum_{k=1}^{n} |F_k(z)|^2$ with F_k 's holomorphic, then approx. minim. e. v.-f.'s exist at every point where the Levi form of φ has co-rank 1.

The strategy is the following:

• Cut \mathbb{C}^n into dyadic shells $\{z \in \mathbb{C}^n : \lambda^m \le |z| \le \lambda^{m+1}\}$, where $\lambda > 1$ is appropriately chosen and $m \ge 1$ (local contribution is easy to deal with).

The strategy is the following:

- Cut \mathbb{C}^n into dyadic shells $\{z \in \mathbb{C}^n : \lambda^m \le |z| \le \lambda^{m+1}\}$, where $\lambda > 1$ is appropriately chosen and $m \ge 1$ (local contribution is easy to deal with).
- If φ is **homogeneous** the analysis reduces to the unit shell m = 0. Cover the "bad" region where $\lambda_1 = 0$ (the strongly plush part is trivial).

The strategy is the following:

- Cut \mathbb{C}^n into dyadic shells $\{z \in \mathbb{C}^n : \lambda^m \le |z| \le \lambda^{m+1}\}$, where $\lambda > 1$ is appropriately chosen and $m \ge 1$ (local contribution is easy to deal with).
- If φ is homogeneous the analysis reduces to the unit shell m = 0. Cover the "bad" region where $\lambda_1 = 0$ (the strongly plush part is trivial).
- At each point where λ₁ vanishes and Levi corank is one use the complex flow of an approx. minim. eigenvector field to foliate a neighborhood into discs (Lemma 3).

イロト 不得下 イヨト イヨト 二日

The strategy is the following:

- Cut \mathbb{C}^n into dyadic shells $\{z \in \mathbb{C}^n : \lambda^m \le |z| \le \lambda^{m+1}\}$, where $\lambda > 1$ is appropriately chosen and $m \ge 1$ (local contribution is easy to deal with).
- If φ is homogeneous the analysis reduces to the unit shell m = 0. Cover the "bad" region where $\lambda_1 = 0$ (the strongly plush part is trivial).
- At each point where λ₁ vanishes and Levi corank is one use the complex flow of an approx. minim. eigenvector field to foliate a neighborhood into discs (Lemma 3).
- Apply one-dimensional uncertainty principle to each disc (Lemma 2).

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへ⊙

Theorem

Let $\Omega \subset \mathbb{C}^{n+1}$ be *d*-homogeneous special of finite type (at the origin), with associated map $F : P^{n-1} \to P^{n-1}$. Assume that co-rank of Jacobian of F is at most one^{*}.

Theorem

Let $\Omega \subset \mathbb{C}^{n+1}$ be *d*-homogeneous special of finite type (at the origin), with associated map $F : P^{n-1} \to P^{n-1}$. Assume that co-rank of Jacobian of *F* is at most one^{*}. Then

$$s_{
m sharp}(\Omega; 0) = rac{1}{2 \max\{d, \mathfrak{t}(\mathsf{F})\}},$$

where $\mathfrak{t}(\mathsf{F}) = \sup_{\gamma} \nu(\mathsf{F} \circ \gamma)$, sup is over non-singular analytic discs $\gamma : \mathbb{D} \to \mathsf{P}^{n-1}$ and $\nu(G)$ is the order of vanishing of G - G(0).

Theorem

Let $\Omega \subset \mathbb{C}^{n+1}$ be *d*-homogeneous special of finite type (at the origin), with associated map $F : P^{n-1} \to P^{n-1}$. Assume that co-rank of Jacobian of *F* is at most one^{*}. Then

$$s_{ ext{sharp}}(\Omega; 0) = rac{1}{2 \max\{d, \mathfrak{t}(\mathsf{F})\}},$$

where $t(F) = \sup_{\gamma} \nu(F \circ \gamma)$, sup is over non-singular analytic discs $\gamma : \mathbb{D} \to P^{n-1}$ and $\nu(G)$ is the order of vanishing of G - G(0). The quantity $2 \max\{d, t(F)\}$ equals the upper semicontinuous envelop of the D'Angelo type at the origin.

*This forces low-dimensionality: $n + 1 \leq 5$.

Theorem

Let $\Omega \subset \mathbb{C}^{n+1}$ be *d*-homogeneous special of finite type (at the origin), with associated map $F : P^{n-1} \to P^{n-1}$. Assume that co-rank of Jacobian of *F* is at most one^{*}. Then

$$s_{ ext{sharp}}(\Omega; 0) = rac{1}{2 \max\{d, \mathfrak{t}(\mathsf{F})\}},$$

where $t(F) = \sup_{\gamma} \nu(F \circ \gamma)$, sup is over non-singular analytic discs $\gamma : \mathbb{D} \to P^{n-1}$ and $\nu(G)$ is the order of vanishing of G - G(0). The quantity $2 \max\{d, t(F)\}$ equals the upper semicontinuous envelop of the D'Angelo type at the origin.

*This forces low-dimensionality: $n + 1 \le 5$. Thanks a lot for your attention!

・ロト ・四ト ・ヨト ・ヨト