Oka properties of complements of closed convex sets in $$\mathbb{C}^n$$ Joint work with Franc Forstnerič

Erlend Fornæss Wold

Matematisk Institutt Universitetet i Oslo

June 7, 2023

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

イロト イヨト イヨト イ

A complex manifold X is said to be an Oka-manifold if for any convex set $K \subset \mathbb{C}^n$ and any holomorphic map $f : K \to X$, there exist entire maps $F : \mathbb{C}^n \to X$ approximating f on K.

A complex manifold X is said to be an Oka-manifold if for any convex set $K \subset \mathbb{C}^n$ and any holomorphic map $f : K \to X$, there exist entire maps $F : \mathbb{C}^n \to X$ approximating f on K.

From the "simple" approximation property in the definition above follow a range of approximation/interpolation/homotopy properties so that such an X behaves much like \mathbb{C}^n as a target for holomorphic maps from Stein manifolds.

A complex manifold X is said to be an Oka-manifold if for any convex set $K \subset \mathbb{C}^n$ and any holomorphic map $f : K \to X$, there exist entire maps $F : \mathbb{C}^n \to X$ approximating f on K.

From the "simple" approximation property in the definition above follow a range of approximation/interpolation/homotopy properties so that such an X behaves much like \mathbb{C}^n as a target for holomorphic maps from Stein manifolds.

In particular, many problems regarding holomorphic maps $g: Y \to X$ from a Stein manifold Y do not have any complex analytic obstructions.

A complex manifold X is said to be an Oka-manifold if for any convex set $K \subset \mathbb{C}^n$ and any holomorphic map $f : K \to X$, there exist entire maps $F : \mathbb{C}^n \to X$ approximating f on K.

From the "simple" approximation property in the definition above follow a range of approximation/interpolation/homotopy properties so that such an X behaves much like \mathbb{C}^n as a target for holomorphic maps from Stein manifolds.

In particular, many problems regarding holomorphic maps $g: Y \to X$ from a Stein manifold Y do not have any complex analytic obstructions.

Hence, a key object in Oka theory is to "find as many Oka manifolds as possible".

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

< 行

The starting point for the work I will discuss was the following theorem:

Theorem

(Kusakabe - 2021) Let $E \subset \mathbb{C}^n$, $n \ge 2$, be a polynomially convex (compact) set. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

The starting point for the work I will discuss was the following theorem:

Theorem

(Kusakabe - 2021) Let $E \subset \mathbb{C}^n$, $n \ge 2$, be a polynomially convex (compact) set. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

This was a remarkable result; it was even an open question for a long time whether $\mathbb{C}^n \setminus \overline{\mathbb{B}^n}$ was an Oka manifold.

The starting point for the work I will discuss was the following theorem:

Theorem

(Kusakabe - 2021) Let $E \subset \mathbb{C}^n$, $n \ge 2$, be a polynomially convex (compact) set. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

This was a remarkable result; it was even an open question for a long time whether $\mathbb{C}^n \setminus \overline{\mathbb{B}^n}$ was an Oka manifold.

Question: What happens if we consider closed convex sets $E \subset \mathbb{C}^n$?

The starting point for the work I will discuss was the following theorem:

Theorem

(Kusakabe - 2021) Let $E \subset \mathbb{C}^n$, $n \ge 2$, be a polynomially convex (compact) set. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

This was a remarkable result; it was even an open question for a long time whether $\mathbb{C}^n \setminus \overline{\mathbb{B}^n}$ was an Oka manifold.

Question: What happens if we consider closed convex sets $E \subset \mathbb{C}^n$?

Example

Consider

$$E = \{z = (z_1, ..., z_n) : \Im\mathfrak{m}(z_n) \ge 0\}$$

Then $\mathbb{C}^n \setminus E$ is certainly not an Oka manifold, since $\mathbb{C}^n \setminus E$ is biholomorphic to a product $H \times \mathbb{C}^{n-1}$, where H is a 1-dimensional halfplane.

Results

∃ →

・ロト ・日 ・ ・ ヨ ・ ・

Results

Theorem

/corollary Let $\phi(z_1, ..., z_{n-1}, \mathfrak{Re}(z_n))$ be a real valued strictly convex function. Then

$$\Omega = \{z \in \mathbb{C}^n : \mathfrak{Im}(z_n) < \phi(z_1, ... z_{n-1}, \mathfrak{Re}(z_n))\}$$

is an Oka manifold.

< ∃ ▶

Results

Theorem

/corollary Let $\phi(z_1, ..., z_{n-1}, \mathfrak{Re}(z_n))$ be a real valued strictly convex function. Then

$$\Omega = \{z \in \mathbb{C}^n : \mathfrak{Im}(z_n) < \phi(z_1, ... z_{n-1}, \mathfrak{Re}(z_n))\}$$

is an Oka manifold.

Theorem

(A) Suppose that $E \subset \mathbb{C}^n$, $n \ge 2$, is a closed domain with \mathcal{C}^1 -smooth boundary, and assume that no $T_p^{\mathbb{C}}bE$ does contains a real half line. Then $\mathbb{C}^n \setminus E$ is an Oka-manifold.

Theorem

(B) Suppose that $E \subset \mathbb{C}^n$, $n \ge 2$ is a closed domain with \mathcal{C}^1 -smooth boundary which is strongly convex. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

Theorem

(B) Suppose that $E \subset \mathbb{C}^n$, $n \geq 2$ is a closed domain with \mathcal{C}^1 -smooth boundary which is strongly convex. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

Theorem

(C) Suppose that $E \subset \mathbb{C}^n$ is a closed convex set that does not contain a real line. Then $\mathbb{C}^n \setminus E$ is an Oka manifold.

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

э

・ロト ・ 日 ト ・ ヨ ト ・

Theorem

(M) Suppose that $E \subset \mathbb{C}^n$ is a closed set such that there exists a hyperplane $\Lambda \in \mathbb{CP}^n$ such that \overline{E} is polynomially convex in $\mathbb{CP}^n \setminus \Lambda$. Then $\mathbb{C}^n \setminus E$ is an Oka-manifold.

Theorem

(M) Suppose that $E \subset \mathbb{C}^n$ is a closed set such that there exists a hyperplane $\Lambda \in \mathbb{CP}^n$ such that \overline{E} is polynomially convex in $\mathbb{CP}^n \setminus \Lambda$. Then $\mathbb{C}^n \setminus E$ is an Oka-manifold.

To prove this results we need two remarkable results of Kusakabe.

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

Theorem

(Kusakabe, Ell₁-characterization) Let X^n be a complex manifold. Assume that for any compact convex set $K \subset \mathbb{C}^m$ and any holomorphic map $f : K \to X$ there exists a holomorphic map

$$F: K_z \times \mathbb{C}^N_\zeta \to X$$

such that F(z,0) = f(z) and $\frac{\partial F}{\partial \zeta}(z,0)$ has rank n. Then X is an Oka manifold.

Theorem

(Kusakabe, Ell₁-characterization) Let X^n be a complex manifold. Assume that for any compact convex set $K \subset \mathbb{C}^m$ and any holomorphic map $f : K \to X$ there exists a holomorphic map

$$F: K_z imes \mathbb{C}^N_\zeta o X$$

such that F(z,0) = f(z) and $\frac{\partial F}{\partial \zeta}(z,0)$ has rank n. Then X is an Oka manifold.

Theorem

(Kusakabe, localization) Let X be a complex manifold, and suppose that $X = \bigcup_{i=1}^{k} \Omega_i$ where Ω_i is Zariski open and Oka. Then X is Oka.

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

イロト イヨト イヨト イヨト

Proof of the main result:

• Let H denote the hyperplane at infinity, and switch the roles of H and Λ .

Proof of the main result:

- Let H denote the hyperplane at infinity, and switch the roles of H and Λ .
- Use Kusakabe's result and Andersén-Lempert Theory to show that $\mathbb{C}^n \setminus (E \cup \Lambda)$ is an Oka manifold.

Proof of the main result:

- Let H denote the hyperplane at infinity, and switch the roles of H and Λ .
- Use Kusakabe's result and Andersén-Lempert Theory to show that $\mathbb{C}^n \setminus (E \cup \Lambda)$ is an Oka manifold.
- Do the same for finitely many hyperplanes $\Lambda_j, j = 1, ..., k$ such that $\bigcap_j \Lambda_j = \emptyset$, and use the localization theorem to conclude that $\mathbb{C}^n \setminus E$ is Oka.

Projectively convex sets

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

< 行

Let $E \subset \mathbb{CP}^n$ be a compact set. We say that E is projectively convex if

Let $E \subset \mathbb{CP}^n$ be a compact set. We say that E is projectively convex if

• Any point $x \in \mathbb{CP}^n \setminus E$ is contained in a hyperplane Λ

Let $E \subset \mathbb{CP}^n$ be a compact set. We say that E is projectively convex if

- Any point $x \in \mathbb{CP}^n \setminus E$ is contained in a hyperplane Λ
- The space of hyperplanes Λ with $\Lambda \cap E = \emptyset$ is connected

Let $E \subset \mathbb{CP}^n$ be a compact set. We say that E is projectively convex if

- Any point $x \in \mathbb{CP}^n \setminus E$ is contained in a hyperplane Λ
- The space of hyperplanes Λ with $\Lambda \cap E = \emptyset$ is connected

A theorem of Oka implies that a projectively convex set E is polynomially convex in any $\mathbb{CP}^n \setminus \Lambda$.

Let $E \subset \mathbb{CP}^n$ be a compact set. We say that E is projectively convex if

- Any point $x \in \mathbb{CP}^n \setminus E$ is contained in a hyperplane Λ
- The space of hyperplanes Λ with $\Lambda \cap E = \emptyset$ is connected

A theorem of Oka implies that a projectively convex set E is polynomially convex in any $\mathbb{CP}^n \setminus \Lambda$.

Hence the "main theorem" applies to projectively convex sets E.

Proof of Theorem A

Erlend Fornæss Wold (Universitetet i Oslo) Oka properties of complements of closed conv

э

(日)

Let p ∈ Cⁿ \ E. The closure of the tangent space T^C_pE cannot intersect E

 intersect E

 intersect E

Let p ∈ Cⁿ \ E. The closure of the tangent space T^C_pE cannot intersect E
 ; otherwise one can show that it contains a half line. Slide T^C_p back to p.

- Let p ∈ Cⁿ \ E. The closure of the tangent space T^C_pE cannot intersect E
 ; otherwise one can show that it contains a half line. Slide T^C_p back to p.
- Let $p \in \mathbb{CP}^n \setminus \overline{E}$ and chose a complex line L passing through p. One can slide L until it is a tangent to ∂E at some point.

- Let p ∈ Cⁿ \ E. The closure of the tangent space T^C_pE cannot intersect E
 ; otherwise one can show that it contains a half line. Slide T^C_p back to p.
- Let $p \in \mathbb{CP}^n \setminus \overline{E}$ and chose a complex line L passing through p. One can slide L until it is a tangent to ∂E at some point.
- Then boundary ∂E is connected.

• Is $\mathbb{C}^n \setminus \mathbb{R}^n$ an Oka manifold? Is $\mathbb{C}^n \setminus T^n$ an Oka manifold?

June 7, 2023 11 / 11

- Is $\mathbb{C}^n \setminus \mathbb{R}^n$ an Oka manifold? Is $\mathbb{C}^n \setminus T^n$ an Oka manifold?
- Let $E \subset \mathbb{C}^n$ be a Stein compact. Is $\mathbb{C}^n \setminus E$ an Oka manifold?

June 7, 2023

11/11

- Is $\mathbb{C}^n \setminus \mathbb{R}^n$ an Oka manifold? Is $\mathbb{C}^n \setminus T^n$ an Oka manifold?
- Let $E \subset \mathbb{C}^n$ be a Stein compact. Is $\mathbb{C}^n \setminus E$ an Oka manifold?
- Let E be the closure of a bounded, smoothly bounded, pseudoconvex domain. Is Cⁿ \ E an Oka manifold?

- Is $\mathbb{C}^n \setminus \mathbb{R}^n$ an Oka manifold? Is $\mathbb{C}^n \setminus T^n$ an Oka manifold?
- Let $E \subset \mathbb{C}^n$ be a Stein compact. Is $\mathbb{C}^n \setminus E$ an Oka manifold?
- Let E be the closure of a bounded, smoothly bounded, pseudoconvex domain. Is Cⁿ \ E an Oka manifold?
- Is the complement of the Diederich-Fornæss-Worm an Oka manifold?