Monge-Ampère energies

Eleonora Di Nezza

Sorbonne Université IMJ-PRG

Eleonora Di Nezza (IMJ-PRG)

Monge-Ampère energies

5 June 2023

イロト イポト イヨト イヨト

Fix (X, ω) a compact Kähler manifold, dim_C $X = n \ge 1$.

- ω is a Kähler form (a (1,1)-form real, closed, positive)
- normalized s.t $\int_X \omega^n = 1$.

Fix (X, ω) a compact Kähler manifold, dim_C $X = n \ge 1$.

- ω is a Kähler form (a (1,1)-form real, closed, positive)
- normalized s.t $\int_X \omega^n = 1$.

Disclaimer: I will work with ω as reference form but everything still holds when working with a merely big form θ .

	4	日本・西本・日本・日本	1 9 A C
Eleonora Di Nezza (IMJ-PRG)	Monge-Ampère energies	5 June 2023	3 / 15

Consider the set of ω -plurisubharmonic functions (ω -psh): PSH(X, ω). We say that a function $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

イロト 不得 トイヨト イヨト

Consider the set of ω -plurisubharmonic functions (ω -psh): PSH(X, ω). We say that a function $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

• φ ~ psh + smooth

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

We say that a function $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

- φ ~ psh + smooth
- $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi \ge 0$ (weak sense)

3

We say that a function $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

- φ ~ psh + smooth
- $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi \ge 0$ (weak sense)

RK: $PSH(X, \omega) \neq \emptyset$ since $0 \in PSH(X, \omega)$

We say that a function $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

- φ ~ psh + smooth
- $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi \ge 0$ (weak sense)
- **RK**: $PSH(X, \omega) \neq \emptyset$ since $0 \in PSH(X, \omega)$

Ex:

smooth/bounded functs.,

We say that a function $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

- φ ~ psh + smooth
- $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi \ge 0$ (weak sense)
- **RK**: $PSH(X, \omega) \neq \emptyset$ since $0 \in PSH(X, \omega)$

Ex:

- smooth/bounded functs.,
- log |z| + smooth,

We say that a function $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

- φ ~ psh + smooth
- $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi \ge 0$ (weak sense)

RK: $PSH(X, \omega) \neq \emptyset$ since $0 \in PSH(X, \omega)$

Ex:

- smooth/bounded functs.,
- log |z| + smooth,
- $-(-\log |z|)^{\alpha}$ + smooth for any $\alpha \in (0, 1)$

We say that a function $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if

- φ ~ psh + smooth
- $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi \ge 0$ (weak sense)

RK: $PSH(X, \omega) \neq \emptyset$ since $0 \in PSH(X, \omega)$

Ex:

- smooth/bounded functs.,
- log |z| + smooth,
- $-(-\log |z|)^{\alpha} + \text{smooth for any } \alpha \in (0, 1)$
- $-\log(-\log|z|) + \text{smooth}$

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

(日)

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

Eleonora Di Nezza (IMJ-PRG)	Monge-Ampère energies
-----------------------------	-----------------------

(日)

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

•
$$\varphi$$
 smooth $\implies \omega_{\varphi}^{n} = (\omega + i\partial\bar{\partial}\varphi) \wedge \cdots (\omega + i\partial\bar{\partial}\varphi)$

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

•
$$\varphi$$
 smooth $\implies \omega_{\varphi}^{n} = (\omega + i\partial\bar{\partial}\varphi) \wedge \cdots (\omega + i\partial\bar{\partial}\varphi)$
• φ bounded $\implies \omega_{\varphi}^{n} =$ Bedford-Taylor '82

(日)

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

•
$$\varphi$$
 smooth $\implies \omega_{\varphi}^{n} = (\omega + i\partial\bar{\partial}\varphi) \wedge \cdots (\omega + i\partial\bar{\partial}\varphi)$
• φ bounded $\implies \omega_{\varphi}^{n} =$ Bedford-Taylor '82
• φ singular $\implies \omega_{\varphi}^{n} =$ Guedj-Zeriahi '05

イロト イポト イヨト イヨト

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

•
$$\varphi$$
 smooth $\implies \omega_{\varphi}^{n} = (\omega + i\partial\bar{\partial}\varphi) \wedge \cdots (\omega + i\partial\bar{\partial}\varphi)$
• φ bounded $\implies \omega_{\varphi}^{n} =$ Bedford-Taylor '82
• φ singular $\implies \omega_{\varphi}^{n} =$ Guedj-Zeriahi '05
 $= \lim_{j} \mathbf{1}_{\{\varphi > -j\}} (\omega + i\partial\bar{\partial}\max(\varphi, -j))^{n}$

Eleonora Di Nezza (IMJ-PRG)

(日)

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

•
$$\varphi$$
 smooth $\implies \omega_{\varphi}^{n} = (\omega + i\partial\bar{\partial}\varphi) \wedge \cdots ... (\omega + i\partial\bar{\partial}\varphi)$
• φ bounded $\implies \omega_{\varphi}^{n} =$ Bedford-Taylor '82
• φ singular $\implies \omega_{\varphi}^{n} =$ Guedj-Zeriahi '05
 $= \lim_{j} \mathbf{1}_{\{\varphi > -j\}} (\omega + i\partial\bar{\partial}\max(\varphi, -j))^{n}$

FACT: By construction the non-pluripolar MA measure is a positive Radon measure which does not charge pluripolar sets ($P \subseteq \{\psi = -\infty\}, \psi$ qpsh)

イロト イヨト イヨト イヨト

For any $\varphi \in PSH(X, \omega)$ (even singular) we can define the <u>non-pluripolar</u> Monge-Ampère (MA) measure:

$$\omega_{\varphi}^{n} := (\omega + i\partial\bar{\partial}\varphi)^{n}.$$

•
$$\varphi$$
 smooth $\implies \omega_{\varphi}^{n} = (\omega + i\partial\bar{\partial}\varphi) \wedge \cdots (\omega + i\partial\bar{\partial}\varphi)$
• φ bounded $\implies \omega_{\varphi}^{n} =$ Bedford-Taylor '82
• φ singular $\implies \omega_{\varphi}^{n} =$ Guedj-Zeriahi '05
 $= \lim_{j} \mathbf{1}_{\{\varphi > -j\}} (\omega + i\partial\bar{\partial}\max(\varphi, -j))^{n}$

FACT: By construction the non-pluripolar MA measure is a positive Radon measure which does not charge pluripolar sets ($P \subseteq \{\psi = -\infty\}, \psi \text{ qpsh}$) and

$$\int_X \omega_\varphi^n \leq \int_X \omega^n = 1$$

Q: One can then wonder about the range of the Monge-Ampère operator.

Eleonora Di Nezza (IMJ-PRG)	Monge-Ampère energies	5 June
-----------------------------	-----------------------	--------

∃ →

・ロト ・日 ・ ・ ヨト ・

Q: One can then wonder about the range of the Monge-Ampère operator.

More precisely, given a positive Radon measure μ with total mass $\mu(X) = m \in (0, 1]$, we ask whether there exists a $\varphi \in PSH(X, \omega)$ such that

$$\mu = \omega_{\varphi}^{n}.$$

Q: One can then wonder about the range of the Monge-Ampère operator.

More precisely, given a positive Radon measure μ with total mass $\mu(X) = m \in (0, 1]$, we ask whether there exists a $\varphi \in PSH(X, \omega)$ such that

$$\mu = \omega_{\varphi}^{n}.$$

A: YES

Theorem (Darvas, Di Nezza, Lu '21)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = m \in (0, 1]$. Then $\exists ! \omega$ -psh function $\varphi \in \mathcal{E}(X, \omega, \phi)$ with $\sup_X \varphi = 0$ s.t. $\omega_{\varphi}^n = \mu$.

> ↑ Energy class

Theorem (Darvas, Di Nezza, Lu '21)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = m \in (0, 1]$. Then $\exists ! \omega$ -psh function $\varphi \in \mathcal{E}(X, \omega, \phi)$ with $\sup_X \varphi = 0$ s.t. $\omega_{\varphi}^n = \mu$.

↑ Energy class

RK: The case m = 1 (and $\phi = 0$) was settled by Guedj-Zeriahi in '05.

(日)

•
$$\int_X \omega_\phi^n = m > 0$$

• ϕ is the least singular function among those with total mass = m (we say that ϕ is a model potential),

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

•
$$\int_X \omega_\phi^n = m > 0$$

 φ is the least singular function among those with total mass = m (we say that φ is a model potential), i.e.

$$\phi = P[\phi] = \lim_{C \to +\infty} P(\min(\phi + C, 0))$$

Image: A math a math

•
$$\int_X \omega_\phi^n = m > 0$$

 φ is the least singular function among those with total mass = m (we say that φ is a model potential), i.e.

$$\phi = P[\phi] = \lim_{C \to +\infty} P(\min(\phi + C, 0))$$

Ex: $\phi = 0$ ϕ with analytic singularites, i.e. $\phi \sim \log \sum_{k} |f_k|^2 + \text{smooth}, f_k$ holo The energy class (of relative full mass potentials) is then defined as $\mathcal{E}(X, \omega, \phi) := \{ u \in \text{PSH}(X, \omega) : u \le \phi + C \text{ and } \int_X \omega_u^n = \int_X \omega_\phi^n \}$ \uparrow $u \text{ more singular than } \phi$

★ 3 → 3

Image: A math a math

The energy class (of relative full mass potentials) is then defined as $\begin{aligned} & \mathcal{E}(X,\omega,\phi) \coloneqq \{u \in \mathrm{PSH}(X,\omega) \ : \ u \leq \phi + C \ \text{and} \ \int_X \omega_u^n = \int_X \omega_\phi^n \} \\ & \uparrow \\ & u \ \text{more singular} \ \text{than} \ \phi \end{aligned}$ RK1: $u \sim \phi$ (i.e. $|u - \phi| \leq C$) $\Longrightarrow \int_X \omega_u^n = \int_X \omega_\phi^n$. [Witt-Nyström '17] The reverse is NOT true. The energy class (of relative full mass potentials) is then defined as $\begin{aligned} &\mathcal{E}(X,\omega,\phi) \coloneqq \{u \in \mathrm{PSH}(X,\omega) \ : \ u \leq \phi + C \ \text{and} \ \int_X \omega_u^n = \int_X \omega_\phi^n \} \\ &\uparrow \\ &u \ \text{more singular} \ \text{than} \ \phi \end{aligned}$ RK1: $u \sim \phi$ (i.e. $|u - \phi| \leq C$) $\Longrightarrow \int_X \omega_u^n = \int_X \omega_\phi^n$. [Witt-Nyström '17] The reverse is NOT true.

RK2: When $\phi = 0$, then $\mathcal{E}(X, \omega, 0) = \mathcal{E}(X, \omega)$ is the energy class of full potentials [GZ05].

The energy class (of relative full mass potentials) is then defined as $\begin{aligned} & \mathcal{E}(X,\omega,\phi) \coloneqq \{u \in \mathrm{PSH}(X,\omega) \ : \ u \leq \phi + C \ \text{and} \ \int_X \omega_u^n = \int_X \omega_\phi^n \} \\ & \uparrow \\ & u \ \text{more singular} \ \text{than} \ \phi \end{aligned}$ RK1: $u \sim \phi$ (i.e. $|u - \phi| \leq C$) $\implies \int_X \omega_u^n = \int_X \omega_\phi^n$. [Witt-Nyström '17] The reverse is NOT true.

RK2: When $\phi = 0$, then $\mathcal{E}(X, \omega, 0) = \mathcal{E}(X, \omega)$ is the energy class of full potentials [GZ05].

Ex: bounded functs, $-(-\log |z|)^{\alpha} \in \mathcal{E}$ BUT $\log |z| \notin \mathcal{E}$

Eleonora Di Nezza (IMJ-PRG)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Q: Can we say more on the regularity of φ ? More precisely, can we relate the regularity of μ and that of φ ?

∃ ⇒

Image: A math a math

Q: Can we say more on the regularity of φ ? More precisely, can we relate the regularity of μ and that of φ ?

A: YES (answer in terms of weighted Monge-Ampère classes)

< □ > < □ > < □ > < □ >

• = •

- Q: Can we say more on the regularity of φ ? More precisely, can we relate the regularity of μ and that of φ ?
- A: YES (answer in terms of weighted Monge-Ampère classes)
- \rightarrow I am going to define weighted subspaces of $\mathcal{E}(X, \omega, \phi)$.

 $\chi : \mathbb{R}^+ \to \mathbb{R}^+$ s.t. $\chi(0) = 0, \quad \chi(+\infty) = +\infty.$

Eleonora Di Nezza	(IMJ-PRG)	Monge-Ampèr
-------------------	-----------	-------------

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$\chi : \mathbb{R}^+ \to \mathbb{R}^+$$
 s.t. $\chi(0) = 0, \quad \chi(+\infty) = +\infty.$

Assume the following growth condition: for all t > 0 and $\lambda \ge 1$ we ask

$$\chi(\lambda t) \leq \lambda^M \chi(t), \qquad M > 1.$$

< 日 > < 同 > < 回 > < 回 > .

э

$$\chi : \mathbb{R}^+ \to \mathbb{R}^+$$
 s.t. $\chi(0) = 0, \quad \chi(+\infty) = +\infty.$

Assume the following growth condition: for all t > 0 and $\lambda \ge 1$ we ask

$$\chi(\lambda t) \leq \lambda^M \chi(t), \qquad M > 1.$$

EX:
$$\chi(t) = t^{p} (\log(t+1))^{\alpha}, p \ge 0, \alpha \in [0,1].$$

< 日 > < 同 > < 回 > < 回 > .

э

$$\chi : \mathbb{R}^+ \to \mathbb{R}^+$$
 s.t. $\chi(0) = 0, \quad \chi(+\infty) = +\infty.$

Assume the following growth condition: for all t > 0 and $\lambda \ge 1$ we ask

$$\chi(\lambda t) \leq \lambda^M \chi(t), \qquad M > 1.$$

EX:
$$\chi(t) = t^{p} (\log(t+1))^{\alpha}, p \ge 0, \alpha \in [0,1].$$

In [DDL20] we then defined the relative Monge-Ampère χ -energy class

$$\mathcal{E}_{\chi}(X,\omega,\phi) := \{ u \in \mathcal{E}(X,\omega,\phi) : \int_{X} \chi(|u-\phi|) \, \omega_{u}^{n} < +\infty \}$$

Eleonora Di Nezza (IMJ-PRG)

RK1: When $\phi = 0$, then $\mathcal{E}_{\chi}(X, \omega, 0) = \mathcal{E}_{\chi}(X, \omega)$ are the weighted energy classes [GZ05].

イロト 不得 トイヨト イヨト

3

RK1: When $\phi = 0$, then $\mathcal{E}_{\chi}(X, \omega, 0) = \mathcal{E}_{\chi}(X, \omega)$ are the weighted energy classes [GZ05].

RK2: The case $\chi(t) = t$ plays a crucial role in the story of singular Kähler-Einsten (KE) metrics:

3

RK1: When $\phi = 0$, then $\mathcal{E}_{\chi}(X, \omega, 0) = \mathcal{E}_{\chi}(X, \omega)$ are the weighted energy classes [GZ05].

RK2: The case $\chi(t) = t$ plays a crucial role in the story of singular Kähler-Einsten (KE) metrics:

- $[\phi = 0]$ [EGZ09], [BEGZ10], [BBEGZ13]: 3KE metrics on singular variety
- [ϕ model] [DDL20/21]: \exists singular KE metrics (with prescribed singularities)

Observe that being in an energy class gives some information on "how fast" a ω -psh function goes to $-\infty$

Ex: Take
$$\phi = 0$$
, $\chi(t) = t^p$, $p > 0$. Then
 $-(-\log |z|)^{\alpha} \in \mathcal{E}_{\chi}(X, \omega)$ iff $0 < \alpha < \frac{n}{n+p}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Observe that being in an energy class gives some information on "how fast" a ω -psh function goes to $-\infty$

Ex: Take
$$\phi = 0$$
, $\chi(t) = t^p$, $p > 0$. Then
 $-(-\log |z|)^{\alpha} \in \mathcal{E}_{\chi}(X, \omega) \quad \text{iff} \quad 0 < \alpha < \frac{n}{n+p}.$
FACT: $\{u \in \text{PSH}(X, \omega) : |u - \phi| \le C, C > 0\} = \cap_{\chi} \mathcal{E}_{\chi}(X, \omega, \phi).$
 $[\phi = 0] \quad \text{PSH}(X, \omega) \cap L^{\infty}(X) = \cap_{\chi} \mathcal{E}_{\chi}(X, \omega).$

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Darvas, Di Nezza, Lu '23)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = m \in (0, 1]$. Then TFAE:

- $\exists ! \varphi \in \mathcal{E}_{\chi}(X, \omega, \phi)$ with $\sup_{X} \varphi = 0$ s.t. $\omega_{\varphi}^{n} = \mu$
- $\chi(|u \phi|) \in L^1(\mu)$ for all $u \in \mathcal{E}_{\chi}(X, \omega, \phi)$.

イロト 不得 トイヨト イヨト 二日

Theorem (Darvas, Di Nezza, Lu '23)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = m \in (0, 1]$. Then TFAE:

- $\exists ! \varphi \in \mathcal{E}_{\chi}(X, \omega, \phi)$ with $\sup_{X} \varphi = 0$ s.t. $\omega_{\omega}^{n} = \mu$
- $\chi(|u \phi|) \in L^{1}(\mu)$ for all $u \in \mathcal{E}_{\chi}(X, \omega, \phi)$.

Theorem (DDL23 $\phi = 0$)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = 1$. Then TFAE:

- $\exists ! \varphi \in \mathcal{E}_{\gamma}(X, \omega)$ with $\sup_{X} \varphi = 0$ s.t. $\omega_{\omega}^{n} = \mu$
- $\chi(|u|) \in L^{1}(\mu)$ for all $u \in \mathcal{E}_{\chi}(X, \omega)$.

Theorem (Darvas, Di Nezza, Lu '23)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = m \in (0, 1]$. Then TFAE:

- $\exists ! \varphi \in \mathcal{E}_{\chi}(X, \omega, \phi)$ with $\sup_{X} \varphi = 0$ s.t. $\omega_{\varphi}^{n} = \mu$
- $\chi(|u-\phi|) \in L^1(\mu)$ for all $u \in \mathcal{E}_{\chi}(X, \omega, \phi)$.

Theorem (DDL23 $\phi = 0$)

Assume μ is a positive non-pluripolar measure s.t. $\mu(X) = 1$. Then TFAE:

- $\exists ! \varphi \in \mathcal{E}_{\chi}(X, \omega)$ with $\sup_{X} \varphi = 0$ s.t. $\omega_{\varphi}^{n} = \mu$
- $\chi(|u|) \in L^{1}(\mu)$ for all $u \in \mathcal{E}_{\chi}(X, \omega)$.

RK:

- $\phi = 0$, $\chi(t) = t^{p}$: Guedj-Zeriahi '05 and they asked the same question for more general weights.
- ϕ = 0, χ with "growth condition": Thai-Vu '21

≡▶ ≡ ∽੧<

		< ロ > < 部 > < き > < き > 」 第	t nac
Eleonora Di Nezza (IMJ-PRG)	Monge-Ampère energies	5 June 2023	14 / 15

Q: Suppose $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$?

э

Q: Suppose $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$? A: ???

イロト 不得 トイヨト イヨト

э

Q: Suppose $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$? A: ???

Strategy: Assume that the DDL's theorem holds for any χ (no growth condition). Then the answer is positive.

イロト 不得下 イヨト イヨト 二日

Q: Suppose $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$? A: ???

Strategy: Assume that the DDL's theorem holds for any χ (no growth condition). Then the answer is positive.

sketch of the proof:

イロト 不得下 イヨト イヨト 二日

Q: Suppose $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$? A: ???

Strategy: Assume that the DDL's theorem holds for any χ (no growth condition). Then the answer is positive.

sketch of the proof:

•
$$\varphi \in L^{\infty} \iff \varphi \in \mathcal{E}_{\chi}$$
 for any χ . WANT: prove that $\varphi \in \mathcal{E}_{\chi}$ for any χ

イロト 不得下 イヨト イヨト 二日

Q: Suppose $\omega_{\omega}^{n} \leq A \omega_{\nu}^{n}$, A > 0, $\nu \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$? A: ???

Strategy: Assume that the DDL's theorem holds for any χ (no growth condition). Then the answer is positive.

sketch of the proof:

- $\varphi \in L^{\infty} \iff \varphi \in \mathcal{E}_{\chi}$ for any χ . WANT: prove that $\varphi \in \mathcal{E}_{\chi}$ for any χ
- DDL \implies EQUIVALENT: prove that $\chi(|u|) \in L^1(\omega_{\omega}^n) \ \forall u \in \mathcal{E}_{\chi}$
- Assumption: $\int_{X} \chi(|u|) \omega_{\varphi}^{n} \leq A \int_{X} \chi(|u|) \omega_{V}^{n}$

Q: Suppose $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Is that true that $\varphi \in L^{\infty}(X)$? A: ???

Strategy: Assume that the DDL's theorem holds for any χ (no growth condition). Then the answer is positive.

sketch of the proof:

- $\varphi \in L^{\infty} \iff \varphi \in \mathcal{E}_{\chi}$ for any χ . WANT: prove that $\varphi \in \mathcal{E}_{\chi}$ for any χ
- DDL \Longrightarrow EQUIVALENT: prove that $\chi(|u|) \in L^1(\omega_{\varphi}^n) \ \forall u \in \mathcal{E}_{\chi}$
- Assumption: $\int_X \chi(|u|) \omega_{\varphi}^n \le A \int_X \chi(|u|) \omega_{v}^n$
- $v \in L^{\infty} \leftrightarrow v \in E_{\chi} \ \forall \chi$. DDL $\Longrightarrow \int_{X} \chi(|u|) \omega_{v}^{n} < +\infty \ \forall u \in E_{\chi}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Best evidence we can get:

Theorem (Darvas, Di Nezza, Lu 23)

Assume $\varphi \in \mathcal{E}(X, \omega)$ s.t. $\omega_{\varphi}^{n} \leq A \omega_{v}^{n}$, A > 0, $v \in L^{\infty}(X)$. Then $\exists \alpha > 0$ s.t.

$$\int_{X} e^{\alpha |\varphi|} \omega_{\varphi}^{n} < +\infty.$$

RK1: We also have a relative version of it.

・ 同 ト ・ ヨ ト ・ ヨ ト …