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§1: Some motivating questions



Section 1.1: Finding roots of a polynomial and a
transcendental/meromorphic function in 1 complex variable

Finding roots of a polynomial in 1 complex variable:

Huge interest in mathematics in the middle age.

Theorem (Abel-Ruffini, Galois’ theory): For a general
polynomial of degree ≥ 5, there is no solution in radicals. A
simple example is x5 − x − 1.

Hence, in general can only find approximate roots. Usually
use an iterative method ⇒ Dynamics.

Finding roots of a transcendental function/meromorphic
function in 1 complex variable:

Many interesting and useful special functions are
transcendental or meromorphic.

E.g.: Airy, elliptic, Bessel, and Riemann zeta functions.

Less systematic work on iterative methods to find roots of
these functions.
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Section 1.2: Finding roots of systems of equations

Finding roots of systems of equations is useful both in theory
and applications.

In theory:

Find periodic points of dynamics of maps, find equilibrium
measures, find if some exotic maps may exist (e.g. if there is
a polynomial map of a certain degree not satisfying the
Jacobian conjecture), check if there is a birational
map/biregular map of a given bounded degree between 2
algebraic varieties (T., Beitrage zur Algebra und Geometrie).

In applications:

Find critical points of a function (helpful to find
minima/maxima), find orbits/solutions to physical systems
(e.g. robots).
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Section 1.3: A more general approach: optimization

Recasting finding roots of a system in an optimization
problem.

Consider: F (x) = 0, where x ∈ Rm,
F = (f1, . . . , fN) : R

m → RN (N equations in m variables).

Define g(x) = 1
2 ||F (x)||

2 = 1
2(f1(x)

2 + . . .+ fN(x)
2).

g(x) ≥ 0, and if F (x) = 0 then g(x) = 0 (hence, global
minimum of g).

For complex or quaternionic variables, we can reduce to real
variables (increasing dimensions).

Hence, methods for optimization can be used to find roots of
systems of equations.

In particular, methods for the Least Square Fit problem in
classical statistics. (e.g. Linear Regression)
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Section 1.4: Main theorems of this talk

Theorem 1: (arXiv:2006.01512, under revision in a journal,
T., T.-D. To, H.-T. Nguyen, T. H. Nguyen, H. P. Nguyen, M.
Helmy) New Q-Newton’s method is similar to Newton’s
method near non-degenerate local minima, hence in particular
has quadratic rate of convergence near these points . It has
local Stable-central manifolds near saddle points, and (+
arXiv:2008.11091) hence can globally avoid saddle points. If a
sequence constructed by this method converges, then the
limit point is a critical point of the function.

Theorem 2: (arXiv:2006.01512) Backtracking New
Q-Newton’s method applied to a meromorphic function f in 1
complex variable, for which
{x ∈ C : f (x)f ”(x) = f ′(x) = 0} = ∅ with a random initial
point, will either converge to a root or diverge to infinity.

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



Section 1.4: Main theorems of this talk

Theorem 1: (arXiv:2006.01512, under revision in a journal,
T., T.-D. To, H.-T. Nguyen, T. H. Nguyen, H. P. Nguyen, M.
Helmy) New Q-Newton’s method is similar to Newton’s
method near non-degenerate local minima, hence in particular
has quadratic rate of convergence near these points . It has
local Stable-central manifolds near saddle points, and (+
arXiv:2008.11091) hence can globally avoid saddle points. If a
sequence constructed by this method converges, then the
limit point is a critical point of the function.

Theorem 2: (arXiv:2006.01512) Backtracking New
Q-Newton’s method applied to a meromorphic function f in 1
complex variable, for which
{x ∈ C : f (x)f ”(x) = f ′(x) = 0} = ∅ with a random initial
point, will either converge to a root or diverge to infinity.

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



Section 1.4: Main theorems of this talk (cont. 2)

For entire functions, the point at infinity can be viewed as an
additional root. (The case of polynomial is easy. The case of
transcendental functions, we have essential singularity there.)

Theorem 3: (arXiv:2209.05378, T.) Backtracking New
Q-Newton’s method has, in addition to properties by New
Q-Newton’s method, good convergence guarantee. In
particular: 1) Any cluster point of a sequence constructed is
a critical point of the function. 2) If the function f is Morse,
then for random initial points x0, the constructed sequence
{xn} either converges to a critical point, or diverges to infinity.
3) If the function f satisfies the gradient Lojasiewicz
inequality near its critical points, with a bounded Lojasiewicz
exponent, then if we choose the parameters of Backtracking
New Q-Newton’s method to be small enough, we have the
same conclusions as in part 2).
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Section 1.4: Main theorems of this talk (cont. 3)

Gradient Lojasiewicz inequality: f satisfies the gradient
Lojasiewicz inequality at a point p if there is an open
neighbourhood U of p, constants 0 < θ < 1 and C > 0 such
that for all x ∈ U we have |f (x)− f (p)|θ ≤ C ||∇f (x)||.
Real analytic functions satisfy the gradient Lojasiewicz
inequality at every points.

Theorem: (D. D’Acunto and K. Kurdyka) If f is a
polynomial, then its Lojasiewicz exponents are explicitly
bounded in terms of degree and dimension.

Experiments show that even if the parameters in Backtracking
New Q-Newton’s method are not small, we still observe the
conclusions of part 3 in Theorem 3.

Roughly speaking, Theorem 3 says that if f is Morse or has a
bounded gradient Lojasiewicz inequality, then for a random
initial point x0, Backtracking New Q-Newton’s method will
either converge to a local minimum or diverge to infinity.
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§ 2: Newton’s method
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Section 2.1: Newton’s method, version 1

This is direct application for equations.

For 1 equation in 1 variable: f (x) = 0

Choose z0 randomly, construct

zn+1 = zn −
f (zn)

f ′(zn)
.

For a system of N equations in m variables: F (x) = 0.

Choose z0 randomly, construct
zn+1 = zn − (JF (zn)

T .JF (zn))
−1.JF (zn)

T .F (zn).

Here JF is the Jacobian of F , and AT is the transpose of a
matrix A. Note: JF (zn)

T .F (zn) is the gradient of f .

These update rules apply for both real and complex variables.
For quaternionic variables, where multiplication is not
commutative, need to choose either
zn+1 = zn − f (zn).(f

′(zn))
−1 or zn+1 = zn − (f ′(zn))

−1.f (zn).

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



Section 2.1: Newton’s method, version 1

This is direct application for equations.

For 1 equation in 1 variable: f (x) = 0

Choose z0 randomly, construct

zn+1 = zn −
f (zn)

f ′(zn)
.

For a system of N equations in m variables: F (x) = 0.

Choose z0 randomly, construct
zn+1 = zn − (JF (zn)

T .JF (zn))
−1.JF (zn)

T .F (zn).

Here JF is the Jacobian of F , and AT is the transpose of a
matrix A. Note: JF (zn)

T .F (zn) is the gradient of f .

These update rules apply for both real and complex variables.
For quaternionic variables, where multiplication is not
commutative, need to choose either
zn+1 = zn − f (zn).(f

′(zn))
−1 or zn+1 = zn − (f ′(zn))

−1.f (zn).

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



Section 2.1: Newton’s method, version 1

This is direct application for equations.

For 1 equation in 1 variable: f (x) = 0

Choose z0 randomly, construct

zn+1 = zn −
f (zn)

f ′(zn)
.

For a system of N equations in m variables: F (x) = 0.

Choose z0 randomly, construct
zn+1 = zn − (JF (zn)

T .JF (zn))
−1.JF (zn)

T .F (zn).

Here JF is the Jacobian of F , and AT is the transpose of a
matrix A. Note: JF (zn)

T .F (zn) is the gradient of f .

These update rules apply for both real and complex variables.
For quaternionic variables, where multiplication is not
commutative, need to choose either
zn+1 = zn − f (zn).(f

′(zn))
−1 or zn+1 = zn − (f ′(zn))

−1.f (zn).

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



Section 2.1: Newton’s method, version 1

This is direct application for equations.

For 1 equation in 1 variable: f (x) = 0

Choose z0 randomly, construct

zn+1 = zn −
f (zn)

f ′(zn)
.

For a system of N equations in m variables: F (x) = 0.

Choose z0 randomly, construct
zn+1 = zn − (JF (zn)

T .JF (zn))
−1.JF (zn)

T .F (zn).

Here JF is the Jacobian of F , and AT is the transpose of a
matrix A. Note: JF (zn)

T .F (zn) is the gradient of f .

These update rules apply for both real and complex variables.
For quaternionic variables, where multiplication is not
commutative, need to choose either
zn+1 = zn − f (zn).(f

′(zn))
−1 or zn+1 = zn − (f ′(zn))

−1.f (zn).

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



Section 2.2: Newton’s method, version 2

This is through the associated optimization question: find
global minima of g(x) = 1

2 ||F (x)||
2.

Choose z0 randomly, construct

zn+1 = zn −
f (zn)

f ′(zn)
.

For a system of N equations in m variables: F (x) = 0.

Choose z0 randomly, construct
zn+1 = zn − (∇2f (zn))

−1.JF (zn)
T .F (zn).

Here JF is the Jacobian of F , and AT is the transpose of a
matrix A.
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For quaternionic variables, where multiplication is not
commutative, need to choose either
zn+1 = zn − f (zn).(f
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Section 2.3: Results by Ernst Schröder, Arthur Cayley and
Curtis McMullen

Schröder proved his fixed point theorem for Newton’s method.
He connected Newton’s method to iterations in dynamics.

Theorem (Schröder): Let f (x) be a polynomial of degree 2
with 2 distinct roots z1 and z2. Let L be the perpendicular
bisector of the line segment joining z1 and z2. Then L divides
the complex plane into 2 halves, each the basin of attraction
of 1 root.

Cayley has another proof of the above theorem, 10 years later,
but more cited.

Source: “Schröder, Cayley and Newton’s method” by Daniel
S. Alexander.

Theorem (McMullen, Annals of Mathematics): There is no
algebraic dynamical systems which for a generic polynomial of
degree ≥ 4, will converge to its roots when starting from a
random initial point.
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Section 2.3: Results by Ernst Schröder, Arthur Cayley and
Curtis McMullen (cont. 2)

The proof uses dynamical systems of the Riemann sphere. If
degree of the polynomial is 3, then McMullen found an
algebraic dynamical system to find roots.

Corollary: To find roots of a general polynomial, one should
look for non-algebraic iterative methods.
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Section 2.4: Pros and cons

Pros: Fast rate of convergence near non-degenerate local
minima, Easy to implement, Beautiful pictures of basins of
attraction (fractal structure).

Cons: Problematic with global convergence (may diverge to
infinity, may have attracting cycles with more than 1 element,
may converge to a local maximum or saddle points, illustrated
pictures: see later), Huge calculation cost in large dimension
(complexity for local convergence near non-degenerate local
minima = O(mω log | log ϵ|) where m is the dimension, ϵ is the
error threshold, ω ≥ 2 the exponent for complexity of
multiplying two square matrices), Fractal structure makes the
algorithm sensitive to the choice of initial points.
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(complexity for local convergence near non-degenerate local
minima = O(mω log | log ϵ|) where m is the dimension, ϵ is the
error threshold, ω ≥ 2 the exponent for complexity of
multiplying two square matrices), Fractal structure makes the
algorithm sensitive to the choice of initial points.
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Section 2.4: Pros and cons (con. 2)

Remark: John Hubbard, Dierk Schleicher and Scott
Sutherland (Inventiones Mathematicae) constructed a finite
set Sd , such that if f is a polynomial in 1 complex variable of
degree d and whose all roots lie in the open unit disk
{|x | < 1}, then Newton’s method with an initial point in this
Sd will find all the roots of f .

The cardinality of this set Sd is O(d log d). If all the roots are
real, then the cardinality of Sd is O(d).

For each root of the polynomial, there is one point of this set
Sd which lies in the basin of attraction for the root.

The proof of this result heavily depends on that the function f
is a polynomial.
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§ 3: Random damping Newton’s method

Damping Newton’s method (aslo known as relaxed Newton’s
method) for 1 variable:

zn+1 = zn − α
f (zn)

f ′(zn)
.

Here α is a constant complex number.

Still has advantages/disadvantages as Newton’s method.

Random damping Newton’s method: At each step n, choose
randomly an αn ∈ C, and use the rule

zn+1 = zn − αn
f (zn)

f ′(zn)
,
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§ 3.1: Recent results by Hiroki Sumi

Theorem (Sumi, Communications in Mathematical Physics):
Let f be a polynomial of degree two or more. Let 0.5 < r < 1.
Choose a sequence αn of complex numbers randomly from
{a : |a− 1| < r}, with the uniform distribution. Then for each
initial point (except some finite points), the random damping
Newton’s method:

zn+1 = zn − αnf (zn)/f
′(zn)

will converge to a root of f almost surely.

The paper also presents other properties regarding the
dynamics of random damping Newton’s method.
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§ 3.2: Pros and cons

Pros: as that of Newton’s method, plus convergence
guarantee for finding roots of polynomials in 1 complex
variable.

Cons:

In the statement of Sumi’s theorem, if one chooses r small,
e.g. r = 0.01, then the behaviour may like that of Newton’s
method. (see pictures later)

Extensions to higer dimensions? (Remark: Recently, Sumi has
some new results in dimension 2.)

For non-polynomials? For real variables? How much random
do we need? Many things are unclear.
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§ 4: Some variations
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§ 4.1: The approach by Shub and Smaleb

The approach by Shub and Smale: We want to solve a system
of polynomial equations F (x) = 0, in several complex
variables.

Smale found an efficient method to test, using estimates of all
derivatives of the polynomial map at a given point x∗,
whether that point is where Banach fixed point theorem can
be applied to the dynamics of Newton’s method.

Shub developed a version of Newton’s method for projective
spaces.

Together, they developed in the “Bezout” series of paper, a
method to find a root of a system of polynomial equations, by
combining Newton’s method on projective spaces and
homotopy continuation.

The key idea is to start from another (simpler) system G=0
and a point ζ, and try to use Newton’s method on small
intervals to reach a root of F = 0.
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§ 4.1: The approach by Shub and Smale (cont. 2)

Smale’s 17th problem: Finding an approximate zero (i.e., one
for which Newton’s method applied to it will converge to a
root) of a polynomial system in polynomial time, in the
average case.

This problem is solved in the affirmative by Beltrand and
Pardo, Cucker and Burgisser, Lairez (Foundations of
Computational Mathematics, Annals of Mathematics...).

One key idea (Beltrand and Pardo): They show the existence
of a set of polynomial systems of degree bounded by d , such
that for every ϵ, if we choose randomly a (G , ζ) from the set,
then for a randomly chosen polynomial system F = 0 of
degree bounded by d , the homotopy continuation method
applied to (G , ζ) will produce an approximate root of F = 0
with probability ≥ 1− ϵ.

Cons: Homotopy continuation may not work well in the case
of real variables. Also, how about non-polynomial systems?
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§ 4.1: The approach by Shub and Smale (cont. 3)

The straightforward implementation of this approach may be
expensive to run, and may be not working well.

An implementation has been available in some decades, that
is the software Bertini, and works quite well for polynomial
systems in several complex variables.

Performance of Bertini is better than symbolic methods (like
Grobner basis,...)
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§ 4.2: Levenberg-Marquardt method and Regularized
Newton’s method

Levenberg-Marquardt method: one default method for Least
Square Fit problem. Apply to cost functions of the form:
f = ||F ||2/2, where F = (f1, . . . , fN).
zn+1 = zn − (JF (zn)

T .JF (zn) + γnId)
−1.JF (zn)

T .F (zn). γn
positive number. Usually γn = c ||F (zn)||τ , constants
τ, c > 0.
Pros: don’t need to compute the whole Hessian of f , works
well in many cases. Cons: not enough information to control
near saddle points, no global convergence guaranteed.
Remark: There is work where Armijo’s Backtracking line
search is incorporated. Global convergence is improved,
however avoidance of saddle point is still not addressed. In
arXiv:2209.05378, some improvements, with stronger results
on convergence proved (with help of results in T. and H.-T.
Nguyen, Applied Mathematics and Optimization & Minimax
Theory and its applications).
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§ 4.2: Levenberg-Marquardt method and Regularized
Newton’s method (cont. 2)

Regularized Newton’s method: Apply to a general cost
function f .

Add a term to the Hessian of f to make it positive definite.
Update rule:

zn+1 = zn − (∇2f (zn) + λnId)
−1.∇f (zn). Usually, choose

λn = 2max(0,−λ1(∇2f (zn))). Here λ1(∇2f (zn)) is the
smallest eigenvalue of ∇2f (zn).

Pros: works more stably than Levenberg-Marquardt method.
Cons: more expensive, no result on avoidance of saddle points
is known.
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§ 4.3: Cubic Regularization

Introduced by Yurii Nesterov and B. T. Polyak in 2006,
Mathematical Programming, Ser A 108, 177–205, 2006.
(Earlier similar work is by Griewank.)

At each step n, it updates zn+1 = zn + sn, where sn minimises
the function s 7→ K (s) = f (s)+ < ∇f (zn), s > + <
∇2f (zn)s, s > +σn||s||3. Here σn is a positive constant.

Remarks: In their paper, Nesterov and Polyak showed that to
find the exact minimum of K (s), want need to compute the
eigenvector/eigenvalue pairs of ∇2f (zn). So, their exact
formulation has the same complexity as (Backtracking) New
Q-Newton’s method - see later.

They showed that (for strongly convex functions) this method
can avoid saddle points. Later work extended to adaptive
Cubic Regularization, which applies to more general functions
(still need some complicated constraints, like ∇f and/or ∇2f
is Lipschitz continuous, on the function to be able to show
good properties).
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§ 4.3: Cubic Regularization (cont. 2)

Global convergence for this method is proven under some
similar constraints on the cost function f .

However, these results are not as strong or general as those in
the main theorems of this talk.

In particular, there is no guarantee the method can be useful
for finding roots of polynomials in 1 complex variable.

Since this is a trust region method, implementing it is difficult.

There is only one public repository so far, and it is not
straightforward from the theoretical algorithm.

It contains many parameters, and the performance is very
sensitive to the choice of the parameters.
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§ 4.4: Summary of previous variants of Newton’s method

Prior to Backtracking New Q-Newton’s method, there are
thousands of variations of Newton’s method. (And many new
ones appear very regularly after.)

Those which are inexpensive (like quasi-Newton’s methods
such as BFGS) has weak theoretical guarantee.

Those which have stronger theoretical theoretical guarantees,
usually still need quite restrictive constraints (like the gradient
or the Hessian of the function is Lipschitz continuous).

Those which have both good global convergence and
avoidance of saddle points can be difficult to implement, or
may not have quick rate of convergence.
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§ 5: New Q-Newton’s method

Heuristic:

Issue 1: A saddle point is where the Hessian has a negative
eigenvalue. So if we change the signs of negative eigenvalues,
maybe we can avoid saddle points.

Issue 2: The Hessian at a point may be singular
det(∇2f (zn)) = 0. We need to add a term to make it
invertible.

Issue 3: To preserve the quick rate of convergence, the term
we add in resolving Issue 2 should be small when the gradient
is small.
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§ 5.1: New Q-Newton’s method, algorithm

Input: A function f : Rm → R. m + 1 random distinct
constants κ0, . . . , κm. A constant τ > 0.

Output: a local minimum of f .

Step 0: Choose an initial point z0 randomly.

Step n:

If zn is a critical point, STOP. Otherwise,

Step n.1: Choose κ the first term in κ0, . . . , κm so that
An := ∇2f (zn) + κ||∇f (zn)||τ is invertible.

Step n.2: Let (λj , vj) (j = 1, . . . ,m) be an orthonormal basis
of pairs of eigenvalue/eigenvector of An.

Step n.3: Update zn+1 = zn −
∑m

j=1 < vj ,∇f (zn) > vj/|λj |.
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§ 5.2: Proofs of main properties

Proof for fast rate of convergence: Assume that z∗ is a
non-degenerate local minimum. We need to show that for z0
close enough to z∗, then the sequence zn converges to z∗ with
quadratic rate of convergence. This follows from that
∇2f (z∗) is invertible, hence An is close to ∇2f (zn). Hence,
near a non-degenerate local minimum, New Q-Newton’s
method behaves like Newton’s method.

Proof for avoidance of saddle points:

2.1: Existence of local Stable-Central manifolds near saddle
points of f , under the dynamics of New Q-Newton’s method

2.2: Show that for random initial point z0, iterates of z0 won’t
land in these Stable-Central manifolds.

Remark: Proofs of 1 and 2.1 don’t need that κ0, . . . , κm are
random.
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§ 5.2: Proofs of main properties (cont. 2)

Proof of 2.1: Will apply Stable - Central manifold, hence need
to first show that near a saddle point, the dynamics is C 1 (a
priori, it is not continuous at every points).

Since at a saddle point, the Hessian is invertible and the
gradient is 0, κ = κ0.

To show that the dynamics is C 1, we need to assume that f is
C 3. Also, need the following results from the theory of Linear
operators, concerning eigenvalue/eigenvector of a
parametrized linear operator:

Result: A(x) = C 1 family of real symmetric m ×m matrices.
C = a circle in C such that for all x open set U, C contains k
eigenvalues/eigenvectors (λ1(x), e1(x)), . . ., (λk(x), ek(x)) of
A(x). e1(x), . . . , ek(x) orthonormal. Moreover, ∂C contains
no eigenvalue of any A(x). Then the projection pr(v) :=∑k

i=1 λi (x) < v , ei (x) > ei (x) can be represented as∫
C (A(x)− ζId)−1vdζ.
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§ 5.2: Proofs of main properties (cont. 3)

Proof of 2.2:

First, show that there is a set E ⊂ R of zero Lebsegue measure
such that if κ ∈ R\E , then the set z where ∇f (z) ̸= 0 and
A(z , δ) = ∇2f (z) + κ||∇f (z)||τ is not invertible belongs to E .
From this, it follows that for these κ, z , then the preimage by
A(z , κ) of a set of zero Lebesgue measure also has zero
Lebesgue measure.

The randomness of the constants κ0, . . . , κm+1 can be made
precise: Just choose distinct m+1 numbers in the set R\E .
If z0 is such that its orbit under A(z , κ) converges to a saddle
point, then it must meet one of the local Stable-Central
manifolds where κ is one of the κ0, . . . , κm, then z0 belongs
to a countable union of sets of the form
A(z1, κ

′
1)

−1 ◦ . . . ◦ A(zk , κ′1)−1(S), where S is a local
Stable-Central manifold and hence is of zero Lebesgue
measure.
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§ 5.3: Missing point: convergence

New Q-Newton’ method is better than Newton’ method: it
has the same rate of convergence, it is as easy to implement
(with a higher complexity), and in addition it can avoid saddle
points.

What it misses: show global convergence under some
reasonable assumptions, and in case convergence not known
show that every cluster point is a critical point of the function.

Remark: if the sequence constructed by New Q-Newton’s
method converges, then the limit point is known to be a
critical point of the function f .

Backtracking New Q-Newton’s method addresses this
convergence issue.
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§ 6: Backtracking New Q-Newton’s method

Heuristic idea: add a mechanism to assure global convergence.

Two commonly useful techniques in the Optimization
literature: trust region method and Backtracking line search.

Trust region method: at each step n, solve a optimal
subproblem on a region around the current point zn (like in
Cubic Regularization). Can prove some good theoretical
results. However, there are many parameters to take care of,
and no definite procedure to choose these parameters.
Consequently, very difficult to implement, the implementations
are very sensitive to parameters and hence unstable.

Backtracking line search: The update rule is
zn+1 = zn − αnvv , where vn is a pre-determined vector
(descent direction) for example ∇f (zn), and αn > 0 a number
to be determined by a backtracking procedure. (In this case,
the truth region method would like to find minimum of the
function α 7→ f (zn − αvn).) Very flexible, easy to implement,
and stable.
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§ 6.1: Armijo’s Backtracking line search

We will use specifically Armijo’s Backtracking line search.
Introduced by Armijo in the 1960’s. (A related but more
complicated procedure, but not giving better results or
experiments, is Wolffe’s condition, which needs stronger
conditions than Armijo’s condition.)

Input: zn so that ∇f (zn) ̸= 0. Also a vector wn such that
< ∇f (zn),wn >> 0. Constants 1 ≥ α0 > 0 and 0 < β < 1
(for the Backtracking procedure).

Output: αn > 0 and the update zn+1 = zn − αnwn.

Armijo’s condition: α > 0 satisfies Armijo’s condition if
f (zn − αnwn)− f (zn) ≤ −α < wn,∇f (zn) > /3. (Remark: If
f is C 1, then by Taylor’s expansion, this is satisfied by α > 0
small enough.)

Armijo’s Backtracking line search: Put α := α0. While
Armijo’s condition is not satisfied, define α := αβ.

Remark: There are improvements of Armijos’ procedure, to
reduce calculations, see (T.-Nguyen, cited before).
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f (zn − αnwn)− f (zn) ≤ −α < wn,∇f (zn) > /3. (Remark: If
f is C 1, then by Taylor’s expansion, this is satisfied by α > 0
small enough.)

Armijo’s Backtracking line search: Put α := α0. While
Armijo’s condition is not satisfied, define α := αβ.

Remark: There are improvements of Armijos’ procedure, to
reduce calculations, see (T.-Nguyen, cited before).
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§ 6.2: The algorithm

The Backtracking New Q-Newton’s method modifies New
Q-Newton’s method on the following aspects:

When choosing κ: Need stronger condition: Choose κ the
first κj for which min spectral radius of
A(x , κ) ≥ κ∗||∇f (zn)||tau, where κ∗ = mini ̸=j |κi − κj |/2.
(Remark: in experiments, even the simpler choice in New
Q-Newton’s method also works well. Heuristic explanation
given later.)

Backtracking line search to update: Use Armijo’s
Backtracking line search for
wn :=

∑m
j=1 < vj ,∇f (zn) > vj/|λj |. (Check that

< wn,∇f (zn) >> 0!)

If f does not have compact sublevels, then normalize wn to
wn/max{1, ||wn||} before running Armijo’s Backtracking line
search. This is to reduce the chance of divergence to infinity.
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§ 6.3: The special case of function in 1 real variable

Illustration: Explicit formulas for applying Backtracking New
Q-Newton’s method to find roots of a function F : R → R.

Choose two random real numbers κ0, κ1. Choose two
numbers α0 > 0 and 0 < β < 1. Define κ∗ = |κ0 − κ1|/2.
Define f (x) = F (x)2/2. Then f ′(x) = F (x)F ′(x) ⇒ critical
points of f are either roots of F or critical points of F .

f ′′(x) = F ′(x)2 + F (x)F ′′(x). ⇒ If x is critical point of f but
not a root of F , and F (x)F ′′(x) > 0, then x is a local
minimum but not global minimum of f .

If |f ′′(zn) + κ0|f ′(zn)|τ | ≥ κ∗|f ′(zn)|τ , then κ = κ0.
Otherwise, κ = κ1. An = f ′′(zn) + κ0|f ′(zn)|τ .
Define wn = f ′(zn)/|An|. (If f does not have compact
sublevels, then define wn = wn/max{1, ||wn||}).
Run Armijo’s Backtracking line search procedure to find
αn > 0, and update zn+1 = zn − αnwn.
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§ 6.4: Proof of main properties

Avoidance of saddle points: The key point is to show that if
z∗ is a non-degenerate critical point of f , and zn is close to
z∗, then with wn from Backtracking New Q-Newton’s method
we have for all 0 ≤ α ≤ 1 we have:

f (zn − αnwn)− f (zn) ≤ −α < wn,∇f (zn) > /2 + o(||wn||2).
⇒ αn = α0 near z∗.

In particular, the dynamics of Backtracking New Q-Newton’s
method is C 1 near a saddle point z∗, and we can do as before
for New Q-Newton’s method.

Remark: The fact αn = α0 used in the above proof is quite
delicate, and it is true because we choose wn as coming from
some perturbations of the Hessian. If, on the other hand, one
chooses wn = ∇f (zn) (as in Gradient Descent, introduced by
Cauchy), then it is not known (even though there is strong
evidence to support) if Armijo’s Backtracking line search can
avoid saddle point.
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§ 6.4: Proof of main properties (cont. 2)

Quick rate of convergence: If we choose α0 = 1, then the fact
that αn = α0 = 1 for zn near a non-degenerate local minimum
shows that Backtracking New Q-Newton’s method behaves
like the usual Newton’s method, and hence has quadratic
convergence rate.

Global convergence: This is proven in the following 2
reasonable cases:

Case 1: f has countably many critical points. (This is the
generic situation, by transversal theory.)

Case 2: f is real analytic, or more generally satisfies gradient
Lojasiewicz inequality near its critical points.
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§ 6.4: Proof of main properties (cont. 3)

Proof of global convergence for Case 1: We use the following
result

Result: (T.-Nguyen, cited before) 1). If one applies Armijo’s
Backtracking line search to descent directions wn satisfying
the condition < wn,∇f (zn) >≥ c||∇f (zn)||τ for all n, where
c , τ > 0 are constants, then any cluster point of the
constructed sequence zn is a critical point of f . 2). Let zn be
a sequence in Rm such that ||zn+1 − zn|| → 0. If the set of
the sequence zn is a non-empty countable set, then the
sequence zn indeed converges.

Remark: the proof of point 2 above uses a result by M. D.
Asic and D. D. Adamovic, The American mathematical
monthly, on cluster points of sequences in a compact metric
space.
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§ 6.4: Proof of main properties (cont. 4)

Proof of global convergence for Case 2: We use the following
result

Theorem (P.A: Absil, R. Mahony and B. Andrews, SIAM
Journal on Optimization) Let f be a function, and zn a
sequence satisfying Armijo’s condition, where
< wn,∇f (zn) >≥ c ||∇f (zn)||2. Let z∗ be a point at which f
satisfies the gradient Lojasiewicz inequality. If zn has a
subsequence converges to z∗, then the whole sequence zn
converges to z∗.

Remark: Lojasiewicz proved convergence of gradient flow for
functions satisfying his namesake’ condition.
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§ 6.4: Proof of main properties (cont. 5)

Finding roots of meromorphic functions

Let F be a meromorphic function in 1 complex variable z . So
singular points of F are poles. We want to solve F (z) = 0.

Write z = x + iy , and f (x , y) = ||F (z)||2/2. f is a (not
defined everywhere) map from R2 to R. f (x , y) = 0 if and
only if z is a root of F . f (x , y) = +∞ if and only if z is a
pole of F .

Result 1: (x , y) is a critical point of f if and only if z is a root
of F (z)F ′(z).

Result 2: Assume that {z ∈ C : F (z)F ′′(z) = F ′(z) = 0} = ∅.
Then if (x , y) is a critical point of f but not a root of F (z),
then it is a saddle point of f .
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§ 7: Experimental results

Image created by Josep Maria Batile i Ferrer: (Rotated by
−90 degree) Fractal structure of the basin of attraction of
Newton’s method for finding roots of the transcendental
function cosh(z)− 1.



Blank page

This page is intended to be blank.

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



§ 7.1: Basins of attraction

Some remarks:

For polynomials of degree 2, Backtracking New Q-Newton’s
method satisfies Schŕ’oder/Cayley theorem. The same for
Backtracking Gradient Descent.

For polynomials of degree 3 and 4, basins of attraction for
Backtracking New Q-Newton’s method seem not have fractal
structure. Basins of attraction for Newton’s method are well
known to have fractal structures. Basins of attraction for
Backtracking Gradient descent seem to be less smooth, and
may have fractal structures.

Show examples from the paper: arXiv:2209.05378.

More examples (including random damping Newton’s
method).

Interestingly, Random Damping Method with αn close to 1,
applied to polynomial of degree 2 in 1 complex variable, does
not satisfy Schroder/Cayley theorem!
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§ 7.1: Basins of attraction (cont. 2)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial (z − z∗1 )(z − z∗2 ) for
z∗1 = 0.5− 0.2i and z∗2 = 1 + 0.4i . Here |αn − 1| is small.



§ 7.1: Basins of attraction (cont. 3)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial (z − z∗1 )(z − z∗2 ) for
z∗1 = 0.5− 0.2i and z∗2 = 1 + 0.4i . Here |αn − 1| is large.



§ 7.1: Basins of attraction (cont. 4)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial z3 − 2z + 2. Here
|αn − 1| is small.



§ 7.1: Basins of attraction (cont. 5)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial z3 − 2z + 2. Here
|αn − 1| is large.



§ 7.1: Basins of attraction (cont. 6)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial
(z2 + 1)(z − 2.3)(z + 2.3). Here |αn − 1| is small.



§ 7.1: Basins of attraction (cont. 7)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial
(z2 + 1)(z − 2.3)(z + 2.3). Here |αn − 1| is large.



§ 7.1: Basins of attraction (cont. 8)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial
z5 − 3iz3 − (5 + 2i)z2 + 3z + 1. Here |αn − 1| is small.



§ 7.1: Basins of attraction (cont. 9)

Basin of attraction when using Random Damping Newton’s
method for the complex polynomial
z5 − 3iz3 − (5 + 2i)z2 + 3z + 1. Here |αn − 1| is large.



§ 7.1: Basins of attraction (cont. 10)

Basin of attraction when using Random Damping Newton’s
method for the transcendental function in 1 complex variable
ez(z5 − 3iz3 − (5 + 2i)z2 + 3z + 1). Here |αn − 1| is small.



§ 7.1: Basins of attraction (cont. 11)

Basin of attraction when using Random Damping Newton’s
method for the transcendental function in 1 complex variable
ez(z5 − 3iz3 − (5 + 2i)z2 + 3z + 1). Here |αn − 1| is large.



§ 7.1: Basins of attraction (cont. 12)

Basin of attraction when using Newton method for the Airy
function in 1 real variable.



§ 7.1: Basins of attraction (cont. 13)

Basin of attraction when using Random Damping Newton’s
method for the Airy function in 1 real variable. Here |αn − 1|
is small.



§ 7.1: Basins of attraction (cont. 14)

Basin of attraction when using Random Damping Newton’s
method for the Airy function in 1 real variable. Here |αn − 1|
is large.



§ 7.1: Basins of attraction (cont. 15)

Basin of attraction when using Backtracking New Q-Newton’s
method for the Airy function in 1 real variable.
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§ 7.2: Finding roots

Some remarks:

To find roots of equations of holomorphic equations, we can
reduce to finding roots of a system of real analytic functions
(2 x number of equations, 2 x number of variables).
Backtracking New Q-Newton’s method may converge to local
minima instead of roots (global minima).

Some experiments show that if we regard these new real
variables as complex variables, then reduce them to real
variables again (hence, 4 x number of equations, 4 x number
of equations), then convergence to global minima are
observed, even if we start close to those points for the
previous system the convergence is to local minima.
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§ 8: Summary and Open questions

Summary:

New Q-Newton’s method modifies the Hessian by a term of
the form κ||∇f (zn)||τ . κ is one of the m+1 numbers
randomly chosen from beginning. This helps resolve the case
the Hessian is not invertible. Then change the sign of negative
eigenvalues of the new operator. This helps to avoid saddle
points. Same local rate of convergence as Newton’s method.

Backtracking New Q-Newton’s method adds Armijo’s
Backtracking line search. This helps with global convergence.

Roughly speaking: if f has countably many critical points or
satisfies the gradient Lojasiewicz inequality, then global
convergence to local minima.

In particular, proven global convergence to roots of
ameromorphicfunction in 1 complex variable.

All these results are new in the literature.
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§ 8: Summary and Open questions (cont. 2)

Summary (cont. 2):

Implementation is straight forward. Performance is stable, not
sensitive to the changes of parameters.

Experiments with just a few eigenvalues/eigenvectors used
show good performance.

Open questions:

Reduce complexity?

Large scale possibility?

More assurance of global convergence to global minima?

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization



§ 8: Summary and Open questions (cont. 2)

Summary (cont. 2):
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Thank you very much for your attention!

Tuyen Trung Truong Backtracking New Q-Newton’s method: finding roots and optimization


