On non-autonomous attracting basins.

Sayani Bera

Indian Association for the Cultivation of Science, Kolkata, India.

Complex Analysis, Geometry and Dynamics, Portorož, 5th-9th June, 2023.

Uniformly attracting non-autonomous basins conjecture a.k.a the Bedford's conjecture.

Uniformly attracting non-autonomous basins conjecture a.k.a the Bedford's conjecture.

Bedford's question, 2000

Let (M, ρ) be a complex manifold and $F \in \operatorname{Aut}(M)$. If K is a compact invariant subset of M, such that the action of F is uniformly hyperbolic on K, with dimension $m \geq 1$. Whether the stable manifold at every point $p \in K$, i.e., $W_{F}^{s}(p) \simeq \mathbb{C}^{m}$.

Uniformly attracting non-autonomous basins conjecture a.k.a the Bedford's conjecture.

Bedford's question, 2000

Let (M, ρ) be a complex manifold and $F \in \operatorname{Aut}(M)$. If K is a compact invariant subset of M, such that the action of F is uniformly hyperbolic on K, with dimension $m \geq 1$. Whether the stable manifold at every point $p \in K$, i.e., $W_{F}^{S}(p) \simeq \mathbb{C}^{m}$.
(Jonsson-Varolin, 2002) Answered the above question for almost every points w.r.t a measure μ on K.

Uniformly attracting non-autonomous basins conjecture a.k.a the Bedford's conjecture.

Bedford's question, 2000

Let (M, ρ) be a complex manifold and $F \in \operatorname{Aut}(M)$. If K is a compact invariant subset of M, such that the action of F is uniformly hyperbolic on K, with dimension $m \geq 1$. Whether the stable manifold at every point $p \in K$, i.e., $W_{F}^{s}(p) \simeq \mathbb{C}^{m}$.
(Jonsson-Varolin, 2002) Answered the above question for almost every points w.r.t a measure μ on K.

Reformulation of Bedford's conjecture (Fornæss-Stensønes, 2004)- Theorem (B.,-Verma, 2022)
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ be a sequence which is uniformly attracting at the origin, i.e., there exists $r>0$ such that for $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1
$$

where $0<A<B<1$. Then

$$
\Omega_{\left\{F_{n}\right\}}^{0}=\left\{z \in \mathbb{C}^{m}: F(n)(z)=F_{n} \circ \cdots \circ F_{1}(z) \rightarrow 0 \text { as } n \rightarrow \infty\right\} \simeq \mathbb{C}^{m}
$$

Uniformly attracting non-autonomous basins conjecture a.k.a the Bedford's conjecture.

Bedford's question, 2000

Let (M, ρ) be a complex manifold and $F \in \operatorname{Aut}(M)$. If K is a compact invariant subset of M, such that the action of F is uniformly hyperbolic on K, with dimension $m \geq 1$. Whether the stable manifold at every point $p \in K$, i.e., $W_{F}^{s}(p) \simeq \mathbb{C}^{m}$.
(Jonsson-Varolin, 2002) Answered the above question for almost every points w.r.t a measure μ on K.

- (Fornæss-Stensønes, 2004) Bedfords Conjecture \Longrightarrow An affirmative answer to Bedford's question.

Reformulation of Bedford's conjecture (Fornæss-Stensønes, 2004)- Theorem (B.,-Verma, 2022)
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ be a sequence which is uniformly attracting at the origin, i.e., there exists $r>0$ such that for $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1
$$

where $0<A<B<1$. Then

$$
\Omega_{\left\{F_{n}\right\}}^{0}=\left\{z \in \mathbb{C}^{m}: F(n)(z)=F_{n} \circ \cdots \circ F_{1}(z) \rightarrow 0 \text { as } n \rightarrow \infty\right\} \simeq \mathbb{C}^{m}
$$

Autonomous basins of attraction and triangularisations.

Autonomous basins of attraction and triangularisations.
Theorem (Rosay-Rudin, 1988)

Autonomous basins of attraction and triangularisations.

Theorem (Rosay-Rudin, 1988)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ and $p \in \mathbb{C}^{m}$ be an attracting fixed point of F. Then the basin of attraction of F at p, i.e.,

$$
\Omega_{F}^{p}=\left\{z \in \mathbb{C}^{m}: F^{n}(z) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { is biholomorphic to } \mathbb{C}^{m} .
$$

Autonomous basins of attraction and triangularisations.

Theorem (Rosay-Rudin, 1988)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ and $p \in \mathbb{C}^{m}$ be an attracting fixed point of F. Then the basin of attraction of F at p, i.e.,

$$
\Omega_{F}^{p}=\left\{z \in \mathbb{C}^{m}: F^{n}(z) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { is biholomorphic to } \mathbb{C}^{m} .
$$

Proof (Idea):

Autonomous basins of attraction and triangularisations.

Theorem (Rosay-Rudin, 1988)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ and $p \in \mathbb{C}^{m}$ be an attracting fixed point of F. Then the basin of attraction of F at p, i.e.,

$$
\Omega_{F}^{p}=\left\{z \in \mathbb{C}^{m}: F^{n}(z) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { is biholomorphic to } \mathbb{C}^{m} .
$$

Proof (Idea):

- There exists $d \geq 2$ with $X_{i+1}=\left[T^{-1} \circ X_{i} \circ F\right]_{d}$, i.e., as d-jets and $D T(0)=D F(0)$

Autonomous basins of attraction and triangularisations.

Theorem (Rosay-Rudin, 1988)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ and $p \in \mathbb{C}^{m}$ be an attracting fixed point of F. Then the basin of attraction of F at p, i.e.,

$$
\Omega_{F}^{p}=\left\{z \in \mathbb{C}^{m}: F^{n}(z) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { is biholomorphic to } \mathbb{C}^{m} .
$$

Proof (Idea):

- There exists $d \geq 2$ with $X_{i+1}=\left[T^{-1} \circ X_{i} \circ F\right]_{d}$, i.e., as d-jets and $D T(0)=D F(0)$
- Here T is a lower triangular polynomial automorphism of \mathbb{C}^{m} and X_{i} are locally injective at the origin, i.e., in \mathbb{C}^{2}

$$
T\left(z_{1}, z_{2}\right)=\left(a z_{1}, b z_{2}+c z_{1}+p\left(z_{2}\right)\right)
$$

Autonomous basins of attraction and triangularisations.

Theorem (Rosay-Rudin, 1988)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ and $p \in \mathbb{C}^{m}$ be an attracting fixed point of F. Then the basin of attraction of F at p, i.e.,

$$
\Omega_{F}^{p}=\left\{z \in \mathbb{C}^{m}: F^{n}(z) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { is biholomorphic to } \mathbb{C}^{m} .
$$

Proof (Idea):

- There exists $d \geq 2$ with $X_{i+1}=\left[T^{-1} \circ X_{i} \circ F\right]_{d}$, i.e., as d-jets and $D T(0)=D F(0)$
- Here T is a lower triangular polynomial automorphism of \mathbb{C}^{m} and X_{i} are locally injective at the origin, i.e., in \mathbb{C}^{2}

$$
T\left(z_{1}, z_{2}\right)=\left(a z_{1}, b z_{2}+c z_{1}+p\left(z_{2}\right)\right) .
$$

- Finally, $X_{i}=X \forall i \geq i_{0}$ and $\psi=\lim _{i \rightarrow \infty} T^{-i} \circ X \circ F^{i}$ is a biholomorphism between $\Omega_{T}^{0}=\mathbb{C}^{m}$ and Ω_{F}^{0}.

Autonomous basins of attraction and triangularisations.

Theorem (Rosay-Rudin, 1988)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ and $p \in \mathbb{C}^{m}$ be an attracting fixed point of F. Then the basin of attraction of F at p, i.e.,

$$
\Omega_{F}^{p}=\left\{z \in \mathbb{C}^{m}: F^{n}(z) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { is biholomorphic to } \mathbb{C}^{m} .
$$

Proof (Idea):

- There exists $d \geq 2$ with $X_{i+1}=\left[T^{-1} \circ X_{i} \circ F\right]_{d}$, i.e., as d-jets and $D T(0)=D F(0)$
- Here T is a lower triangular polynomial automorphism of \mathbb{C}^{m} and X_{i} are locally injective at the origin, i.e., in \mathbb{C}^{2}

$$
T\left(z_{1}, z_{2}\right)=\left(a z_{1}, b z_{2}+c z_{1}+p\left(z_{2}\right)\right)
$$

Finally, $X_{i}=X \forall i \geq i_{0}$ and $\psi=\lim _{i \rightarrow \infty} T^{-i} \circ X \circ F^{i}$ is a biholomorphism between $\Omega_{T}^{0}=\mathbb{C}^{m}$ and Ω_{F}^{0}.

Triangularizations on perturbed non-autonomous basins.

Triangularizations on perturbed non-autonomous basins.
Theorem (Peters, 2007)

Triangularizations on perturbed non-autonomous basins.

Theorem (Peters, 2007)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ with the origin as an attracting fixed point of F, Then there exists $\epsilon>0$ such that for every sequence $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ with

$$
\left\|F_{n}-F\right\|<\epsilon \text { on } B(0 ; 1) .
$$

Then the non-autonomous basin $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \mathbb{C}^{m}$.

Triangularizations on perturbed non-autonomous basins.

Theorem (Peters, 2007)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ with the origin as an attracting fixed point of F, Then there exists $\epsilon>0$ such that for every sequence $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ with

$$
\left\|F_{n}-F\right\|<\epsilon \text { on } B(0 ; 1) .
$$

Then the non-autonomous basin $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \mathbb{C}^{m}$.
Proof (Idea):

Triangularizations on perturbed non-autonomous basins.

Theorem (Peters, 2007)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ with the origin as an attracting fixed point of F, Then there exists $\epsilon>0$ such that for every sequence $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ with

$$
\left\|F_{n}-F\right\|<\epsilon \text { on } B(0 ; 1)
$$

Then the non-autonomous basin $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \mathbb{C}^{m}$.
Proof (Idea):

- There exists $d \geq 2$ with $X_{i+1}=\left[T_{i}^{-1} \circ X_{i} \circ F_{i}\right]_{d}$, i.e., as d - jets and $D T_{i}(0)=D F_{i}(0)$.

Triangularizations on perturbed non-autonomous basins.

Theorem (Peters, 2007)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ with the origin as an attracting fixed point of F, Then there exists $\epsilon>0$ such that for every sequence $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ with

$$
\left\|F_{n}-F\right\|<\epsilon \text { on } B(0 ; 1)
$$

Then the non-autonomous basin $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \mathbb{C}^{m}$.
Proof (Idea):

- There exists $d \geq 2$ with $X_{i+1}=\left[T_{i}^{-1} \circ X_{i} \circ F_{i}\right]_{d}$, i.e., as d-jets and $D T_{i}(0)=D F_{i}(0)$.
- Here T_{i} 's are lower triangular polynomial automorphisms of bounded degree of \mathbb{C}^{m} and X_{i} 's are locally injective at the origin, i.e., in \mathbb{C}^{2}

$$
T_{i}\left(z_{1}, z_{2}\right)=\left(a_{i} z_{1}, b_{i} z_{2}+c_{i} z_{1}+p_{i}\left(z_{2}\right)\right)
$$

- Finally, $\psi=\lim _{i \rightarrow \infty} T(i)^{-1} \circ X_{i} \circ F(i)$ is a biholomorphism between $\Omega_{\left\{T_{n}\right\}}^{0}=\mathbb{C}^{m}$ and $\Omega_{\left\{F_{n}\right\}}^{0}$.

Triangularizations on perturbed non-autonomous basins.

Theorem (Peters, 2007)

Suppose $F \in \operatorname{Aut}\left(\mathbb{C}^{m}\right), m \geq 2$ with the origin as an attracting fixed point of F, Then there exists $\epsilon>0$ such that for every sequence $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{m}\right)$ with

$$
\left\|F_{n}-F\right\|<\epsilon \text { on } B(0 ; 1)
$$

Then the non-autonomous basin $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \mathbb{C}^{m}$.
Proof (Idea):

$$
\begin{aligned}
& \mathbb{C}^{m} \xrightarrow{F_{1}} \mathbb{C}^{m} \xrightarrow{F_{2}} \mathbb{C}^{m} \xrightarrow{F_{3}} \cdots \\
& \downarrow X_{1} \quad \downarrow X_{2} \quad \downarrow X_{3} \\
& \mathbb{C}^{m} \xrightarrow{T_{1}} \mathbb{C}^{m} \xrightarrow{T_{2}} \mathbb{C}^{m} \xrightarrow{T_{3}} \cdots
\end{aligned}
$$

- There exists $d \geq 2$ with $X_{i+1}=\left[T_{i}^{-1} \circ X_{i} \circ F_{i}\right]_{d}$, i.e., as d-jets and $D T_{i}(0)=D F_{i}(0)$.
- Here T_{i} 's are lower triangular polynomial automorphisms of bounded degree of \mathbb{C}^{m} and X_{i} 's are locally injective at the origin, i.e., in \mathbb{C}^{2}

$$
T_{i}\left(z_{1}, z_{2}\right)=\left(a_{i} z_{1}, b_{i} z_{2}+c_{i} z_{1}+p_{i}\left(z_{2}\right)\right)
$$

- Finally, $\psi=\lim _{i \rightarrow \infty} T(i)^{-1} \circ X_{i} \circ F(i)$ is a biholomorphism between $\Omega_{\left\{T_{n}\right\}}^{0}=\mathbb{C}^{m}$ and $\Omega_{\left\{F_{n}\right\}}^{0}$.

Non-autonomous abstractions or conjugations of basins of attraction.

Non-autonomous abstractions or conjugations of basins of attraction.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B .
$$

Non-autonomous abstractions or conjugations of basins of attraction.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B .
$$

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Non-autonomous abstractions or conjugations of basins of attraction.

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B .
$$

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Let $\left\{H_{n}\right\}$ be a bounded sequence of endomorphisms of \mathbb{C}^{m}, with the same linear part, i.e.,

Non-autonomous abstractions or conjugations of basins of attraction.

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B .
$$

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Let $\left\{H_{n}\right\}$ be a bounded sequence of endomorphisms of \mathbb{C}^{m}, with the same linear part, i.e., $D F_{n}(0)=D H_{n}(0)$ for every $n \geq 1$.

Non-autonomous abstractions or conjugations of basins of attraction.

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B .
$$

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Let $\left\{H_{n}\right\}$ be a bounded sequence of endomorphisms of \mathbb{C}^{m}, with the same linear part, i.e.,

$$
D F_{n}(0)=D H_{n}(0) \text { for every } n \geq 1
$$

If there exists a sequence of bounded functions $\left\{X_{n}\right\}$ of the form

$$
X_{n}=\text { Identity }+ \text { h.o.t. }
$$

such that the below diagram commutes upto jets of order d_{0}. Then $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$,

Non-autonomous abstractions or conjugations of basins of attraction.

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B
$$

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Let $\left\{H_{n}\right\}$ be a bounded sequence of endomorphisms of \mathbb{C}^{m}, with the same linear part, i.e.,

$$
D F_{n}(0)=D H_{n}(0) \text { for every } n \geq 1
$$

If there exists a sequence of bounded functions $\left\{X_{n}\right\}$ of the form

$$
X_{n}=\text { Identity }+ \text { h.o.t. }
$$

such that the below diagram commutes upto jets of order d_{0}. Then $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$,

$$
\begin{aligned}
& \mathbb{C}^{m} \xrightarrow{F_{1}} \mathbb{C}^{m} \xrightarrow{F_{2}} \mathbb{C}^{m} \xrightarrow{F_{3}} \cdots \\
& \downarrow X_{1} \quad \downarrow X_{2} \quad \downarrow X_{3} \\
& \mathbb{C}^{m} \xrightarrow{H_{1}} \mathbb{C}^{m} \xrightarrow{H_{2}} \mathbb{C}^{m} \xrightarrow{H_{3}} \cdots
\end{aligned}
$$

Non-autonomous abstractions or conjugations of basins of attraction.

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1 \text { and } B^{d_{0}}<A<B
$$

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Let $\left\{H_{n}\right\}$ be a bounded sequence of endomorphisms of \mathbb{C}^{m}, with the same linear part, i.e.,

$$
D F_{n}(0)=D H_{n}(0) \text { for every } n \geq 1
$$

If there exists a sequence of bounded functions $\left\{X_{n}\right\}$ of the form

$$
X_{n}=\text { Identity }+ \text { h.o.t. }
$$

such that the below diagram commutes upto jets of order d_{0}. Then $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$, where $\Omega_{\left\{H_{n}\right\}}^{0}$ denotes the abstract basin of attraction of the sequence $\left\{H_{n}\right\}$ at the origin.

$$
\begin{aligned}
& \mathbb{C}^{m} \xrightarrow{F_{1}} \mathbb{C}^{m} \xrightarrow{F_{2}} \mathbb{C}^{m} \xrightarrow{F_{3}} \cdots \\
& \downarrow X_{1} \quad \downarrow X_{2} \quad \downarrow X_{3} \\
& \mathbb{C}^{m} \xrightarrow{H_{1}} \mathbb{C}^{m} \xrightarrow{H_{2}} \mathbb{C}^{m} \xrightarrow{H_{3}} \cdots
\end{aligned}
$$

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a bounded sequence of Hénon maps of bounded degree.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a bounded sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022)

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a bounded sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022)

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., the following diagram commutes upto jets of order $d_{0}+1$.

Hence $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a bounded sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022)

Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., the following diagram commutes upto jets of order $d_{0}+1$.

$$
\begin{aligned}
& \mathbb{C}^{m} \xrightarrow{F_{1}} \mathbb{C}^{m} \xrightarrow{F_{2}} \mathbb{C}^{m} \xrightarrow{F_{3}} \cdots \\
& \downarrow X_{1} \quad \downarrow X_{2} \quad \downarrow X_{3} \\
& \mathbb{C}^{m} \xrightarrow{H_{1}} \mathbb{C}^{m} \xrightarrow{H_{2}} \mathbb{C}^{m} \xrightarrow{H_{3}} \cdots
\end{aligned}
$$

Hence $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.

We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

\rightarrow Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.
We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$

- For every $n \geq 1, \quad \pi_{1} \circ F_{n}(x, y)=a_{n} x+e_{n}^{1}(x)+f_{n}^{1}(x, y)+g_{n}^{1}(y)$

$$
\pi_{2} \circ F_{n}(x, y)=b_{n} y+c_{n} x+e_{n}^{2}(x)+f_{n}^{2}(x, y)+g_{n}^{2}(y),
$$

where e_{n}^{i}, g_{n}^{i} are holomorphic in one variable and f_{n}^{i} are holomorphic in two variables for $i=1,2$.

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

\rightarrow Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.
We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$

- For every $n \geq 1, \quad \pi_{1} \circ F_{n}(x, y)=a_{n} x+e_{n}^{1}(x)+f_{n}^{1}(x, y)+g_{n}^{1}(y)$

$$
\pi_{2} \circ F_{n}(x, y)=b_{n} y+c_{n} x+e_{n}^{2}(x)+f_{n}^{2}(x, y)+g_{n}^{2}(y),
$$

where e_{n}^{i}, g_{n}^{i} are holomorphic in one variable and f_{n}^{i} are holomorphic in two variables for $i=1,2$.

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

\rightarrow Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.

- We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$
- For every $n \geq 1, \quad \pi_{1} \circ F_{n}(x, y)=a_{n} x+e_{n}^{1}(x)+f_{n}^{1}(x, y)+g_{n}^{1}(y)$

$$
\pi_{2} \circ F_{n}(x, y)=b_{n} y+c_{n} x+e_{n}^{2}(x)+f_{n}^{2}(x, y)+g_{n}^{2}(y),
$$

where e_{n}^{i}, g_{n}^{i} are holomorphic in one variable and f_{n}^{i} are holomorphic in two variables for $i=1,2$.

- The triangularisation technique fails, unless $g_{n}^{1}(y) \equiv 0$ or $B^{2}<A$ or $\left|a_{n}\right|^{2}<\left|b_{n}\right|$.

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

\rightarrow Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.
We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$

- For every $n \geq 1, \quad \pi_{1} \circ F_{n}(x, y)=a_{n} x+e_{n}^{1}(x)+f_{n}^{1}(x, y)+g_{n}^{1}(y)$

$$
\pi_{2} \circ F_{n}(x, y)=b_{n} y+c_{n} x+e_{n}^{2}(x)+f_{n}^{2}(x, y)+g_{n}^{2}(y),
$$

where e_{n}^{i}, g_{n}^{i} are holomorphic in one variable and f_{n}^{i} are holomorphic in two variables for $i=1,2$.

- The triangularisation technique fails, unless $g_{n}^{1}(y) \equiv 0$ or $B^{2}<A$ or $\left|a_{n}\right|^{2}<\left|b_{n}\right|$.
- There exist $\tilde{e}_{n}^{2}(x)$ and $\tilde{g}_{n}^{1}(y)$, polynomials of degree at most d_{0}, such that

$$
H_{n}^{1}(x, y)=\left(y, a_{n} x+\tilde{g}_{n}^{1}(y)+y^{d_{0}+1}\right), H_{n}^{2}(x, y)=\left(y, b_{n} x+c_{n} a_{n}^{-1} y+\tilde{e}_{n}^{2}\left(a_{n}^{-1} y\right)+y^{d_{0}+1}\right)
$$

and

$$
\left[H_{n}(x, y)\right]_{d_{0}}=\left[H_{n}^{2} \circ H_{n}^{1}(x, y)\right]_{d_{0}}=\left(a_{n} x+\left[g_{n}^{1}(y)\right]_{d_{0}}, b_{n} y+c_{n} x+\left[e_{n}^{2}(x)\right]_{d_{0}}+h_{n}(x, y)\right) .
$$

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.
- We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$
- For every $n \geq 1, \quad \pi_{1} \circ F_{n}(x, y)=a_{n} x+e_{n}^{1}(x)+f_{n}^{1}(x, y)+g_{n}^{1}(y)$

$$
\pi_{2} \circ F_{n}(x, y)=b_{n} y+c_{n} x+e_{n}^{2}(x)+f_{n}^{2}(x, y)+g_{n}^{2}(y)
$$

where e_{n}^{i}, g_{n}^{i} are holomorphic in one variable and f_{n}^{i} are holomorphic in two variables for $i=1,2$.

- The triangularisation technique fails, unless $g_{n}^{1}(y) \equiv 0$ or $B^{2}<A$ or $\left|a_{n}\right|^{2}<\left|b_{n}\right|$.
- There exist $\tilde{e}_{n}^{2}(x)$ and $\tilde{g}_{n}^{1}(y)$, polynomials of degree at most d_{0}, such that

$$
H_{n}^{1}(x, y)=\left(y, a_{n} x+\tilde{g}_{n}^{1}(y)+y^{d_{0}+1}\right), H_{n}^{2}(x, y)=\left(y, b_{n} x+c_{n} a_{n}^{-1} y+\tilde{e}_{n}^{2}\left(a_{n}^{-1} y\right)+y^{d_{0}+1}\right)
$$

and

$$
\left[H_{n}(x, y)\right]_{d_{0}}=\left[H_{n}^{2} \circ H_{n}^{1}(x, y)\right]_{d_{0}}=\left(a_{n} x+\left[g_{n}^{1}(y)\right]_{d_{0}}, b_{n} y+c_{n} x+\left[e_{n}^{2}(x)\right]_{d_{0}}+h_{n}(x, y)\right)
$$

Proof of Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Recall for every $z \in B(0 ; r), A\|z\| \leq\left\|F_{n}(z)\right\| \leq B\|z\|$ for every $n \geq 1$ and $B^{d_{0}}<A<B$.

We will assume $D F_{n}(0)=\left(\begin{array}{cc}a_{n} & 0 \\ c_{n} & b_{n}\end{array}\right)$, where $a_{n}, b_{n} \neq 0$ with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq B<1$

- For every $n \geq 1, \quad \pi_{1} \circ F_{n}(x, y)=a_{n} x+e_{n}^{1}(x)+f_{n}^{1}(x, y)+g_{n}^{1}(y)$

$$
\pi_{2} \circ F_{n}(x, y)=b_{n} y+c_{n} x+e_{n}^{2}(x)+f_{n}^{2}(x, y)+g_{n}^{2}(y),
$$

where e_{n}^{i}, g_{n}^{i} are holomorphic in one variable and f_{n}^{i} are holomorphic in two variables for $i=1,2$.

- The triangularisation technique fails, unless $g_{n}^{1}(y) \equiv 0$ or $B^{2}<A$ or $\left|a_{n}\right|^{2}<\left|b_{n}\right|$.
- There exist $\tilde{e}_{n}^{2}(x)$ and $\tilde{g}_{n}^{1}(y)$, polynomials of degree at most d_{0}, such that

$$
H_{n}^{1}(x, y)=\left(y, a_{n} x+\tilde{g}_{n}^{1}(y)+y^{d_{0}+1}\right), H_{n}^{2}(x, y)=\left(y, b_{n} x+c_{n} a_{n}^{-1} y+\tilde{e}_{n}^{2}\left(a_{n}^{-1} y\right)+y^{d_{0}+1}\right)
$$

and

$$
\left[H_{n}(x, y)\right]_{d_{0}}=\left[H_{n}^{2} \circ H_{n}^{1}(x, y)\right]_{d_{0}}=\left(a_{n} x+\left[g_{n}^{1}(y)\right]_{d_{0}}, b_{n} y+c_{n} x+\left[e_{n}^{2}(x)\right]_{d_{0}}+h_{n}(x, y)\right) .
$$

- The sequences $\left\{H_{n}\right\}$ and $\left\{F_{n}\right\}$ are non-autonomously conjugated, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$ upto jets of order $d_{0}+1$.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022)
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022) - a computation technique.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022) - a computation technique.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Step 2: Bedford's conjecture is true for Hénon maps of bounded degree.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022) - a computation technique.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Step 2: Bedford's conjecture is true for Hénon maps of bounded degree.

Theorem 2 (B., 2022)

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022) - a computation technique.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Step 2: Bedford's conjecture is true for Hénon maps of bounded degree.

Theorem 2 (B., 2022)
Let $\left\{H_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence of Hénon maps of bounded degree $d \geq 2$ which is uniformly attracting at the origin, i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|H_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1,
$$

where $0<A<B<1$. Then $\Omega_{\left\{H_{n}\right\}}^{0} \simeq \mathbb{C}^{2}$.

Outline of the proof of the Bedford's Conjecture in \mathbb{C}^{2}

- Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously conjugated with a sequence of Hénon maps of bounded degree.

Theorem 1 (B.-Verma, 2022) - a computation technique.
Let $\left\{F_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence which is uniformly attracting at the origin with $B^{d_{0}}<A<B$ for some $d_{0} \geq 2$. Then the sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence of uniformly attracting Hénon maps $\left\{H_{n}\right\}$ each of degree $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}$.

- Step 2: Bedford's conjecture is true for Hénon maps of bounded degree.

Theorem 2 (B., 2022) -by constructing non-autonomous Greens Functions.
Let $\left\{H_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence of Hénon maps of bounded degree $d \geq 2$ which is uniformly attracting at the origin, i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|H_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq 1
$$

where $0<A<B<1$. Then $\Omega_{\left\{H_{n}\right\}}^{0} \simeq \mathbb{C}^{2}$.

Step2: Bedford's conjecture is true for Hénon maps of bounded degree.

Theorem 2(B., 2022)
Let $\left\{H_{n}\right\} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ be a sequence of Hénon maps of bounded degree $d \geq 2$ which is uniformly attracting at the origin, i.e., for every $z \in B(0 ; r)$

$$
A\|z\| \leq\left\|H_{n}(z)\right\| \leq B\|z\| \text { for every } n \geq \text { 1and }
$$

where $0<A<B<1$. Then $\Omega_{\left\{H_{n}\right\}}^{0} \simeq \mathbb{C}^{2}$.

- Definition: A finite composition of maps of the form

$$
H(x, y)=(y, p(y)-a x),
$$

where $p(y)$ is a polynomial of degree at least 2 and $a \in \mathbb{C}^{*}$.

- Inverse: $H^{-1}(x, y)=\left(a^{-1}(p(y)+x), x\right)$, i.e., they are polynomial automorphisms of \mathbb{C}^{2} and extends as bi-rational maps on \mathbb{P}^{2}.
- Indeterminacy sets: $I^{+}=[0: 1: 0]$ and $I^{-}=[1: 0: 0]$.

Non-autonomous dynamical Green's function and their properties.

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} .
$$

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} .
$$

Results (B., 2022)

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} \text {. }
$$

Results (B., 2022)

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are plurisubharmonic, continuous function on \mathbb{C}^{2} with logarithmic growth at $I^{ \pm}$, respectively.

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} \text {. }
$$

Results (B., 2022)

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are plurisubharmonic, continuous function on \mathbb{C}^{2} with logarithmic growth at $I^{ \pm}$, respectively.
- The forward and backward sets of bounded orbits, i.e.,

$$
K_{\left\{H_{n}\right\}}^{ \pm}=\left\{z \in \mathbb{C}^{2}:\left\{H^{ \pm}(n)(z)\right\} \text { is bounded }\right\}=\left\{z \in \mathbb{C}^{2}: G_{\left\{H_{n}\right\}}^{ \pm}(z)=0\right\} .
$$

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} \text {. }
$$

Results (B., 2022)

- Both $G_{\left[H_{n}\right]}^{ \pm}$are plurisubharmonic, continuous function on \mathbb{C}^{2} with logarithmic growth at $I^{ \pm}$, respectively.
- The forward and backward sets of bounded orbits, i.e.,

$$
K_{\left\{H_{n}\right\}}^{ \pm}=\left\{z \in \mathbb{C}^{2}:\left\{H^{ \pm}(n)(z)\right\} \text { is bounded }\right\}=\left\{z \in \mathbb{C}^{2}: G_{\left\{H_{n}\right\}}^{ \pm}(z)=0\right\} .
$$

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are pluriharmonic on $\left.\mathbb{C}^{2} \backslash K_{\left\{H_{n}\right\}}^{ \pm}\right\}$, respectively.

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} \text {. }
$$

Results (B., 2022)

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are plurisubharmonic, continuous function on \mathbb{C}^{2} with logarithmic growth at $I^{ \pm}$, respectively.
- The forward and backward sets of bounded orbits, i.e.,

$$
K_{\left\{H_{n}\right\}}^{ \pm}=\left\{z \in \mathbb{C}^{2}:\left\{H^{ \pm}(n)(z)\right\} \text { is bounded }\right\}=\left\{z \in \mathbb{C}^{2}: G_{\left\{H_{n}\right\}}^{ \pm}(z)=0\right\} .
$$

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are pluriharmonic on $\left.\mathbb{C}^{2} \backslash K_{\left\{H_{n}\right\}}^{ \pm}\right\}$, respectively.
- $\operatorname{Supp}\left(\frac{1}{2 \pi} d d^{c}\left(G_{\left\{H_{n}\right\}}^{ \pm}\right)\right)=J_{\left\{H_{n}\right\}}^{ \pm}=\partial K_{\left\{H_{n}\right\}}^{ \pm}$and $\partial \Omega_{\left\{H_{n}\right\}}^{0} \subset J_{\left\{H_{n}\right\}}^{+}$.

Non-autonomous dynamical Green's function and their properties.

- The dynamical positive and negative Greens function are defined as

$$
G_{\left\{H_{n}\right\}}^{+}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\|H(n)(z)\|}{d_{H(n)}} \text { and } G_{\left\{H_{n}\right\}}^{-}(z)=\lim _{n \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)(z)\right\|}{d_{H(n)}} \text {. }
$$

Results (B., 2022)

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are plurisubharmonic, continuous function on \mathbb{C}^{2} with logarithmic growth at $I^{ \pm}$, respectively.
- The forward and backward sets of bounded orbits, i.e.,

$$
K_{\left\{H_{n}\right\}}^{ \pm}=\left\{z \in \mathbb{C}^{2}:\left\{H^{ \pm}(n)(z)\right\} \text { is bounded }\right\}=\left\{z \in \mathbb{C}^{2}: G_{\left\{H_{n}\right\}}^{ \pm}(z)=0\right\} .
$$

- Both $G_{\left\{H_{n}\right\}}^{ \pm}$are pluriharmonic on $\left.\mathbb{C}^{2} \backslash K_{\left\{H_{n}\right\}}^{ \pm}\right\}$, respectively.
$\Rightarrow \operatorname{Supp}\left(\frac{1}{2 \pi} d d^{c}\left(G_{\left\{H_{n}\right\}}^{ \pm}\right)\right)=J_{\left\{H_{n}\right\}}^{ \pm}=\partial K_{\left\{H_{n}\right\}}^{ \pm}$and $\partial \Omega_{\left\{H_{n}\right\}}^{0} \subset J_{\left\{H_{n}\right\}}^{+}$.
\rightarrow The closure of $J_{\left\{H_{n}\right\}}^{ \pm}$and $K_{\left\{H_{n}\right\}}^{ \pm}$in \mathbb{P}^{2} are $\overline{J_{\left\{H_{n}\right\}}^{ \pm}}=J_{\left\{H_{n}\right\}}^{ \pm} \cup I^{\mp}, \overline{K_{\left\{H_{n}\right\}}^{ \pm}}=K_{\left\{H_{n}\right\}}^{ \pm} \cup I^{\mp}$.

The autonomous and the non-autonomous Greens functions.

The autonomous and the non-autonomous Greens functions.

- Note for a fixed $n \geq 1, H(n)$ is a Hénon map for every $n \geq 1$ and let $G_{n}^{ \pm}:=G_{H(n)}^{ \pm}$denote the corresponding Green's functions. Recall that they are defined as

The autonomous and the non-autonomous Greens functions.

- Note for a fixed $n \geq 1, H(n)$ is a Hénon map for every $n \geq 1$ and let $G_{n}^{ \pm}:=G_{H(n)}^{ \pm}$denote the corresponding Green's functions. Recall that they are defined as

$$
G_{n}^{+}(z)=G_{H(n)}^{+}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H(n)^{k}(z)\right\|}{d_{H}^{k}(n)} \text { and } G_{n}^{-}(z)=G_{H(n)}^{-}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)^{k}(z)\right\|}{d_{H(n)}^{k}} .
$$

The autonomous and the non-autonomous Greens functions.

- Note for a fixed $n \geq 1, H(n)$ is a Hénon map for every $n \geq 1$ and let $G_{n}^{ \pm}:=G_{H(n)}^{ \pm}$denote the corresponding Green's functions. Recall that they are defined as

$$
G_{n}^{+}(z)=G_{H(n)}^{+}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H(n)^{k}(z)\right\|}{d_{H}^{k}(n)} \text { and } G_{n}^{-}(z)=G_{H(n)}^{-}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)^{k}(z)\right\|}{d_{H(n)}^{k}} .
$$

- Since $H(n)$ has an attracting fixed point at the origin for every $n \geq 1$, by Rosay-Rudin

$$
\Omega_{n}:=\Omega_{H(n)}^{0}=\left\{z \in \mathbb{C}^{2}: H(n)^{k}(z) \rightarrow 0 \text { as } k \rightarrow \infty\right\} \simeq \mathbb{C}^{2} .
$$

The autonomous and the non-autonomous Greens functions.

- Note for a fixed $n \geq 1, H(n)$ is a Hénon map for every $n \geq 1$ and let $G_{n}^{ \pm}:=G_{H(n)}^{ \pm}$denote the corresponding Green's functions. Recall that they are defined as

$$
G_{n}^{+}(z)=G_{H(n)}^{+}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H(n)^{k}(z)\right\|}{d_{H(n)}^{k}} \text { and } G_{n}^{-}(z)=G_{H(n)}^{-}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)^{k}(z)\right\|}{d_{H(n)}^{k}} .
$$

- Since $H(n)$ has an attracting fixed point at the origin for every $n \geq 1$, by Rosay-Rudin

$$
\Omega_{n}:=\Omega_{H(n)}^{0}=\left\{z \in \mathbb{C}^{2}: H(n)^{k}(z) \rightarrow 0 \text { as } k \rightarrow \infty\right\} \simeq \mathbb{C}^{2} .
$$

Result (Bedford-Smillie, 1991)

$$
\operatorname{Supp}\left(\frac{1}{2 \pi} d d^{c} G_{n}^{ \pm}\right)=J_{H(n)}^{ \pm}, \partial \Omega_{n}=\partial \Omega_{H(n)}^{0}=J_{H(n)}^{+}, \text {and } \overline{J_{H(n)}^{+}}=J_{H(n)}^{+} \cup I^{-} \text {for } n \geq 1 .
$$

The autonomous and the non-autonomous Greens functions.

- Note for a fixed $n \geq 1, H(n)$ is a Hénon map for every $n \geq 1$ and let $G_{n}^{ \pm}:=G_{H(n)}^{ \pm}$denote the corresponding Green's functions. Recall that they are defined as

$$
G_{n}^{+}(z)=G_{H(n)}^{+}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H(n)^{k}(z)\right\|}{d_{H(n)}^{k}} \text { and } G_{n}^{-}(z)=G_{H(n)}^{-}(z)=\lim _{k \rightarrow \infty} \frac{\log ^{+}\left\|H^{-1}(n)^{k}(z)\right\|}{d_{H(n)}^{k}} \text {. }
$$

- Since $H(n)$ has an attracting fixed point at the origin for every $n \geq 1$, by Rosay-Rudin

$$
\Omega_{n}:=\Omega_{H(n)}^{0}=\left\{z \in \mathbb{C}^{2}: H(n)^{k}(z) \rightarrow 0 \text { as } k \rightarrow \infty\right\} \simeq \mathbb{C}^{2} .
$$

Result (Bedford-Smillie, 1991)

$$
\operatorname{Supp}\left(\frac{1}{2 \pi} d d^{c} G_{n}^{ \pm}\right)=J_{H(n)}^{ \pm}, \partial \Omega_{n}=\partial \Omega_{H(n)}^{0}=J_{H(n)}^{+}, \text {and } \overline{J_{H(n)}^{+}}=J_{H(n)}^{+} \cup I^{-} \text {for } n \geq 1 \text {. }
$$

Result

- The sequence $\left\{G_{n}^{ \pm}\right\}$converges uniformly to $G_{\left\{H_{n}\right\}}^{ \pm}$over compact subsets of \mathbb{C}^{2}.
- $d d^{c} G_{n}^{ \pm} \rightarrow d d^{c}\left(G_{\left\{H_{n}\right\}}^{ \pm}\right)$.

$\Omega_{\left\{H_{n}\right\}}^{0}$ is biholomorphic to \mathbb{C}^{2}.

- Let $C \subset \Omega_{\left\{H_{n}\right\}}^{0}$ is a compact subset then there exists $n_{C} \geq 1$ such that

$$
C \subset \Omega_{n} \text { for every } n \geq n_{C} .
$$

- Let $\left\{C_{l}\right\}, l \geq 1$ be an exhaustion by compacts of $\Omega_{\left\{H_{n}\right\}}^{0}$, then there exist an increasing sequence of integers $\left\{n_{l}\right\}$ such that

$$
C_{l} \subset \Omega_{n} \text { for every } n \geq n_{l} \text { and } l \geq 1 .
$$

- We consider appropriately normalised biholomorphisms $\phi_{l}: \Omega_{n_{l}} \rightarrow \mathbb{C}^{2}$ such that

$$
\lim _{l \rightarrow \infty} \phi_{l}(z) \text { exists for every } z \in \Omega_{\left\{H_{n}\right\}}^{0} .
$$

- Also $\phi=\lim _{l \rightarrow \infty} \phi_{l}$ on $\Omega_{\left\{H_{n}\right\}}^{0}$ is an injective map.
- Finally, by the fact- $G_{n}^{+} \rightarrow G_{\left\{H_{n}\right\}}^{+}$(uniformly on compacts) we conclude $\phi\left(\Omega_{\left\{H_{n}\right\}}^{0}\right)=\mathbb{C}^{2}$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

Weak shift-like maps in $\mathbb{C}^{m}, m \geq 3$.

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial map of degree at least 2 .

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

A family generalising the Hénon maps from \mathbb{C}^{2}.

Weak shift-like maps in $\mathbb{C}^{m}, m \geq 3$.

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial map of degree at least 2 .

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

$$
\text { A family generalising the Hénon maps from } \mathbb{C}^{2} \text {. }
$$

Generalising shift-like maps introduced by Bedford-Pambuccian(1998).

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial map of degree at least 2 .

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

A family generalising the Hénon maps from \mathbb{C}^{2}.

Generalising shift-like maps introduced
Weak shift-like maps in $\mathbb{C}^{m}, m \geq 3$. by Bedford-Pambuccian(1998).

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial map of degree at least 2 .

- (Technical) Step 1: A uniformly attracting sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence $\left\{G_{n}\right\}$ where every $\left\{G_{n}\right\}$ is obtained as m-composition of weak shift-like maps, i.e.,

$$
G_{n}=S_{m n} \circ \cdots \circ S_{m(n-1)+1},
$$

and $\left\{S_{n}\right\}$ is a sequence of weak shiff-like maps of degree d_{0} as jets of order $d_{0} \geq 2$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

$$
\text { A family generalising the Hénon maps from } \mathbb{C}^{2} \text {. }
$$

Generalising shift-like maps introduced by Bedford-Pambuccian(1998).
Weak shift-like maps in $\mathbb{C}^{m}, m \geq 3$.

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial map of degree at least 2 .

- (Technical) Step 1: A uniformly attracting sequence $\left\{F_{n}\right\}$ is non-autonomously conjugated to a sequence $\left\{G_{n}\right\}$ where every $\left\{G_{n}\right\}$ is obtained as m-composition of weak shift-like maps, i.e.,

$$
G_{n}=S_{m n} \circ \cdots \circ S_{m(n-1)+1},
$$

and $\left\{S_{n}\right\}$ is a sequence of weak shift-like maps of degree d_{0} as jets of order $d_{0} \geq 2$.

$$
\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0} .
$$

Idea of Proof of (Technical) Step 1 in $\mathbb{C}^{3}: \Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}$.

Idea of Proof of (Technical) Step 1 in $\mathbb{C}^{3}: \Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}$.

We will assume $D F_{n}(0)=\left(\begin{array}{ccc}a_{n} & 0 & 0 \\ d_{n} & b_{n} & 0 \\ e_{n} & f_{n} & c_{n}\end{array}\right)$, with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq\left|c_{n}\right| \leq B<1$ with
$\quad B^{d_{0}}<A$.

- For every $n \geq 1$,

$$
\begin{array}{r}
\pi_{1} \circ F_{n}(x, y)=a_{n} x+a_{n}^{x}(x, y, z)+a_{n}^{2}(y)+a_{n}^{3}(z)+a_{n}^{23}(y, z), \\
\pi_{1} \circ F_{n}(x, y)=b_{n} y+d_{n} x+b_{n}^{y}(x, y, z)+b_{n}^{1}(x)+b_{n}^{3}(z)+b_{n}^{13}(x, z), \\
\pi_{1} \circ F_{n}(x, y)=c_{n} z+e_{n} x+f_{n} y+c_{n}^{z}(x, y, z)+c_{n}^{1}(x)+c_{n}^{2}(y)+c_{n}^{12}(x, y),
\end{array}
$$

where $a_{n}^{[\cdot]}, b_{n}^{[\cdot]}$ and $c_{n}^{[\cdot]}$ are appropriately defined holomorphic functions.

- Observe that linear part obtained as composition of weak-shifts is straightforward.

Idea of Proof of (Technical) Step 1 in $\mathbb{C}^{3}: \Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}$.

We will assume $D F_{n}(0)=\left(\begin{array}{ccc}a_{n} & 0 & 0 \\ d_{n} & b_{n} & 0 \\ e_{n} & f_{n} & c_{n}\end{array}\right)$, with $0<A \leq\left|a_{n}\right| \leq\left|b_{n}\right| \leq\left|c_{n}\right| \leq B<1$ with
$\quad B^{d_{0}}<A$.

- For every $n \geq 1$,

$$
\begin{array}{r}
\pi_{1} \circ F_{n}(x, y)=a_{n} x+a_{n}^{x}(x, y, z)+a_{n}^{2}(y)+a_{n}^{3}(z)+a_{n}^{23}(y, z), \\
\pi_{1} \circ F_{n}(x, y)=b_{n} y+d_{n} x+b_{n}^{y}(x, y, z)+b_{n}^{1}(x)+b_{n}^{3}(z)+b_{n}^{13}(x, z), \\
\pi_{1} \circ F_{n}(x, y)=c_{n} z+e_{n} x+f_{n} y+c_{n}^{z}(x, y, z)+c_{n}^{1}(x)+c_{n}^{2}(y)+c_{n}^{12}(x, y),
\end{array}
$$

where $a_{n}^{[\cdot]}, b_{n}^{[\cdot]}$ and $c_{n}^{[\cdot]}$ are appropriately defined holomorphic functions.

- Observe that linear part obtained as composition of weak-shifts is straightforward.
- The triangularisation technique fails, unless all the terms in red are identically equal to zero.
- Next the goal is to obtain degree two part of the red terms, above.
- We calculate in the same way the degree three terms of the red part, considering the errors induced by the degree two part. The process continues inductively upto the $d_{0}+1$-th stage.
- The sequences $\left\{G_{n}\right\}$ and $\left\{F_{n}\right\}$ are non-autonomously conjugated, upto jets of order $d_{0}+1$, i.e., $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2: The above sequence $\left\{G_{n}\right\}$ is non-autonomously conjugated to a sequence $\left\{H_{n}\right\}$ where every $\left\{H_{n}\right\}$ is obtained as m-composition of $\left(d_{0}+2\right)$-perturbed weak shift-like maps, i.e.,

$$
H_{n}=\mathbf{S}_{m n} \circ \cdots \circ \mathbf{S}_{m(n-1)+1},
$$

and $\left\{\mathbf{S}_{\mathbf{n}}\right\}$ is a $\left(d_{0}+2\right)$-perturbation of the above sequence, $\left\{S_{n}\right\}$ as jets of order $d_{0} \geq 2$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2 : The above sequence $\left\{G_{n}\right\}$ is non-autonomously conjugated to a sequence $\left\{H_{n}\right\}$ where every $\left\{H_{n}\right\}$ is obtained as m-composition of $\left(d_{0}+2\right)$-perturbed weak shift-like maps, i.e.,

$$
H_{n}=\mathbf{S}_{m n} \circ \cdots \circ \mathbf{S}_{m(n-1)+1},
$$

and $\left\{\mathbf{S}_{\mathbf{n}}\right\}$ is a $\left(d_{0}+2\right)$-perturbation of the above sequence, $\left\{S_{n}\right\}$ as jets of order $d_{0} \geq 2$.
d-Perturbed weak shift-like maps in $\mathbb{C}^{m}, m \geq 3$.

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}+z_{2}^{d-1}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)+\left(z_{2}^{d}+\cdots+z_{m}^{d}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial of degree at least 2 .

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2: The above sequence $\left\{G_{n}\right\}$ is non-autonomously conjugated to a sequence $\left\{H_{n}\right\}$ where every $\left\{H_{n}\right\}$ is obtained as m-composition of $\left(d_{0}+2\right)$-perturbed weak shift-like maps, i.e.,

$$
H_{n}=\mathbf{S}_{m n} \circ \cdots \circ \mathbf{S}_{m(n-1)+1},
$$

and $\left\{\mathbf{S}_{\mathbf{n}}\right\}$ is a $\left(d_{0}+2\right)$-perturbation of the above sequence, $\left\{S_{n}\right\}$ as jets of order $d_{0} \geq 2$.
d-Perturbed weak shift-like maps in $\mathbb{C}^{m}, m \geq 3$.

$$
S\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}+z_{2}^{d-1}, a z_{1}+p\left(z_{2}, \ldots, z_{m}\right)+\left(z_{2}^{d}+\cdots+z_{m}^{d}\right)\right)
$$

where $a \neq 0$ and $p: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial of degree at least 2 .

$$
\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}=\Omega_{\left\{\mathbf{S}_{\mathbf{n}}\right\}}^{0}
$$

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}=\Omega_{\left\{\mathbf{S}_{n}\right\}}^{0}$ where

$$
\mathbf{S}_{\mathbf{n}}\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}+z_{2}^{d-1}, a_{n} z_{1}+p_{n}\left(z_{2}, \ldots, z_{m}\right)+\left(z_{2}^{d}+\cdots+z_{m}^{d}\right)\right)
$$

where $A<\left|a_{n}\right|<B$ and $p_{n}: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial of degree at least $d_{0} \geq 2$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$ where

$$
\mathbf{S}_{\mathbf{n}}\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}+z_{2}^{d-1}, a_{n} z_{1}+p_{n}\left(z_{2}, \ldots, z_{m}\right)+\left(z_{2}^{d}+\cdots+z_{m}^{d}\right)\right)
$$

where $A<\left|a_{n}\right|<B$ and $p_{n}: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial of degree at least $d_{0} \geq 2$.

- Step 3: The sequence $\left\{\mathbf{S}_{\mathbf{n}}\right\}$, also not regular maps, admits positive Greens function with

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}=\Omega_{\left\{\mathbf{S}_{n}\right\}}^{0}$ where

$$
\mathbf{S}_{\mathbf{n}}\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}+z_{2}^{d-1}, a_{n} z_{1}+p_{n}\left(z_{2}, \ldots, z_{m}\right)+\left(z_{2}^{d}+\cdots+z_{m}^{d}\right)\right)
$$

where $A<\left|a_{n}\right|<B$ and $p_{n}: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial of degree at least $d_{0} \geq 2$.

- Step 3: The sequence $\left\{\mathbf{S}_{\mathbf{n}}\right\}$, also not regular maps, admits positive Greens function with

$$
\left\{z \in \mathbb{C}^{m}: G_{\left\{S_{n}\right\}}^{+}(z)=0\right\}=K_{\left\{S_{n}\right\}}^{+}=\left\{z \in \mathbb{C}^{m}:\{S(n)(z)\} \text { is bounded }\right\} .
$$

Hence one can mimic the ideas as in the case of Hénon to actually prove $\Omega_{\left\{\mathbf{S}_{\mathbf{n}}\right\}} \simeq \mathbb{C}^{m}$.

Outline of the proof of the Bedford's Conjecture in $\mathbb{C}^{m}, m>2$.

- Step 1: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0}=\Omega_{\left\{S_{n}\right\}}^{0}$.
- Step 2: $\Omega_{\left\{F_{n}\right\}}^{0} \simeq \Omega_{\left\{G_{n}\right\}}^{0} \simeq \Omega_{\left\{H_{n}\right\}}^{0}=\Omega_{\left\{\mathbf{S}_{n}\right\}}^{0}$ where

$$
\mathbf{S}_{\mathbf{n}}\left(z_{1}, \ldots, z_{m}\right)=\left(z_{2}, \ldots, z_{m}+z_{2}^{d-1}, a_{n} z_{1}+p_{n}\left(z_{2}, \ldots, z_{m}\right)+\left(z_{2}^{d}+\cdots+z_{m}^{d}\right)\right)
$$

where $A<\left|a_{n}\right|<B$ and $p_{n}: \mathbb{C}^{m-1} \rightarrow \mathbb{C}$ is a polynomial of degree at least $d_{0} \geq 2$.

- Step 3: The sequence $\left\{\mathbf{S}_{\mathbf{n}}\right\}$, also not regular maps, admits positive Greens function with

$$
\left\{z \in \mathbb{C}^{m}: G_{\left\{S_{n}\right\}}^{+}(z)=0\right\}=K_{\left\{S_{n}\right\}}^{+}=\left\{z \in \mathbb{C}^{m}:\{S(n)(z)\} \text { is bounded }\right\} .
$$

Hence one can mimic the ideas as in the case of Hénon to actually prove $\Omega_{\left\{\mathbf{S}_{\mathbf{n}}\right\}} \simeq \mathbb{C}^{m}$.

