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n(a−1

n y) + yd0+1)
and

.[Hn(x, y)]d0
= [H2

n ∘ H1
n(x, y)]d0

= (anx + [g1
n(y)]d0

, bny + cnx + [e2
n(x)]d0

+ hn(x, y))

‣  The sequences  and  are non-autonomously conjugated, i.e.,   upto jets of {Hn} {Fn} Ω0
{Fn}

≃ Ω0
{Hn}

order .d0 + 1

7



Outline of the proof of the Bedford’s Conjecture in ℂ2

8

‣ Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously 
conjugated with a sequence of  Hénon maps of bounded degree.

Let  be a  sequence which is uniformly attracting at the origin with 
 for some .  Then the sequence  is non-autonomously 

conjugated to a sequence of uniformly attracting Hénon maps  each of degree 
, i.e., .

{Fn} ∈ Aut(ℂ2)
Bd0 < A < B d0 ≥ 2 {Fn}

{Hn}
d0 + 1 Ω0

{Fn}
≃ Ω0

{Hn}

Theorem 1 (B.-Verma, 2022)



Outline of the proof of the Bedford’s Conjecture in ℂ2

8

‣ Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously 
conjugated with a sequence of  Hénon maps of bounded degree.

Let  be a  sequence which is uniformly attracting at the origin with 
 for some .  Then the sequence  is non-autonomously 

conjugated to a sequence of uniformly attracting Hénon maps  each of degree 
, i.e., .

{Fn} ∈ Aut(ℂ2)
Bd0 < A < B d0 ≥ 2 {Fn}

{Hn}
d0 + 1 Ω0

{Fn}
≃ Ω0

{Hn}

Theorem 1 (B.-Verma, 2022) -a computation technique.



Outline of the proof of the Bedford’s Conjecture in ℂ2

‣ Step 2: Bedford’s conjecture is true for Hénon maps of bounded degree.

8

‣ Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously 
conjugated with a sequence of  Hénon maps of bounded degree.

Let  be a  sequence which is uniformly attracting at the origin with 
 for some .  Then the sequence  is non-autonomously 

conjugated to a sequence of uniformly attracting Hénon maps  each of degree 
, i.e., .

{Fn} ∈ Aut(ℂ2)
Bd0 < A < B d0 ≥ 2 {Fn}

{Hn}
d0 + 1 Ω0

{Fn}
≃ Ω0

{Hn}

Theorem 1 (B.-Verma, 2022) -a computation technique.



Outline of the proof of the Bedford’s Conjecture in ℂ2

Theorem  2 (B., 2022)

‣ Step 2: Bedford’s conjecture is true for Hénon maps of bounded degree.

8

‣ Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously 
conjugated with a sequence of  Hénon maps of bounded degree.

Let  be a  sequence which is uniformly attracting at the origin with 
 for some .  Then the sequence  is non-autonomously 

conjugated to a sequence of uniformly attracting Hénon maps  each of degree 
, i.e., .

{Fn} ∈ Aut(ℂ2)
Bd0 < A < B d0 ≥ 2 {Fn}

{Hn}
d0 + 1 Ω0

{Fn}
≃ Ω0

{Hn}

Theorem 1 (B.-Verma, 2022) -a computation technique.



Outline of the proof of the Bedford’s Conjecture in ℂ2

Let  be a  sequence of Hénon maps of bounded degree which is 
uniformly attracting at the origin, i.e., for  every   

 , 
where .  Then .

{Hn} ∈ Aut(ℂ2) d ≥ 2
z ∈ B(0; r)

A∥z∥ ≤ ∥Hn(z)∥ ≤ B∥z∥ for every n ≥ 1
0 < A < B < 1 Ω0

{Hn}
≃ ℂ2

Theorem  2 (B., 2022)

‣ Step 2: Bedford’s conjecture is true for Hénon maps of bounded degree.

8

‣ Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously 
conjugated with a sequence of  Hénon maps of bounded degree.

Let  be a  sequence which is uniformly attracting at the origin with 
 for some .  Then the sequence  is non-autonomously 

conjugated to a sequence of uniformly attracting Hénon maps  each of degree 
, i.e., .

{Fn} ∈ Aut(ℂ2)
Bd0 < A < B d0 ≥ 2 {Fn}

{Hn}
d0 + 1 Ω0

{Fn}
≃ Ω0

{Hn}

Theorem 1 (B.-Verma, 2022) -a computation technique.



Outline of the proof of the Bedford’s Conjecture in ℂ2

Let  be a  sequence of Hénon maps of bounded degree which is 
uniformly attracting at the origin, i.e., for  every   

 , 
where .  Then .

{Hn} ∈ Aut(ℂ2) d ≥ 2
z ∈ B(0; r)

A∥z∥ ≤ ∥Hn(z)∥ ≤ B∥z∥ for every n ≥ 1
0 < A < B < 1 Ω0

{Hn}
≃ ℂ2

Theorem  2 (B., 2022)

‣ Step 2: Bedford’s conjecture is true for Hénon maps of bounded degree.

8

‣ Step 1: Any uniformly attracting sequence of automorphisms is non-autonomously 
conjugated with a sequence of  Hénon maps of bounded degree.

Let  be a  sequence which is uniformly attracting at the origin with 
 for some .  Then the sequence  is non-autonomously 

conjugated to a sequence of uniformly attracting Hénon maps  each of degree 
, i.e., .

{Fn} ∈ Aut(ℂ2)
Bd0 < A < B d0 ≥ 2 {Fn}

{Hn}
d0 + 1 Ω0

{Fn}
≃ Ω0

{Hn}

Theorem 1 (B.-Verma, 2022) -a computation technique.

-by constructing non-autonomous Greens Functions.



 Step2:  Bedford’s conjecture is true for Hénon maps of bounded degree.

Let  be a  sequence of Hénon maps of bounded degree which is 
uniformly attracting at the origin, i.e., for  every   

 and  
where .  Then .

{Hn} ∈ Aut(ℂ2) d ≥ 2
z ∈ B(0; r)

A∥z∥ ≤ ∥Hn(z)∥ ≤ B∥z∥ for every n ≥ 1
0 < A < B < 1 Ω0

{Hn}
≃ ℂ2

Theorem  2(B., 2022)

9

‣Definition: A finite composition of maps of the form  
, 

where  is a polynomial of degree at least   and . 

‣Inverse: , i.e., they are polynomial automorphisms  
of  and extends as bi-rational maps on . 

‣Indeterminacy sets:  and .

H(x, y) = (y, p(y) − ax)
p(y) 2 a ∈ ℂ*

H−1(x, y) = (a−1(p(y) + x), x)
ℂ2 ℙ2

I+ = [0 : 1 : 0] I− = [1 : 0 : 0]
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‣ 

•The sequence  converges uniformly to  over compact subsets of  

• .

{G±
n } G±

{Hn} ℂ2 .

ddcG±
n → ddc(G±

{Hn})

 Result 



  is biholomorphic to .Ω0
{Hn}

ℂ2

‣  Let  is a compact subset then there exists  such that 

 . 

‣  Let  be an exhaustion by compacts of then there exist an increasing 
sequence of  integers  such that 

 

‣ We consider appropriately normalised biholomorphisms  such that 

 exists for every . 

‣  Also   on   is an injective map. 

‣  Finally, by the fact—  (uniformly on compacts) we conclude 

C ⊂ Ω0
{Hn}

nC ≥ 1

C ⊂ Ωn  for every  n ≥ nC

{Cl}, l ≥ 1 Ω0
{Hn}

,
{nl}

Cl ⊂ Ωn  for every  n ≥ nl  and l ≥ 1.
ϕl : Ωnl

→ ℂ2

lim
l→∞

ϕl(z) z ∈ Ω0
{Hn}

ϕ = lim
l→∞

ϕl Ω0
{Hn}

G+
n → G+

{Hn}
ϕ(Ω0

{Hn}
) = ℂ2 .
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‣ The triangularisation technique fails, unless all the terms in red are identically equal to zero.
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