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» (Fornaess-Stensones, 2004) Bedfords Conjecture = An affirmative answer to Bedford’s question.
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Non-autonomous abstractions or conjugations of basins of attraction.

pLet {F,} € Aut(C?)bea sequence which is uniformly attracting at the origin i.e., for
everyz € B(0;r)
Allzll £ IF (2|l < BJ|z|| foreveryn > 1and B% < A < B.

Result on NAC (Abate, Abbondandolo, Majer, 2015)

Let { H,} be abounded sequence of endomorphisms of C™, with the same linear part, i.e.,
DF,(0) = DH, (0)foreveryn > 1.
If there exists a sequence of bounded functions { X } of the form
X, = Identity+ h.o.t.
such that the below diagram commutes upto jets of order d;, . Then Q({) Py Q({) H )

where QY

(H ) denotes the abstract basin of attraction of the sequence { H,} at the origin.
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Step2: Bedford’s conjecture is true for Hénon maps of bounded degree.

Theorem 2(B., 2022)

Let{H,} € Aut(C?) be a sequence of Hénon maps of bounded degree d > 2which is
uniformly attracting at the origin, i.e., for everyz € B(0; r)
Allz|l < |1H, (2|l < Bl|z|| foreveryn > land

where) < A < B < 1. ThenQ({)H} ~ C2,

» Definition: A finite composition of maps of the form

H(x,y) = (y,p(y) — ax),
where p(y)is a polynomial of degree atleast2 anda € C*.
» Inverse: H='(x, y) = (a ' (p(y) + x), x), i.e., they are polynomial automorphisms

of C? and extends as bi-rational maps on P2,
» Indeterminacysets: 1T =[0:1:0]and/” =[1:0:0].
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The autonomous and the non-autonomous Greens functions.

» Noteforafixedn > 1, H(n)isaHénonmap foreveryn > 1andlet G := G;;“(n) denote

the corresponding Green’s functions. Recall that they are defined as

+ k + —1/.\k
610 = G = tim E VIO 6 G = tim SE WO

oo Hn) k— o0 d[]f](n)

» Since H(n) has an attracting fixed point at the origin for every n > 1, by Rosay-Rudin
Q,:=Q) ={z€C*: Hn)(z) » 0ask - co} = C*.

=J+

H()UI_ for n > 1.

Supp(ziﬂdch,f> = T » 6Qn = aQ%(n) = J+ Hny and J;

H()

Rew
« The sequence { G} converges uniformly to G 1 1 Over compact subsets of C? .

+ dd°Gy} — dd*(Gfyy ).
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Q({)H |18 biholomorphic to C*.

» LetC C Q({) p 1 1sacompact subset then there exists n- 2> 1 such that

C C Q, forevery n > ng.

» Let {C;}, [ > 1bean exhaustion by compacts of Q({) H s then there exist an increasing

sequence of integers {#;} such that
C,CcQ forevery n>n; and[ > 1.

» We consider appropriately normalised biholomorphisms ¢, : 2, — C? such that

lim ¢,(z) exists forevery z € Q({)H -

[— 00

» Also¢ = lim ¢, on Q?H | Is an injective map.
[— 0 "

» Finally, by the fact— G — G,

(H) (uniformly on compacts) we conclude gb(Q({)Hn}) —C2
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Outline of the proof of the Bedford’s Conjecture in C", m > 2.
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Idea of Proof of (Technical) Step 1in C3: Q?

» We will assume DF, (0) =
Bh <A,
» Foreveryn > 1,

(

QR

Q

n

=

\Ifl

~ QO

F.p — TG

With0 < A <|a | <|b,|<|c,|<B < 1with

moF (x,y) =ax+a;(x,y,z)+ a,f(y) -+ a,?(z) - af(y, 2),
e F (x,y)=0b,y+dx+b)(x,y,2) + b,}(x) + b,:f(z) - bf(x, 2),

ol (x,y)=c,z+ex+fy+ci(x,y,2)+ c,}(x) -+ C,f(y) - c,%z(x, V),

whereal, bl and ¢! are appropriately defined holomorphic functions.

» Observe that linear part obtained as composition of weak-shifts is straightforward.
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Idea of Proof of (Technical) Step 1in C*: Q({)F = Q({)G )
(a, 0 0
» Wewillassume DF,(0) = |d, b, O [,with0 <A <|a,| < |b,| <]|c,| £B < 1with
Bh < A. GRSy

» Foreveryn > 1,
moF (x,y) =ax+a;(x,y,z)+ a,f(y) - a,?(z) - af(y, 2),

moF (x,y) =by+dx+b)(x,v,2) +bl(x) + b(z) + b (x, 2),
moF (x,y) =cz+ex+fy+ci(x,y,2) +cl(x)+c2(y) + ¢ (x, y),
whereal, bl and ¢! are appropriately defined holomorphic functions.
» Observe that linear part obtained as composition of weak-shifts is straightforward.
» The triangularisation technique fails, unless all the terms in red are identically equal to zero.

» Next the goal is to obtain degree two part of the red terms, above.

» We calculate in the same way the degree three terms of the red part, considering the errors induced by
the degree two part. The process continues inductively upto the dj, + 1-th stage.

» Thesequences {G,} and { F, } are non-autonomously conjugated, uptojets of order d, + 1, i.e.,
Qp,) = Qg
Flfl o n )
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