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Non-tangential limits and Fatou’s theorem

Let f: D — C holomorphic, ¢ € ID. Zlim,_,¢ f(z) = L iff f(zx) — L for
every sequence (zx) converging to & non-tangentially (inside a cone).



Non-tangential limits and Fatou’s theorem

Let f: D — C holomorphic, ¢ € ID. Zlim,_,¢ f(z) = L iff f(zx) — L for
every sequence (zx) converging to & non-tangentially (inside a cone).

f: D — D holomorphic admits non-tangential limit at a.e. £ € 9D.



More local information: Julia’s lemma

f: D — D holomorphic, £ € dD. The dilation )¢ is defined by

A¢ = liminf M

minf 577 € (0 + o).

& is a regular contact point if A¢ < +oo0.



More local information: Julia’s lemma

f: D — D holomorphic, £ € dD. The dilation )¢ is defined by

A¢ = liminf w

minf 54— € (0 + o).

& is a regular contact point if A¢ < +oo0.

If £ € D is regular contact point, then 35 € 9D s.t1.

Zlim f(z) =n

zZ—§



Proof using horospheres

The horosphere of radius R centered in & is

E(, R) = {zeD: |1_<Z’§>|2<R}.
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Proof using horospheres

The horosphere of radius R centered in & is

E(, R) = {zeD: |1_<Z’§>|2<R}.
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There exists a point € 9D s.t.
f(E(¢,R)) c E(n,AR), VR>O0.

A sequence (zx) converging to £ non-tangentially eventually enters
every horosphere E(¢, R).



JWC theorem in the disc

If £ € D is regular contact point with non-tg. limit n, then

£ Jim 1/(€) = mAeE.



Koranyi regions in the unit ball

The Koranyi region of amplitude M > 1 and vertex ¢ € B" is

K(E, M) = {ze g 1= 2O M}.
1—|iz|
Koranyi regions are larger than cones, and tangential in the complex
tangential direction!



Koranyi regions in the unit ball

The Koranyi region of amplitude M > 1 and vertex ¢ € B" is

R n. |1 — <ng>|
K(¢,M) = {zeB T <M}.

Koranyi regions are larger than cones, and tangential in the complex
tangential direction!

Let f: B” — C holomorphic, ¢ € 9B”, then

K- lim f(z) = L

zZ—§

iff f(z,) — L for every sequence (z,) converging to £ inside a Koranyi
region.



Rudin’s JWC in the ball

The Julia lemma in the ball gives the existence of K-lim,_,¢ f(2)

(g = 2 for clarity) Let f: B2 — B? holomorphic. Let ¢ € 9B be a
regular contact point with K-limit n. Write d.f as
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Rudin’s JWC in the ball

The Julia lemma in the ball gives the existence of K-lim,_,¢ f(2)

(g = 2 for clarity) Let f: B2 — B? holomorphic. Let ¢ € 9B be a
regular contact point with K-limit n. Write d.f as

<<§;,nn> (2, nn>>
(B ) ()

ong * Tn) drer

(3) T,)d(2, OB2)2
(4) 7,) is bounded in every Koranyi region

(><5i ny) =5 e
(2) (2L, n,)d(z,082)"% <50
<887f ZKO
(%



Restricted K-limits

A sequence (zx) — & is special restricted if it enters a Koranyi region
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and if
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Restricted K-limits

A sequence (zx) — & is special restricted if it enters a Koranyi region

and if
|2k — {2k, €12
1 — {2k, £)[2

— 0.

Let f: B” — C holomorphic, £ € 9B".

/K- lim f(z) = L

zZ—E

iff f(zx) — L for every special restricted (zx) converging to &.

It is an intermediate notion between non-tg. limit and K-limit



The proof is based on a Lindel6f principle

If f is bounded on every Koranyi region with vertex &, and if it admits a
limit L on a special restricted curve v with endpoint &, then

ZK-lim f(z) = L.

z—E&



Bringing geometry back: D strongly convex domain

log Ae p,g = lim igf kp(z, p) — ko (f(2), q)
Ey(¢, R) ={z: IimE kp(z, w) — kp(w, p) < log R}

Ko(&, M) = {z: kp(z,p) + Mlligwg kp(z, w) — kp(w, p) < 2log M}
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Bringing geometry back: D strongly convex domain

log Ae p,g = lim igf kp(z, p) — ko (f(2), q)
Ey(¢, R) ={z: IimE kp(z, w) — kp(w, p) < log R}

Ko(&, M) = {z: kp(z,p) + Mlligwg kp(z, w) — kp(w, p) < 2log M}

Abate—Venturini show existence of horospheres E,(&, R).

What about special restricted sequences?
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A holomorphic map ¢: D — D is a complex geodesic if
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kn(z, w) = kp(p(2), o(w)) for all z, w € D. A left inverse for ¢ is
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holomorphic retraction.
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strongly convex, then for all z € D and ¢ € 9D there exists a unique
complex geodesic ¢ s.t. ¢(0) = z and p(1) = ¢. Moreover ¢'(1)
exists and is transversal to 9D.



Complex geodesics and left inverses

A holomorphic map ¢: D — D is a complex geodesic if

kn(z, w) = kp(p(2), o(w)) for all z, w € D. A left inverse for ¢ is
p: D — D such that g o ¢ = idp. Notice that p := pogisa
holomorphic retraction.

If D is convex, then every complex geodesic admits a left inverse. If D
strongly convex, then for all z € D and ¢ € 9D there exists a unique
complex geodesic ¢ s.t. ¢(0) = z and p(1) = ¢. Moreover ¢'(1)
exists and is transversal to 9D.

Fix p € D and a complex geodesic s.t. ¢(0) = p, (1) = &. Choose a
left inverse. A sequence (zx) converging to & is special and restricted
if it is contained in a Koranyi region and if kp(zx, p(zx)) — O.
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Abate’s JWC

Let f: D — D’ holomorphic. Let ¢ € 9D be a regular contact point with
K-limit . Let p be a complex geodesic in D such that ¢,(0) = p,
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Abate’s JWC

Let f: D — D’ holomorphic. Let ¢ € 9D be a regular contact point with
K-limit . Let p be a complex geodesic in D such that ¢,(0) = p,

op(1

) =&, let pp be a left inverse. Let ¢4 be a complex geodesic in D'

such that ¢4(0) = g, pq(1) = n, let 54 be a left inverse.

Why

dpgof 4K
(1)a£q(1) Ae.p.q(f)
Z

(2) Z=td(z,00)"t =5 0

(3) 2552 d(z,0D)% <5 0

(4) M is bounded in every Koranyi region

1 1
—5 and 3?



Towards finite type

D convex domain, £ € D smooth point. The (line) type L at € is the
maximum order of contact of 9D with complex lines in &.
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Towards finite type

D convex domain, £ € D smooth point. The (line) type L at € is the
maximum order of contact of @D with complex lines in £&. D has finite
type L if L = maxecop type(§). A strongly convex domain D has type 2.

D convex domain, £ € 9D smooth point of finite type, v € C"\ {0}.
The Kobayashi type at £ in the direction v is

s¢(v) :=inf{s: d(z, D)°kp(z, v)is bounded on Koranyi regions}
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D convex finite type [with technical assumptions].
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restricted K-limit.



Kobayashi type in action

D convex finite type [with technical assumptions].Let f: D — D
holomorphic. Let £ € dD be a regular contact point with K-limit =, and
let veC"\ {0}.

Then o
se(v)—1 21
d(z,0D) By

is bounded on Koranyi regions.

Moreover, if v ¢ TEOD, then s¢(v) = 1 and 9L has a nonzero
restricted K-limit.
If ve TEOD, then 1/L < s¢(v) <1-1/Land

maam%mqgééﬁo



Idea of proof

Let z € K(¢, M), and ¢ : D — D a complex geodesic such that
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¥(0) = z and ¢/(0) = v/kp(z, v), then
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ldea of proof

Let z € K(¢, M), and ¢ : D — D a complex geodesic such that
¥(0) = z and ¢/(0) = v/kp(z, v), then

Y

5y (2) = 27(1 = 3(2))*  kp(2, V(o ) (0) =

2r(1 - p(2))

/2’r f(y(re”)) — m p((re”)) — 1 <ﬁ(2) — 1 )S d(2,0D)°kp(2,V) 4
o Ap(re®) -1 p(z) -1 d(z,0D) re’? '



The function

Problem: in finite type, the derivative ¢'(1) may not exists (even in
radial limit sense), and the approach can be tangential.
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show that the normal component (©’(z), n¢) always has nontangential
limit o5, (1) >0



The function

Problem: in finite type, the derivative ¢'(1) may not exists (even in
radial limit sense), and the approach can be tangential.

Solution (A-Fiacchi-Gontard-Guerini '22): use one-variable JWC to
show that the normal component (©’(z), n¢) always has nontangential
limit o5, (1) >0

For all z € D define the function Q;: D — (—o0,0) as
B 1
en(1)’

where ¢ is a complex geodesic such that ¢(0) = z and p(1) = €.

Qe(2) =



A pluricomplex Poisson kernel

Horospheres centered in £ exist (AFGG '22), and

lim kp(z, w) — kp(w, p) = log |Q(p)| — log |Qe(2),
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A pluricomplex Poisson kernel

Horospheres centered in £ exist (AFGG '22), and

lim kp(z, w) — kp(w, p) = log |Q(p)| — log |Qe(2),

w—¢
hence the level sets of Q are exactly the horospheres centered in &:

Ep(§, R) = {he p < log R} = {Q¢ <1/R}.

Qv(¢) = - 1"%'5, and if D is strongly convex Q coincides with the
pluricomplex Poisson Kernel introduced by Bracci-Patrizio-Trapani.
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Main result

(g = 2 for clarity) D, D’ convex finite type. Let f: D — D’ holomorphic.
Let ¢ € 9D be a regular contact point with K-limit . L(v) type of € in
the direction v, L’ type of 7.
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Main result

(g = 2 for clarity) D, D’ convex finite type. Let f: D — D’ holomorphic.
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the direction v, L’ type of 7.
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Main result

(g = 2 for clarity) D, D’ convex finite type. Let f: D — D’ holomorphic.
Let ¢ € 9D be a regular contact point with K-limit . L(v) type of € in
the direction v, L’ type of 7.
ZK Q2(p)
(1) <887nf£7nn> — )\gquD/ﬁ:]) > O

(2) (&, n,yd(z,0D)m " K o

) (L, 7,)d(z,0D)' v <5 0

(4) (8—2 d(z, 8D)ﬁ’%’ is bounded in every Koranyi region
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Tools

Interpretation of the Koranyi regions as tubular neighborhoods of real
geodesics with endpoint £ (Gromov hyperbolicity)

Existence of horospheres and Julia Lemma
Scaling to show that the normal segment o : [y, 1) — D given by
o(t) =&+ (t—1)¢p(1) has the property

lim kp(o(1), (1)) = 0

for every complex geodesic ¢ with endpoint &.

y
Se(v)”

Scaling to show that L(v) =




Proof of (1)

Let ¢, be a complex geodesic in D’ such that ¢,(0) = p, ¢p(1) = &.
Let v:= (¢p)i(1):
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Proof of (1)

Let ¢, be a complex geodesic in D’ such that ¢,(0) = p, ¢p(1) = &.

Let v := (pp)n(1). Let pq be a complex geodesic in D’ such that

©q(0) = q, pg(1) =1, let pq be a left inverse. Consider f := jg o f.
Aepolf) = lim explko (0, 1) — ko (F((1)), 0)]

= lim explkp(0, 1) - kp(f(a(t)),0)] = lim —(o(t)).

Hence

. of -
ZK- Zlgni 875(2) = Aepo(NIQE(P)] = A p.g(NIQ(P)I.

Moreover ZK-limy_,, g—,‘;’j(w) = |Q7L7"(q)|.



