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Non-tangential limits and Fatou’s theorem

Definition (Non-tangential limit)

Let f : D → C holomorphic, ξ ∈ ∂D. ∠ limz→ξ f (z) = L iff f (zk ) → L for
every sequence (zk ) converging to ξ non-tangentially (inside a cone).

Fatou’s theorem
f : D → D holomorphic admits non-tangential limit at a.e. ξ ∈ ∂D.
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More local information: Julia’s lemma

Definition (Dilation and contact point)

f : D → D holomorphic, ξ ∈ ∂D. The dilation λξ is defined by

λξ = lim inf
z→ξ

1 − |f (z)|
1 − |z|

∈ (0 +∞].

ξ is a regular contact point if λξ < +∞.

Julia’s lemma
If ξ ∈ ∂D is regular contact point, then ∃η ∈ ∂D s.t.

∠ lim
z→ξ

f (z) = η
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Proof using horospheres

Definition (Horosphere)

The horosphere of radius R centered in ξ is

E(ξ,R) :=

{
z ∈ D :

|1 − ⟨z, ξ⟩|2

1 − ∥z∥2 < R
}
.

Proof of Julia’s lemma
There exists a point η ∈ ∂D s.t.

f (E(ξ,R)) ⊂ E(η, λR), ∀R > 0.

A sequence (zk ) converging to ξ non-tangentially eventually enters
every horosphere E(ξ,R).
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JWC theorem in the disc

Julia–Wolff–Carathéodory’s theorem

If ξ ∈ ∂D is regular contact point with non-tg. limit η, then

∠ lim
z→ξ

f ′(ξ) = ηλξ ξ̄.



Koranyi regions in the unit ball

Definition (Koranyi region)

The Koranyi region of amplitude M > 1 and vertex ξ ∈ Bn is

K (ξ,M) :=

{
z ∈ Bn :

|1 − ⟨z, ξ⟩|
1 − ∥z∥

< M
}
.

Koranyi regions are larger than cones, and tangential in the complex
tangential direction!

Definition (K-limit)

Let f : Bn → C holomorphic, ξ ∈ ∂Bn, then

K - lim
z→ξ

f (z) = L

iff f (zn) → L for every sequence (zn) converging to ξ inside a Koranyi
region.
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Rudin’s JWC in the ball

The Julia lemma in the ball gives the existence of K - limz→ξ f (z)

Rudin’s JWC theorem
(q = 2 for clarity) Let f : B2 → B2 holomorphic. Let ξ ∈ ∂B2 be a
regular contact point with K -limit η. Write dz f as(

⟨ ∂f
∂nξ

,nη⟩ ⟨ ∂f
∂τξ

,nη⟩
⟨ ∂f
∂nξ

, τη⟩ ⟨ ∂f
∂τξ

, τη⟩

)

(1) ⟨ ∂f
∂nξ

,nη⟩
∠K−→ λξ

(2) ⟨ ∂f
∂τξ

,nη⟩d(z, ∂B2)−
1
2

∠K−→ 0

(3) ⟨ ∂f
∂nξ

, τη⟩d(z, ∂B2)
1
2

∠K−→ 0

(4) ⟨ ∂f
∂τξ

, τη⟩ is bounded in every Koranyi region
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Restricted K -limits

Definition (Special restricted sequence)

A sequence (zk ) → ξ is special restricted if it enters a Koranyi region
and if

∥zk − ⟨zk , ξ⟩ξ∥2

1 − |⟨zk , ξ⟩|2
→ 0.

Definition (Restricted K-limit)

Let f : Bn → C holomorphic, ξ ∈ ∂Bn.

∠K - lim
z→ξ

f (z) = L

iff f (zk ) → L for every special restricted (zk ) converging to ξ.

It is an intermediate notion between non-tg. limit and K -limit
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The proof is based on a Lindelöf principle

Rudin’s Lindelöf principle

If f is bounded on every Koranyi region with vertex ξ, and if it admits a
limit L on a special restricted curve γ with endpoint ξ, then

∠K - lim
z→ξ

f (z) = L.



Bringing geometry back: D strongly convex domain

Intrinsic definitions (with base-points)

log λξ,p,q = lim inf
z→ξ

kD(z,p)− kD′(f (z),q)

Ep(ξ,R) := {z : lim
w→ξ

kD(z,w)− kD(w ,p) < logR}

Kp(ξ,M) = {z : kD(z,p) + lim
w→ξ

kD(z,w)− kD(w ,p) < 2 logM}

Abate–Venturini show existence of horospheres Ep(ξ,R).

What about special restricted sequences?
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Complex geodesics and left inverses

Definition (Complex geodesic)

A holomorphic map φ : D → D is a complex geodesic if
kD(z,w) = kD(φ(z), φ(w)) for all z,w ∈ D.

A left inverse for φ is
ρ̃ : D → D such that ρ̃ ◦ φ = idD. Notice that ρ := φ ◦ ρ̃ is a
holomorphic retraction.

If D is convex, then every complex geodesic admits a left inverse. If D
strongly convex, then for all z ∈ D and ζ ∈ ∂D there exists a unique
complex geodesic φ s.t. φ(0) = z and φ(1) = ζ. Moreover φ′(1)
exists and is transversal to ∂D.

Definition (Special and restricted sequence)

Fix p ∈ D and a complex geodesic s.t. φ(0) = p, φ(1) = ξ. Choose a
left inverse. A sequence (zk ) converging to ξ is special and restricted
if it is contained in a Koranyi region and if kD(zk , ρ(zk )) → 0.
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Abate’s JWC

Abate’s JWC theorem
Let f : D → D′ holomorphic. Let ξ ∈ ∂D be a regular contact point with
K -limit η.

Let φp be a complex geodesic in D such that φp(0) = p,
φp(1) = ξ, let ρ̃p be a left inverse. Let φq be a complex geodesic in D′

such that φq(0) = q, φq(1) = η, let ρ̃q be a left inverse.

(1) ∂ρ̃q◦f
∂φ′

p(1)
∠K−→ λξ,p,q(f )

(2) ∂ρ̃q◦f
∂τξ

d(z, ∂D)−
1
2

∠K−→ 0

(3) ∂(f−ρq◦f )
∂φ′

p(1)
d(z, ∂D)

1
2

∠K−→ 0

(4) ∂(f−ρq◦f )
∂τξ

is bounded in every Koranyi region

Why − 1
2 and 1

2 ?
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Towards finite type

Definition (Type)

D convex domain, ξ ∈ ∂D smooth point. The (line) type L at ξ is the
maximum order of contact of ∂D with complex lines in ξ.

D has finite
type L if L = maxξ∈∂D type(ξ). A strongly convex domain D has type 2.

Definition (Kobayashi type)

D convex domain, ξ ∈ ∂D smooth point of finite type, v ∈ Cn \ {0}.
The Kobayashi type at ξ in the direction v is

sξ(v) := inf{s : d(z,D)sκD(z, v) is bounded on Koranyi regions}
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The Kobayashi type at ξ in the direction v is

sξ(v) := inf{s : d(z,D)sκD(z, v) is bounded on Koranyi regions}



Kobayashi type in action

Abate–Tauraso’s theorem
D convex finite type [with technical assumptions].

Let f : D → D
holomorphic. Let ξ ∈ ∂D be a regular contact point with K -limit τ , and
let v ∈ Cn \ {0}.
Then

d(z, ∂D)sξ(v)−1 ∂f
∂v

is bounded on Koranyi regions.

Moreover, if v ̸∈ TC
ξ ∂D, then sξ(v) = 1 and ∂f

∂v has a nonzero
restricted K-limit.
If v ∈ TC

ξ ∂D, then 1/L ≤ sξ(v) ≤ 1 − 1/L and

d(z, ∂D)sξ(v)−1 ∂f
∂v

∠K−→ 0.
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Idea of proof

Let z ∈ K (ξ,M), and ψ : D → D a complex geodesic such that
ψ(0) = z and ψ′(0) = v/κD(z, v), then

2π(1 − ρ̃(z))s−1 ∂f
∂v

(z) = 2π(1 − ρ̃(z))s−1κD(z, v)(f ◦ ψ)′(0) =

∫ 2π

0

f (ψ(reiθ))− τ

ρ̃(ψ(reiθ))− 1
ρ̃(ψ(reiθ))− 1
ρ̃(z)− 1

(
ρ̃(z)− 1
d(z, ∂D)

)s d(z, ∂D)sκD(z, v)
reiθ dθ.



Idea of proof

Let z ∈ K (ξ,M), and ψ : D → D a complex geodesic such that
ψ(0) = z and ψ′(0) = v/κD(z, v), then

2π(1 − ρ̃(z))s−1 ∂f
∂v

(z) = 2π(1 − ρ̃(z))s−1κD(z, v)(f ◦ ψ)′(0) =

∫ 2π

0

f (ψ(reiθ))− τ

ρ̃(ψ(reiθ))− 1
ρ̃(ψ(reiθ))− 1
ρ̃(z)− 1

(
ρ̃(z)− 1
d(z, ∂D)

)s d(z, ∂D)sκD(z, v)
reiθ dθ.



Idea of proof

Let z ∈ K (ξ,M), and ψ : D → D a complex geodesic such that
ψ(0) = z and ψ′(0) = v/κD(z, v), then

2π(1 − ρ̃(z))s−1 ∂f
∂v

(z) = 2π(1 − ρ̃(z))s−1κD(z, v)(f ◦ ψ)′(0) =

∫ 2π

0

f (ψ(reiθ))− τ

ρ̃(ψ(reiθ))− 1
ρ̃(ψ(reiθ))− 1
ρ̃(z)− 1

(
ρ̃(z)− 1
d(z, ∂D)

)s d(z, ∂D)sκD(z, v)
reiθ dθ.



The function Ω

Problem: in finite type, the derivative φ′(1) may not exists (even in
radial limit sense), and the approach can be tangential.

Solution (A-Fiacchi-Gontard-Guerini ’22): use one-variable JWC to
show that the normal component ⟨φ′(z),nξ⟩ always has nontangential
limit φ′

N(1) > 0

Definition (Function Ω)

For all z ∈ D define the function Ωξ : D → (−∞,0) as

Ωξ(z) = − 1
φ′

N(1)
,

where φ is a complex geodesic such that φ(0) = z and φ(1) = ξ.
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A pluricomplex Poisson kernel

Horospheres centered in ξ exist (AFGG ’22), and

lim
w→ξ

kD(z,w)− kD(w ,p) = log |Ωξ(p)| − log |Ωξ(z)|,

hence the level sets of Ω are exactly the horospheres centered in ξ:

Ep(ξ,R) = {hξ,p < logR} = {Ωξ < 1/R}.

ΩD
1 (ζ) = − 1−∥ζ∥2

|1−ζ|2 , and if D is strongly convex Ω coincides with the
pluricomplex Poisson Kernel introduced by Bracci-Patrizio-Trapani.
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Main result

Theorem A.-Fiacchi ’23
(q = 2 for clarity) D,D′ convex finite type.

Let f : D → D′ holomorphic.
Let ξ ∈ ∂D be a regular contact point with K -limit η. L(v) type of ξ in
the direction v , L′ type of η.

(1) ⟨ ∂f
∂nξ

,nη⟩
∠K−→ λξ,p,q

ΩD
ξ (p)

ΩD′
η (q)

> 0

(2) ⟨ ∂f
∂τξ

,nη⟩d(z, ∂D)
1

L(v)−1 ∠K−→ 0

(3) ⟨ ∂f
∂nξ

, τη⟩d(z, ∂D)1− 1
L′

∠K−→ 0

(4) ⟨ ∂f
∂τξ

, τη⟩d(z, ∂D)
1

L(v)−
1
L′ is bounded in every Koranyi region
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Tools

Interpretation of the Koranyi regions as tubular neighborhoods of real
geodesics with endpoint ξ (Gromov hyperbolicity)

Existence of horospheres and Julia Lemma

Scaling to show that the normal segment σ : [t0,1) → D given by
σ(t) = ξ + (t − 1)ϕ′N(1) has the property

lim
t→1

kD(φ(t), σ(t)) = 0

for every complex geodesic φ with endpoint ξ.

Scaling to show that L(v) = 1
sξ(v)

.
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Proof of (1)

Let φp be a complex geodesic in D′ such that φp(0) = p, φp(1) = ξ.
Let ν := (φp)

′
N(1).

Let φq be a complex geodesic in D′ such that
φq(0) = q, φq(1) = η, let ρ̃q be a left inverse. Consider f̃ := ρ̃q ◦ f .

λξ,p,0(f̃ ) = lim
t→1

exp[kD(0, t)− kD(f̃ (φ(t)),0)]

= lim
t→1

exp[kD(0, t)− kD(f̃ (σ(t)),0)] = lim
t→1

∂ f̃
∂ν

(σ(t)).

Hence

∠K - lim
z→ξ

∂ f̃
∂nξ

(z) = λξ,p,0(f̃ )|ΩD
ξ (p)| = λξ,p,q(f )|ΩD

ξ (p)|.

Moreover ∠K - limw→η
∂ρ̃q
∂nη

(w) = |ΩD′

η (q)|.
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