A Julia–Wolff–Carathéodory theorem in convex domains of finite type

Leandro Arosio

Università di Roma "Tor Vergata"

Complex Analysis, Geometry and Dynamics Portoroz 2023

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition (Non-tangential limit)

Let $f : \mathbb{D} \to \mathbb{C}$ holomorphic, $\xi \in \partial \mathbb{D}$. $\angle \lim_{z \to \xi} f(z) = L$ iff $f(z_k) \to L$ for every sequence (z_k) converging to ξ non-tangentially (inside a cone).

Definition (Non-tangential limit)

Let $f : \mathbb{D} \to \mathbb{C}$ holomorphic, $\xi \in \partial \mathbb{D}$. $\angle \lim_{z \to \xi} f(z) = L$ iff $f(z_k) \to L$ for every sequence (z_k) converging to ξ non-tangentially (inside a cone).

Fatou's theorem

 $f \colon \mathbb{D} \to \mathbb{D}$ holomorphic admits non-tangential limit at a.e. $\xi \in \partial \mathbb{D}$.

More local information: Julia's lemma

Definition (Dilation and contact point)

 $f: \mathbb{D} \to \mathbb{D}$ holomorphic, $\xi \in \partial \mathbb{D}$. The *dilation* λ_{ξ} is defined by

$$\lambda_{\xi} = \liminf_{z \to \xi} \frac{1 - |f(z)|}{1 - |z|} \in (0 + \infty].$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 ξ is a regular contact point if $\lambda_{\xi} < +\infty$.

More local information: Julia's lemma

Definition (Dilation and contact point)

 $f \colon \mathbb{D} \to \mathbb{D}$ holomorphic, $\xi \in \partial \mathbb{D}$. The *dilation* λ_{ξ} is defined by

$$\lambda_{\xi} = \liminf_{z \to \xi} \frac{1 - |f(z)|}{1 - |z|} \in (0 + \infty].$$

 ξ is a regular contact point if $\lambda_{\xi} < +\infty$.

Julia's lemma

If $\xi \in \partial \mathbb{D}$ is regular contact point, then $\exists \eta \in \partial \mathbb{D}$ s.t.

$$\angle \lim_{z \to \xi} f(z) = \eta$$

Proof using horospheres

Definition (Horosphere)

The *horosphere* of radius *R* centered in ξ is

$$E(\xi, R) := \left\{ z \in \mathbb{D} \colon rac{|1 - \langle z, \xi
angle|^2}{|1 - ||z||^2} < R
ight\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof using horospheres

Definition (Horosphere)

The *horosphere* of radius *R* centered in ξ is

$$E(\xi, R) := \left\{ z \in \mathbb{D} \colon \frac{|1 - \langle z, \xi \rangle|^2}{1 - ||z||^2} < R
ight\}.$$

Proof of Julia's lemma

There exists a point $\eta \in \partial \mathbb{D}$ s.t.

$$f(E(\xi, R)) \subset E(\eta, \lambda R), \quad \forall R > 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A sequence (z_k) converging to ξ non-tangentially eventually enters every horosphere $E(\xi, R)$.

Julia-Wolff-Carathéodory's theorem

If $\xi \in \partial \mathbb{D}$ is regular contact point with non-tg. limit η , then

$$\angle \lim_{z \to \xi} f'(\xi) = \eta \lambda_{\xi} \overline{\xi}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Koranyi regions in the unit ball

Definition (Koranyi region)

The *Koranyi region* of amplitude M > 1 and vertex $\xi \in \mathbb{B}^n$ is

$$\mathcal{K}(\xi, M) := \left\{ z \in \mathbb{B}^n \colon \frac{|1 - \langle z, \xi \rangle|}{1 - \|z\|} < M \right\}.$$

Koranyi regions are larger than cones, and tangential in the complex tangential direction!

Koranyi regions in the unit ball

Definition (Koranyi region)

The *Koranyi region* of amplitude M > 1 and vertex $\xi \in \mathbb{B}^n$ is

$$\mathcal{K}(\xi, M) := \left\{ z \in \mathbb{B}^n \colon \frac{|1 - \langle z, \xi \rangle|}{1 - \|z\|} < M \right\}.$$

Koranyi regions are larger than cones, and tangential in the complex tangential direction!

Definition (K-limit)

Let $f: \mathbb{B}^n \to \mathbb{C}$ holomorphic, $\xi \in \partial \mathbb{B}^n$, then

$$K-\lim_{z\to\xi}f(z)=L$$

iff $f(z_n) \to L$ for every sequence (z_n) converging to ξ inside a Koranyi region.

The Julia lemma in the ball gives the existence of K- $\lim_{z\to\xi} f(z)$

Rudin's JWC theorem

 $(q = 2 \text{ for clarity}) \text{ Let } f : \mathbb{B}^2 \to \mathbb{B}^2 \text{ holomorphic. Let } \xi \in \partial \mathbb{B}^2 \text{ be a regular contact point with } K-limit <math>\eta$. Write $d_z f$ as

$$\begin{pmatrix} \langle \frac{\partial f}{\partial n_{\xi}}, \boldsymbol{n}_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \boldsymbol{n}_{\eta} \rangle \\ \langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle \end{pmatrix}$$

The Julia lemma in the ball gives the existence of K- $\lim_{z\to\xi} f(z)$

Rudin's JWC theorem

 $(q = 2 \text{ for clarity}) \text{ Let } f \colon \mathbb{B}^2 \to \mathbb{B}^2 \text{ holomorphic. Let } \xi \in \partial \mathbb{B}^2 \text{ be a regular contact point with } K\text{-limit } \eta$. Write $d_z f$ as

$$\begin{pmatrix} \langle \frac{\partial f}{\partial n_{\xi}}, \boldsymbol{n}_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \boldsymbol{n}_{\eta} \rangle \\ \langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle \end{pmatrix}$$

(1) $\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi}$

・ロト・西ト・西ト・日 シック

The Julia lemma in the ball gives the existence of K- $\lim_{z\to\xi} f(z)$

Rudin's JWC theorem

 $(q = 2 \text{ for clarity}) \text{ Let } f : \mathbb{B}^2 \to \mathbb{B}^2 \text{ holomorphic. Let } \xi \in \partial \mathbb{B}^2 \text{ be a regular contact point with } K-limit <math>\eta$. Write $d_z f$ as

$$\begin{pmatrix} \langle \frac{\partial f}{\partial n_{\xi}}, \boldsymbol{n}_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \boldsymbol{n}_{\eta} \rangle \\ \langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle \end{pmatrix}$$

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi}$$

(2) $\langle \frac{\partial f}{\partial \tau_{\xi}}, n_{\eta} \rangle d(z, \partial \mathbb{B}^2)^{-\frac{1}{2}} \xrightarrow{\angle K} 0$

The Julia lemma in the ball gives the existence of K-lim_{$z \to \xi$} f(z)

Rudin's JWC theorem

 $(q = 2 \text{ for clarity}) \text{ Let } f : \mathbb{B}^2 \to \mathbb{B}^2 \text{ holomorphic. Let } \xi \in \partial \mathbb{B}^2 \text{ be a regular contact point with } K-limit <math>\eta$. Write $d_z f$ as

$$\begin{pmatrix} \langle \frac{\partial f}{\partial n_{\xi}}, \boldsymbol{n}_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \boldsymbol{n}_{\eta} \rangle \\ \langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle \end{pmatrix}$$

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi}$$

(2) $\langle \frac{\partial f}{\partial \tau_{\xi}}, n_{\eta} \rangle d(z, \partial \mathbb{B}^{2})^{-\frac{1}{2}} \xrightarrow{\angle K} 0$
(3) $\langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle d(z, \partial \mathbb{B}^{2})^{\frac{1}{2}} \xrightarrow{\angle K} 0$

The Julia lemma in the ball gives the existence of K-lim_{$z \to \xi$} f(z)

Rudin's JWC theorem

 $(q = 2 \text{ for clarity}) \text{ Let } f : \mathbb{B}^2 \to \mathbb{B}^2 \text{ holomorphic. Let } \xi \in \partial \mathbb{B}^2 \text{ be a regular contact point with } K-limit <math>\eta$. Write $d_z f$ as

$$\begin{pmatrix} \langle \frac{\partial f}{\partial n_{\xi}}, \boldsymbol{n}_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \boldsymbol{n}_{\eta} \rangle \\ \langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle & \langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle \end{pmatrix}$$

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi}$$

(2) $\langle \frac{\partial f}{\partial \tau_{\xi}}, n_{\eta} \rangle d(z, \partial \mathbb{B}^{2})^{-\frac{1}{2}} \xrightarrow{\angle K} 0$
(3) $\langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle d(z, \partial \mathbb{B}^{2})^{\frac{1}{2}} \xrightarrow{\angle K} 0$
(4) $\langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle$ is bounded in every Koranyi region

Restricted K-limits

Definition (Special restricted sequence)

A sequence $(z_k) \rightarrow \xi$ is *special restricted* if it enters a Koranyi region and if

$$\frac{\|z_k - \langle z_k, \xi \rangle \xi\|^2}{1 - |\langle z_k, \xi \rangle|^2} \to 0.$$

Restricted K-limits

Definition (Special restricted sequence)

A sequence $(z_k) \rightarrow \xi$ is *special restricted* if it enters a Koranyi region and if

$$\frac{\|z_k - \langle z_k, \xi \rangle \xi\|^2}{1 - |\langle z_k, \xi \rangle|^2} \to 0.$$

Definition (Restricted K-limit)

Let $f: \mathbb{B}^n \to \mathbb{C}$ holomorphic, $\xi \in \partial \mathbb{B}^n$.

$$\angle K$$
- $\lim_{z\to\xi} f(z) = L$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iff $f(z_k) \rightarrow L$ for every special restricted (z_k) converging to ξ .

Restricted K-limits

Definition (Special restricted sequence)

A sequence $(z_k) \rightarrow \xi$ is *special restricted* if it enters a Koranyi region and if

$$\frac{\|z_k - \langle z_k, \xi \rangle \xi\|^2}{1 - |\langle z_k, \xi \rangle|^2} \to 0.$$

Definition (Restricted K-limit)

Let $f : \mathbb{B}^n \to \mathbb{C}$ holomorphic, $\xi \in \partial \mathbb{B}^n$.

$$\angle K$$
- $\lim_{z\to\xi} f(z) = L$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

iff $f(z_k) \rightarrow L$ for every special restricted (z_k) converging to ξ .

It is an intermediate notion between non-tg. limit and K-limit

Rudin's Lindelöf principle

If *f* is bounded on every Koranyi region with vertex ξ , and if it admits a limit *L* on a special restricted curve γ with endpoint ξ , then

$$\angle K$$
- $\lim_{z\to\xi} f(z) = L$.

Bringing geometry back: D strongly convex domain

Intrinsic definitions (with base-points)

$$\log \lambda_{\xi,p,q} = \liminf_{z \to \xi} k_D(z,p) - k_{D'}(f(z),q)$$
$$E_p(\xi,R) := \{ z \colon \lim_{w \to \xi} k_D(z,w) - k_D(w,p) < \log R \}$$
$$K_p(\xi,M) = \{ z \colon k_D(z,p) + \lim_{w \to \xi} k_D(z,w) - k_D(w,p) < 2 \log M \}$$

Bringing geometry back: D strongly convex domain

Intrinsic definitions (with base-points)

$$\log \lambda_{\xi,p,q} = \liminf_{z \to \xi} k_D(z,p) - k_{D'}(f(z),q)$$
$$E_p(\xi,R) := \{ z \colon \lim_{w \to \xi} k_D(z,w) - k_D(w,p) < \log R \}$$
$$K_p(\xi,M) = \{ z \colon k_D(z,p) + \lim_{w \to \xi} k_D(z,w) - k_D(w,p) < 2 \log M \}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Abate–Venturini show existence of horospheres $E_{\rho}(\xi, R)$.

Bringing geometry back: D strongly convex domain

Intrinsic definitions (with base-points)

$$\log \lambda_{\xi,p,q} = \liminf_{z \to \xi} k_D(z,p) - k_{D'}(f(z),q)$$
$$E_p(\xi,R) := \{ z \colon \lim_{w \to \xi} k_D(z,w) - k_D(w,p) < \log R \}$$
$$K_p(\xi,M) = \{ z \colon k_D(z,p) + \lim_{w \to \xi} k_D(z,w) - k_D(w,p) < 2 \log M \}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Abate–Venturini show existence of horospheres $E_{\rho}(\xi, R)$.

What about special restricted sequences?

Definition (Complex geodesic)

A holomorphic map $\varphi \colon \mathbb{D} \to D$ is a *complex geodesic* if $k_{\mathbb{D}}(z, w) = k_D(\varphi(z), \varphi(w))$ for all $z, w \in \mathbb{D}$.

Definition (Complex geodesic)

A holomorphic map $\varphi : \mathbb{D} \to D$ is a *complex geodesic* if $k_{\mathbb{D}}(z, w) = k_D(\varphi(z), \varphi(w))$ for all $z, w \in \mathbb{D}$. A *left inverse* for φ is $\tilde{\rho} : D \to \mathbb{D}$ such that $\tilde{\rho} \circ \varphi = \operatorname{id}_{\mathbb{D}}$. Notice that $\rho := \varphi \circ \tilde{\rho}$ is a holomorphic retraction.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition (Complex geodesic)

A holomorphic map $\varphi : \mathbb{D} \to D$ is a *complex geodesic* if $k_{\mathbb{D}}(z, w) = k_D(\varphi(z), \varphi(w))$ for all $z, w \in \mathbb{D}$. A *left inverse* for φ is $\tilde{\rho} : D \to \mathbb{D}$ such that $\tilde{\rho} \circ \varphi = \operatorname{id}_{\mathbb{D}}$. Notice that $\rho := \varphi \circ \tilde{\rho}$ is a holomorphic retraction.

If *D* is convex, then every complex geodesic admits a left inverse. If *D* strongly convex, then for all $z \in D$ and $\zeta \in \partial D$ there exists a unique complex geodesic φ s.t. $\varphi(0) = z$ and $\varphi(1) = \zeta$. Moreover $\varphi'(1)$ exists and is transversal to ∂D .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition (Complex geodesic)

A holomorphic map $\varphi : \mathbb{D} \to D$ is a *complex geodesic* if $k_{\mathbb{D}}(z, w) = k_D(\varphi(z), \varphi(w))$ for all $z, w \in \mathbb{D}$. A *left inverse* for φ is $\tilde{\rho} : D \to \mathbb{D}$ such that $\tilde{\rho} \circ \varphi = \operatorname{id}_{\mathbb{D}}$. Notice that $\rho := \varphi \circ \tilde{\rho}$ is a holomorphic retraction.

If *D* is convex, then every complex geodesic admits a left inverse. If *D* strongly convex, then for all $z \in D$ and $\zeta \in \partial D$ there exists a unique complex geodesic φ s.t. $\varphi(0) = z$ and $\varphi(1) = \zeta$. Moreover $\varphi'(1)$ exists and is transversal to ∂D .

Definition (Special and restricted sequence)

Fix $p \in D$ and a complex geodesic s.t. $\varphi(0) = p$, $\varphi(1) = \xi$. Choose a left inverse. A sequence (z_k) converging to ξ is *special and restricted* if it is contained in a Koranyi region and if $k_D(z_k, \rho(z_k)) \to 0$.

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse.

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse. Let φ_q be a complex geodesic in *D'* such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse. Let φ_q be a complex geodesic in *D'* such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

$$(1)\frac{\partial \tilde{\rho}_{q\circ f}}{\partial \varphi'_{p}(1)} \stackrel{\angle K}{\longrightarrow} \lambda_{\xi,p,q}(f)$$

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse. Let φ_q be a complex geodesic in *D'* such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

$$(1) \frac{\partial \tilde{\rho}_{q\circ}f}{\partial \varphi'_{p}(1)} \xrightarrow{\angle K} \lambda_{\xi,p,q}(f)$$
$$(2) \frac{\partial \tilde{\rho}_{q\circ}f}{\partial \tau_{\xi}} d(z,\partial D)^{-\frac{1}{2}} \xrightarrow{\angle K} 0$$

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse. Let φ_q be a complex geodesic in *D'* such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

$$(1) \frac{\partial \tilde{\rho}_{q} \circ f}{\partial \varphi'_{p}(1)} \xrightarrow{\angle K} \lambda_{\xi,p,q}(f)$$

$$(2) \ \frac{\partial \tilde{\rho}_{q} \circ f}{\partial \tau_{\xi}} d(z, \partial D)^{-\frac{1}{2}} \xrightarrow{\angle K} 0$$

$$(3) \ \frac{\partial (f - \rho_{q} \circ f)}{\partial \varphi'_{p}(1)} d(z, \partial D)^{\frac{1}{2}} \xrightarrow{\angle K} 0$$

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse. Let φ_q be a complex geodesic in *D'* such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

$$\begin{aligned} &(1) \frac{\partial \tilde{\rho}_{q} \circ f}{\partial \varphi_{p}'(1)} \stackrel{\angle K}{\longrightarrow} \lambda_{\xi,p,q}(f) \\ &(2) \ \frac{\partial \tilde{\rho}_{q} \circ f}{\partial \tau_{\xi}} d(z, \partial D)^{-\frac{1}{2}} \stackrel{\angle K}{\longrightarrow} 0 \\ &(3) \ \frac{\partial (f - \rho_{q} \circ f)}{\partial \varphi_{p}'(1)} d(z, \partial D)^{\frac{1}{2}} \stackrel{\angle K}{\longrightarrow} 0 \\ &(4) \ \frac{\partial (f - \rho_{q} \circ f)}{\partial \tau_{\xi}} \text{ is bounded in every Koranyi region} \end{aligned}$$

Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . Let φ_p be a complex geodesic in *D* such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$, let $\tilde{\rho}_p$ be a left inverse. Let φ_q be a complex geodesic in *D'* such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(1)
$$\frac{\partial \tilde{\rho}_{q} \circ f}{\partial \varphi'_{p}(1)} \xrightarrow{\angle K} \lambda_{\xi,p,q}(f)$$

(2) $\frac{\partial \tilde{\rho}_{q} \circ f}{\partial \tau_{\xi}} d(z, \partial D)^{-\frac{1}{2}} \xrightarrow{\angle K} 0$
(3) $\frac{\partial (f - \rho_{q} \circ f)}{\partial \varphi'_{p}(1)} d(z, \partial D)^{\frac{1}{2}} \xrightarrow{\angle K} 0$
(4) $\frac{\partial (f - \rho_{q} \circ f)}{\partial \tau_{\xi}}$ is bounded in every Koranyi region

Why $-\frac{1}{2}$ and $\frac{1}{2}$?

Definition (Type)

D convex domain, $\xi \in \partial D$ smooth point. The *(line) type L* at ξ is the maximum order of contact of ∂D with complex lines in ξ .

Definition (Type)

D convex domain, $\xi \in \partial D$ smooth point. The *(line) type L* at ξ is the maximum order of contact of ∂D with complex lines in ξ . *D* has finite type *L* if $L = \max_{\xi \in \partial D} type(\xi)$.

Definition (Type)

D convex domain, $\xi \in \partial D$ smooth point. The *(line) type L* at ξ is the maximum order of contact of ∂D with complex lines in ξ . *D* has finite type *L* if $L = \max_{\xi \in \partial D} type(\xi)$. A strongly convex domain *D* has type 2.

Definition (Kobayashi type)

D convex domain, $\xi \in \partial D$ smooth point of finite type, $v \in \mathbb{C}^n \setminus \{0\}$. The *Kobayashi type* at ξ in the direction v is

 $s_{\xi}(v) := \inf\{s: d(z, D)^{s} \kappa_{D}(z, v) \text{ is bounded on Koranyi regions}\}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Abate-Tauraso's theorem

D convex finite type [with technical assumptions].

Abate–Tauraso's theorem

D convex finite type [with technical assumptions].Let $f: D \to \mathbb{D}$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit τ , and let $v \in \mathbb{C}^n \setminus \{0\}$. Then

$$d(z,\partial D)^{s_{\xi}(v)-1}rac{\partial f}{\partial v}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

is bounded on Koranyi regions.

Abate–Tauraso's theorem

D convex finite type [with technical assumptions].Let $f: D \to \mathbb{D}$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit τ , and let $v \in \mathbb{C}^n \setminus \{0\}$. Then

$$d(z,\partial D)^{s_{\xi}(v)-1} rac{\partial f}{\partial v}$$

is bounded on Koranyi regions.

Moreover, if $v \notin T_{\xi}^{\mathbb{C}} \partial D$, then $s_{\xi}(v) = 1$ and $\frac{\partial f}{\partial v}$ has a nonzero restricted K-limit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Abate–Tauraso's theorem

D convex finite type [with technical assumptions].Let $f: D \to \mathbb{D}$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit τ , and let $v \in \mathbb{C}^n \setminus \{0\}$. Then

$$d(z,\partial D)^{s_{\xi}(v)-1} \frac{\partial f}{\partial v}$$

is bounded on Koranyi regions.

Moreover, if $v \notin T_{\xi}^{\mathbb{C}} \partial D$, then $s_{\xi}(v) = 1$ and $\frac{\partial f}{\partial v}$ has a nonzero restricted K-limit. If $v \in T_{\xi}^{\mathbb{C}} \partial D$, then $1/L \leq s_{\xi}(v) \leq 1 - 1/L$ and

$$d(z,\partial D)^{s_{\xi}(v)-1} \frac{\partial f}{\partial v} \stackrel{\angle K}{\longrightarrow} 0.$$

Let $z \in K(\xi, M)$, and $\psi : \mathbb{D} \to D$ a complex geodesic such that $\psi(0) = z$ and $\psi'(0) = v/\kappa_D(z, v)$, then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $z \in K(\xi, M)$, and $\psi : \mathbb{D} \to D$ a complex geodesic such that $\psi(0) = z$ and $\psi'(0) = v/\kappa_D(z, v)$, then

$$2\pi(1-\tilde{\rho}(z))^{s-1}\frac{\partial f}{\partial \nu}(z)=2\pi(1-\tilde{\rho}(z))^{s-1}\kappa_D(z,\nu)(f\circ\psi)'(0)=$$

Let
$$z \in K(\xi, M)$$
, and $\psi : \mathbb{D} \to D$ a complex geodesic such that
 $\psi(0) = z$ and $\psi'(0) = v/\kappa_D(z, v)$, then
 $2\pi(1 - \tilde{\rho}(z))^{s-1} \frac{\partial f}{\partial v}(z) = 2\pi(1 - \tilde{\rho}(z))^{s-1}\kappa_D(z, v)(f \circ \psi)'(0) =$
 $\int_0^{2\pi} \frac{f(\psi(re^{i\theta})) - \tau}{\tilde{\rho}(\psi(re^{i\theta})) - 1} \frac{\tilde{\rho}(\psi(re^{i\theta})) - 1}{\tilde{\rho}(z) - 1} \left(\frac{\tilde{\rho}(z) - 1}{d(z, \partial D)}\right)^s \frac{d(z, \partial D)^s \kappa_D(z, v)}{re^{i\theta}} d\theta.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Problem: in finite type, the derivative $\varphi'(1)$ may not exists (even in radial limit sense), and the approach can be tangential.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem: in finite type, the derivative $\varphi'(1)$ may not exists (even in radial limit sense), and the approach can be tangential.

Solution (A-Fiacchi-Gontard-Guerini '22): use one-variable JWC to show that the normal component $\langle \varphi'(z), n_{\xi} \rangle$ always has nontangential limit $\varphi'_N(1) > 0$

Problem: in finite type, the derivative $\varphi'(1)$ may not exists (even in radial limit sense), and the approach can be tangential.

Solution (A-Fiacchi-Gontard-Guerini '22): use one-variable JWC to show that the normal component $\langle \varphi'(z), n_{\xi} \rangle$ always has nontangential limit $\varphi'_N(1) > 0$

Definition (Function Ω)

For all $z \in D$ define the function $\Omega_{\xi} \colon D \to (-\infty, 0)$ as

$$\Omega_{\xi}(z) = -\frac{1}{\varphi'_{N}(1)},$$

where φ is a complex geodesic such that $\varphi(0) = z$ and $\varphi(1) = \xi$.

Horospheres centered in ξ exist (AFGG '22), and

$$\lim_{w
ightarrow \xi}k_D(z,w)-k_D(w,p)=\log|\Omega_{\xi}(p)|-\log|\Omega_{\xi}(z)|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Horospheres centered in ξ exist (AFGG '22), and

$$\lim_{w\to \xi} k_{\mathcal{D}}(z,w) - k_{\mathcal{D}}(w,p) = \log |\Omega_{\xi}(p)| - \log |\Omega_{\xi}(z)|,$$

hence the level sets of Ω are exactly the horospheres centered in ξ :

$$E_p(\xi, R) = \{h_{\xi, p} < \log R\} = \{\Omega_{\xi} < 1/R\}.$$

Horospheres centered in ξ exist (AFGG '22), and

$$\lim_{w\to \xi} k_{D}(z,w) - k_{D}(w,p) = \log |\Omega_{\xi}(p)| - \log |\Omega_{\xi}(z)|,$$

hence the level sets of Ω are exactly the horospheres centered in ξ :

$$E_p(\xi, R) = \{h_{\xi, p} < \log R\} = \{\Omega_{\xi} < 1/R\}.$$

 $\Omega_1^{\mathbb{D}}(\zeta) = -\frac{1-\|\zeta\|^2}{|1-\zeta|^2}$, and if *D* is strongly convex Ω coincides with the pluricomplex Poisson Kernel introduced by Bracci-Patrizio-Trapani.

(q = 2 for clarity) D, D' convex finite type.

(q = 2 for clarity) D, D' convex finite type. Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . L(v) type of ξ in the direction v, L' type of η .

(q = 2 for clarity) D, D' convex finite type. Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . L(v) type of ξ in the direction v, L' type of η .

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi,p,q} \frac{\Omega_{\xi}^{D}(p)}{\Omega_{\eta}^{D'}(q)} > 0$$

(q = 2 for clarity) D, D' convex finite type. Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . L(v) type of ξ in the direction v, L' type of η .

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi, \rho, q} \frac{\Omega_{\xi}^{D}(\rho)}{\Omega_{\eta}^{D'}(q)} > 0$$

(2) $\langle \frac{\partial f}{\partial \tau_{\xi}}, n_{\eta} \rangle d(z, \partial D)^{\frac{1}{L(v)} - 1} \xrightarrow{\angle K} 0$

(q = 2 for clarity) D, D' convex finite type. Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . L(v) type of ξ in the direction v, L' type of η .

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi,p,q} \frac{\Omega_{\xi}^{D}(p)}{\Omega_{\eta}^{D'}(q)} > 0$$

(2) $\langle \frac{\partial f}{\partial \tau_{\xi}}, n_{\eta} \rangle d(z, \partial D)^{\frac{1}{L(v)}-1} \xrightarrow{\angle K} 0$
(3) $\langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle d(z, \partial D)^{1-\frac{1}{L'}} \xrightarrow{\angle K} 0$

(q = 2 for clarity) D, D' convex finite type. Let $f: D \to D'$ holomorphic. Let $\xi \in \partial D$ be a regular contact point with *K*-limit η . L(v) type of ξ in the direction v, L' type of η .

(1)
$$\langle \frac{\partial f}{\partial n_{\xi}}, n_{\eta} \rangle \xrightarrow{\angle K} \lambda_{\xi,p,q} \frac{\Omega_{\xi}^{D}(p)}{\Omega_{\eta}^{D'}(q)} > 0$$

(2) $\langle \frac{\partial f}{\partial \tau_{\xi}}, n_{\eta} \rangle d(z, \partial D)^{\frac{1}{L(v)} - 1} \xrightarrow{\angle K} 0$
(3) $\langle \frac{\partial f}{\partial n_{\xi}}, \tau_{\eta} \rangle d(z, \partial D)^{1 - \frac{1}{L'}} \xrightarrow{\angle K} 0$
(4) $\langle \frac{\partial f}{\partial \tau_{\xi}}, \tau_{\eta} \rangle d(z, \partial D)^{\frac{1}{L(v)} - \frac{1}{L'}}$ is bounded in every Koranyi region

Existence of horospheres and Julia Lemma

Existence of horospheres and Julia Lemma

Scaling to show that the normal segment $\sigma : [t_0, 1) \to D$ given by $\sigma(t) = \xi + (t-1)\phi'_N(1)$ has the property

 $\lim_{t\to 1} k_D(\varphi(t), \sigma(t)) = 0$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for every complex geodesic φ with endpoint ξ .

Existence of horospheres and Julia Lemma

Scaling to show that the normal segment $\sigma : [t_0, 1) \to D$ given by $\sigma(t) = \xi + (t-1)\phi'_N(1)$ has the property

 $\lim_{t\to 1} k_D(\varphi(t), \sigma(t)) = 0$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for every complex geodesic φ with endpoint ξ .

Scaling to show that $L(v) = \frac{1}{s_{\epsilon}(v)}$.

Let φ_p be a complex geodesic in D' such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$. Let $\nu := (\varphi_p)'_N(1)$.

Let φ_p be a complex geodesic in D' such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$. Let $\nu := (\varphi_p)'_N(1)$. Let φ_q be a complex geodesic in D' such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse.

Let φ_p be a complex geodesic in D' such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$. Let $\nu := (\varphi_p)'_N(1)$. Let φ_q be a complex geodesic in D' such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse. Consider $\tilde{f} := \tilde{\rho}_q \circ f$.

Let φ_p be a complex geodesic in D' such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$. Let $\nu := (\varphi_p)'_N(1)$. Let φ_q be a complex geodesic in D' such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse. Consider $\tilde{f} := \tilde{\rho}_q \circ f$. $\lambda_{\xi,p,0}(\tilde{f}) = \lim_{t \to 1} \exp[k_{\mathbb{D}}(0,t) - k_{\mathbb{D}}(\tilde{f}(\varphi(t)),0)]$ $= \lim_{t \to 1} \exp[k_{\mathbb{D}}(0,t) - k_{\mathbb{D}}(\tilde{f}(\sigma(t)),0)] = \lim_{t \to 1} \frac{\partial \tilde{f}}{\partial \nu}(\sigma(t)).$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let φ_p be a complex geodesic in D' such that $\varphi_p(0) = p$, $\varphi_p(1) = \xi$. Let $\nu := (\varphi_p)'_N(1)$. Let φ_q be a complex geodesic in D' such that $\varphi_q(0) = q$, $\varphi_q(1) = \eta$, let $\tilde{\rho}_q$ be a left inverse. Consider $\tilde{f} := \tilde{\rho}_q \circ f$. $\lambda_{\xi,p,0}(\tilde{f}) = \lim_{t \to 1} \exp[k_{\mathbb{D}}(0,t) - k_{\mathbb{D}}(\tilde{f}(\varphi(t)), 0)]$

$$= \lim_{t \to 1} \exp[k_{\mathbb{D}}(0,t) - k_{\mathbb{D}}(\tilde{f}(\sigma(t)),0)] = \lim_{t \to 1} \frac{\partial f}{\partial \nu}(\sigma(t)).$$

Hence

$$\angle K - \lim_{z \to \xi} \frac{\partial \tilde{f}}{\partial n_{\xi}}(z) = \lambda_{\xi, p, 0}(\tilde{f}) |\Omega_{\xi}^{D}(p)| = \lambda_{\xi, p, q}(f) |\Omega_{\xi}^{D}(p)|.$$

Moreover $\angle K$ - $\lim_{w \to \eta} \frac{\partial \tilde{\rho}_q}{\partial n_\eta}(w) = |\Omega_{\eta}^{D'}(q)|$.