Formal principle with convergence for rational curves

Jun-Muk Hwang

Institute for Basic Science

Portorož 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

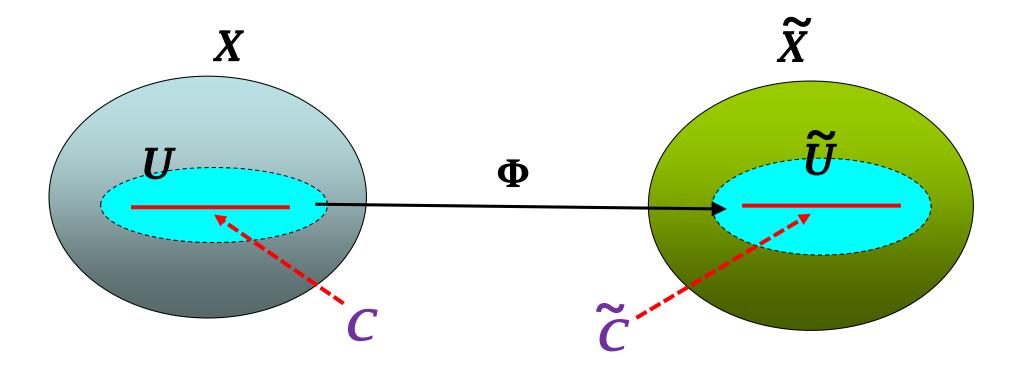
Germs of neighborhoods of submanifolds

- ► Throughout, let $C \subset X$ (also $\widetilde{C} \subset \widetilde{X}$) be a compact complex submanifold in a (usually noncompact) complex manifold.
- Denote by (C/X)_O the germ of analytic neighborhoods of C in X.
- A biholomorphic map Φ : (C/X)_O ≅ (C̃/X̃)_O means a biholomorphic map Φ : U ≅ Ũ between some neighborhoods

$$\begin{array}{ccc} & & \widetilde{C} \\ \cap & & \cap \\ U & \stackrel{\Phi}{\longrightarrow} & \widetilde{U} \\ \cap & & \cap \\ X & & \widetilde{X} \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

such that $\Phi|_{\mathcal{C}} : \mathcal{C} \cong \widehat{\mathcal{C}}$.



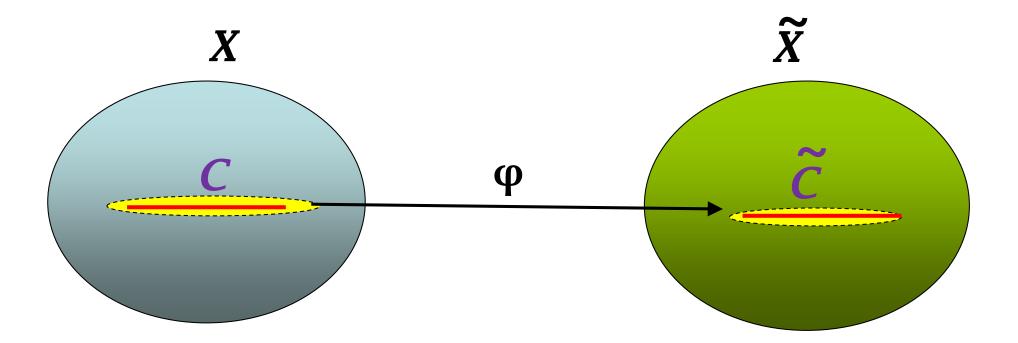
Formal neighborhoods of submanifolds

- ► Let \mathcal{I}_C be the ideal sheaf of $C \subset X$ and $(C/X)_k$ be the *k*-th infinitesimal neighborhood of *C* in *X*, namely, the complex space with the structure sheaf $\mathcal{O}_X/\mathcal{I}_C^{k+1}$.
- The collection (C/X)_∞ of (C/X)_k for all k ≥ 0 is the formal neighborhood of C in X.
- A formal isomorphism φ : (C/X)_∞ ≃ (C̃/X̃)_∞ means a compatible collection of biholomorphisms of complex spaces

$$\begin{array}{ccc} (C/X)_k & \stackrel{\varphi_k}{\longrightarrow} & (\widetilde{C}/\widetilde{X})_k \\ \cap & & \cap \\ (C/X)_{k+1} & \stackrel{\varphi_{k+1}}{\longrightarrow} & (\widetilde{C}/\widetilde{X})_{k+1} \end{array}$$

うして 山田 マイボット ボット シックション

for all $k \ge 0$.



A biholomorphic map Φ : (C/X)_O ≃ (C̃/X̃)_O of germs induces a formal isomorphism

$$\Phi_\infty:=\Phi|_{(\mathcal{C}/\mathcal{X})_\infty}:(\mathcal{C}/\mathcal{X})_\infty\cong (\widetilde{\mathcal{C}}/\widetilde{\mathcal{X}})_{\mathit{infty}}.$$

Problem

When does the converse hold?

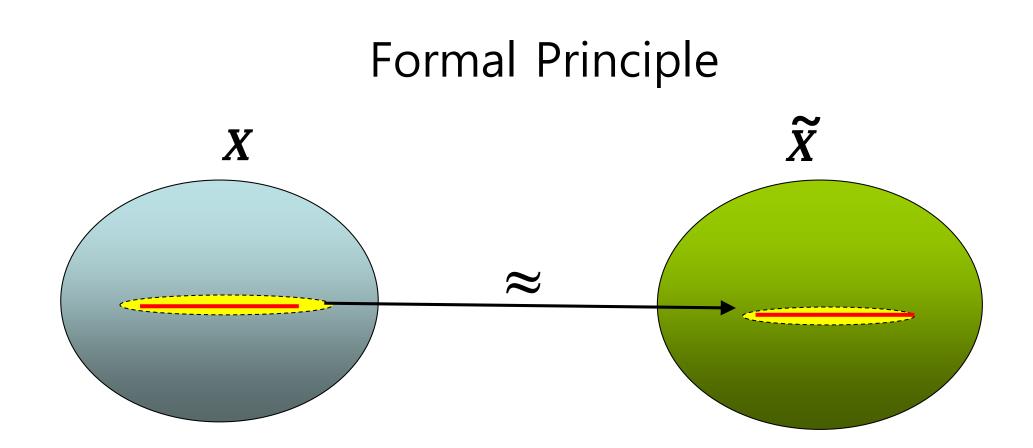
- (i) If $(C/X)_{\infty} \cong (\widetilde{C}/\widetilde{X})_{\infty}$, then is $(C/X)_{\mathcal{O}} \cong (\widetilde{C}/\widetilde{X})_{\mathcal{O}}$?
- (ii) Given a formal isomorphism $\varphi : (C/X)_{\infty} \cong (\widetilde{C}/\widetilde{X})_{\infty}$, can we find $\Phi : (C/X)_{\mathcal{O}} \cong (\widetilde{C}/\widetilde{X})_{\mathcal{O}}$ such that $\varphi = \Phi_{\infty}$?

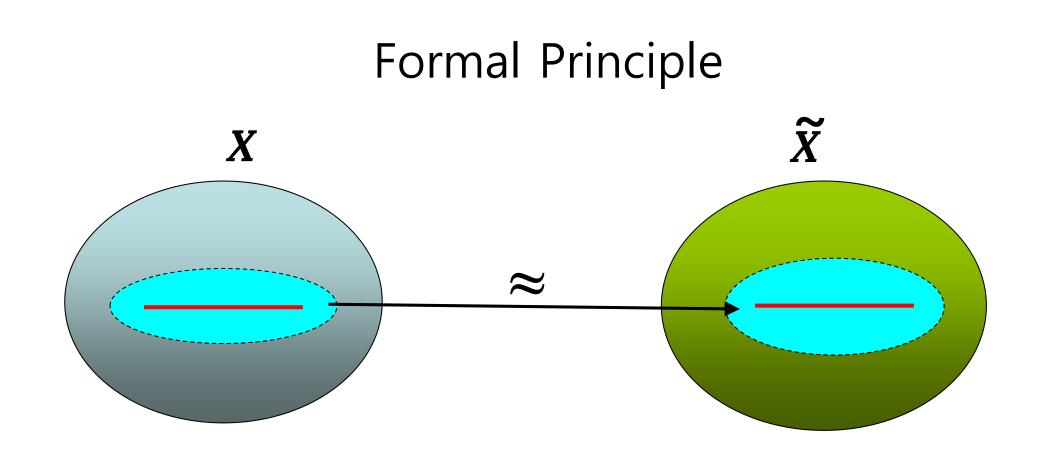
Definition

We say that C ⊂ X satisfies the formal principle if the existence of a formal isomorphism (C/X)_∞ ≃ (C̃/X̃)_∞ implies the existence of a biholomorphic map of germs (C/X)_O ≃ (C̃/X̃)_O.

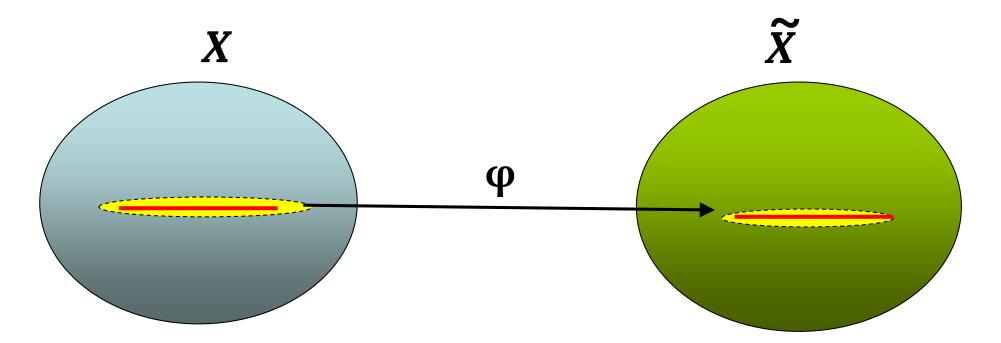
We say that C ⊂ X satisfies the formal principle with convergence if any formal isomorphism φ : (C/X)_∞ ≅ (C̃/X̃)_∞ comes from a biholomorphic map of germs Φ : (C/X)_O ≅ (C̃/X̃)_O, namely, φ = Φ_∞. In other words, any formal isomorphism is convergent.

うして 山田 マイボット ボット シックション

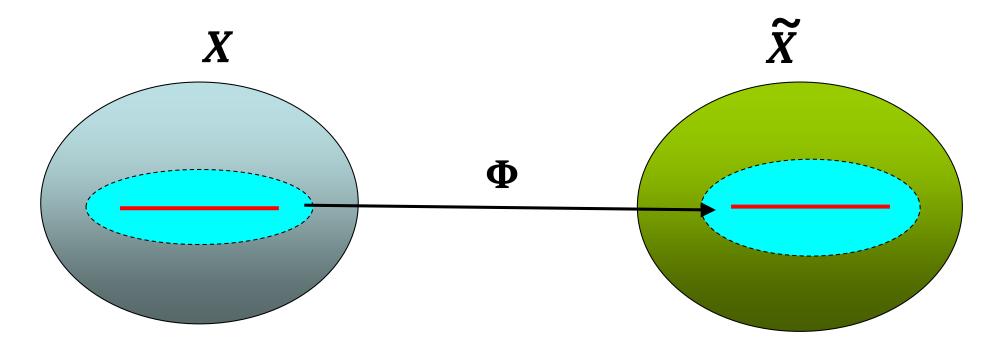




Formal Principle with Convergence



Formal Principle with Convergence



Example: a point in \mathbb{C}

- ▶ Let $P \in \mathbb{C}$ be a point with a local coordinate *z* and let $\tilde{P} \in \mathbb{C}$ be a point with a local coordinate *w*.
- Any formal power series

$$w=a_1z+a_2z^2+a_3z^3+\cdots$$

with $a_1 \neq 0$ gives a formal isomorphism $\varphi : (P/\mathbb{C})_{\infty} \cong (\widetilde{P}/\mathbb{C})_{\infty}.$

- *φ* comes from a biholomorphism of germs
 Φ : (*P*/ℂ)_𝔅 ≅ (*P*/ℂ)_𝔅 if and only if the formal power series
 converges.
- ► Thus P ∈ C satisfies the formal principle, but does NOT satisfy the formal principle with convergence.

Example (V. I. Arnold 1976)

There exists an elliptic curve $C \subset X$ in a complex surface for which the formal principle does NOT hold. Its normal bundle $N_{C/X}$ is topologically trivial.

- All examples of submanifolds violating the formal principle which we know so far are of the nature similar to Arnold's example.
- No simply-connected example violating the formal principle is known.
- In particular, no smooth rational curve P¹ ⊂ X violating the formal principle is known.

Vector bundles on rational curves

From now on, we concentrate our discussion to the simplest situation when *C* and \widetilde{C} are smooth rational curves, namely, biholomorphic to the Riemann sphere \mathbb{P}^1 . Even in this case, our Problem is highly interesting and difficult.

Definition

A vector bundle V on \mathbb{P}^1 can be written as a direct sum

$$V \cong \mathcal{O}(a_1) \oplus \mathcal{O}(a_2) \oplus \cdots \oplus \mathcal{O}(a_r)$$

for some integers $a_1, a_2, \ldots a_r$.

- (i) V is a positive vector bundle (denoted by V > 0) if a₁, a₂,..., a_r > 0.
- (ii) V is a semipositive vector bundle (denoted by V ≥ 0) if a₁, a₂, ..., a_r ≥ 0, equivalently if V ≅ V⁺ ⊕ O^q for some positive vector bundle V⁺ and a trivial vector bundle O^q with q = rank(V) rank(V⁺).

Theorem (Grauert, 1962)

Let $N_{C/X}$ be the normal bundle of a smooth rational curve $C \subset X$. If $N_{C/X} < 0$, namely, the dual $N^*_{C/X} > 0$, then $C \subset X$ satisfies the formal principle.

In general, $C \subset X$ in the above theorem does not satisfy the formal principle with convergence.

Theorem (Hirschowitz 1981)

If $N_{C/X} > 0$, then $C \subset X$ satisfies the formal principle with convergence.

Conjecture [Hirschowitz 1981] If $N_{C/X} \ge 0$, then $C \subset X$ satisfies the **formal principle**.

Conjecture [Hirschowitz 1981] Let $N_{C/X}$ be the normal bundle of a smooth rational curve $C \subset X$. If $N_{C/X} \ge 0$, then $C \subset X$ satisfies the **formal principle**.

Theorem (H. 2019)

If $N_{C/X} \ge 0$, then a general deformation of *C* in *X* satisfies the formal principle.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We can NOT strengthen the last statement to "a general deformation of *C* in *X* satisfies the **formal principle with convergence**."

• Let $C_0 \subset \mathbb{P}^r$ be a smooth rational curve in projective space.

• Set $X \cong \mathbb{P}^r \times \mathbb{C}$ and let $C \subset X$ be

$$\mathcal{C}_0 \subset \mathbb{P}^r = \mathbb{P}^r imes 0 \subset \mathbb{P}^r imes \mathbb{C} = X.$$

- ▶ The normal bundle $N_{C/S} \cong N_{C_0/\mathbb{P}^r} \oplus \mathcal{O}$ is semipositive.
- Any deformations of C in X lies in a P^r-factor of X ≅ P^r × C.

Since a point P ∈ C does not satisfy the formal principle with convergence, we can see that no deformation of C ⊂ X satisfies the formal principle with convergence.

Example : the product $\mathbb{P}^r \times \mathbb{C} = X$ $\widetilde{X}=X$ \boldsymbol{X} Divergent formal power series $(\cap$

Let *M* be a complex manifold.

- A distribution *D* on *M* means a saturated subsheaf *D* ⊂ *TM* of the tangent sheaf.
- Associated with D are subsheaves

$$D \subset \partial^1 D \subset \partial^2 D \subset \cdots \subset \partial^\ell D \subset TM$$

such that $\partial^1 D$ is the saturation of [D, D] and $\partial^{i+1} D$ is the saturation of $[\partial^i D, \partial^i D]$ for each $1 \le i < \ell$.

- By Frobenius's Theorem, D is a foliation if and only if D = ∂¹D.
- We say that *D* is bracket-generating if ∂^ℓD = TM for some ℓ ≥ 0.

Space of deformations of rational curves

- Let $C \subset X$ be a smooth rational curve with $N_{C/X} \ge 0$.
- Let *M* be the space of smooth deformations C_t ⊂ X of C ⊂ X with N_{Ct/X} ≥ 0.
- \mathcal{M} is a complex manifold and the tangent space at $[C_t] \in \mathcal{M}$ can be identified with $T_{[C_t]}\mathcal{M} = H^0(C_t, N_{C_t/X})$.
- From $N_{C_t/X} \cong N^+_{C_t/X} \oplus \mathcal{O}^q$, we have a distinguished subspace

$$\mathcal{D}_{[C_t]} := H^0(C_t, N^+_{C_t/X}) \subset H^0(C_t, N_{C_t/X}) = T_{[C_t]}\mathcal{M}.$$

うして 山田 マイボット ボット シックション

• The distribution $\mathcal{D} \subset \mathcal{M}$ is the canonical distribution on \mathcal{M} .

Example

When $X = \mathbb{P}^r \times \mathbb{C}$ and $C = C_0 \times 0$, the space \mathcal{M} of deformations of C is naturally isomorphic to $\mathcal{M}_0 \times \mathbb{C}$ where \mathcal{M}_0 is the space of deformations of C_0 in \mathbb{P}^r . The canonical deformation $\mathcal{D} \subset T\mathcal{M}$ is a **foliation** whose leaves are the \mathcal{M}_0 -factors of $\mathcal{M} \cong \mathcal{M}_0 \times \mathbb{C}$.

Example

Let $X \subset \mathbb{P}^{n+1}$ be a smooth projective hypersurface of degree less than *n*. Let \mathcal{M} be the space of lines lying on *X* with semipositive normal bundles. Then one can show that the canonical distribution $\mathcal{D} \subset T\mathcal{M}$ is **bracket-generating**.

- Let *M* be an irreducible component of the space of smooth rational curves on a complex manifold with semipositive normal bundle.
- Our result in 2019 says that a general member of M satisfies the formal principle.

New Conjecture If the canonical distribution $\mathcal{D} \subset T\mathcal{M}$ is bracket-generating, then a general member of \mathcal{M} satisfies the formal principle with convergence.

• If $\mathcal{D} = T\mathcal{M}$, this follows from Hirschowitz 1981.

Definition

A distribution $D \subset TM$ on a complex manifold is a Goursat distribution if

rank(
$$D$$
) = 2 and rank($\partial^i D$) = $i + 2$

for all $1 \le i \le \dim M - 2$.

A Goursat distribution is a bracket-generating distribution with the **slowest possible growth** of the successive brackets.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (H. 2022)

Let \mathcal{M} be an irreducible component of the space of smooth rational curves with semipositive normal bundles on a complex manifold X. Assume that the canonical distribution $\mathcal{D} \subset T\mathcal{M}$ is a Goursat distribution. Then a general member of \mathcal{M} satisfies the formal principle with convergence.

- When \mathcal{D} is a Goursat distribution, a general member $C \subset X$ of \mathcal{M} satisfies $N_{C/X} \cong \mathcal{O}(1) \oplus \mathcal{O}^q$.
- ► Thus the normal bundle has the minimal amount of positivity and the growth of the brackets of H⁰(C, N⁺_{C/X}) is the slowest possible.
- Thus the above Theorem verifies our conjecture for the case when the normal bundle is furthest from being positive. This is a good evidence for the conjecture.

うしん 前 ・ 山田・ 山田・ 山田・

Examples when $\mathcal{D} \subset T\mathcal{M}$ is Goursat

Example

When dim $\mathcal{M} \leq 4$, any bracket generating $\mathcal{D} \subset T\mathcal{M}$ is a Goursat distribution. For example, when $X \subset \mathbb{P}^5$ is a 4-dimensional smooth cubic hypersurface, the canonical distribution on the space of general lines on X is Goursat. Main Theorem says that a general line on a cubic fourfold satisfies the formal principle with convergence.

Example

Let $Z \subset \mathbb{P}^{n-1}$ be a nondegenerate smooth curve. Regarding \mathbb{P}^{n-1} as a hyperplane in \mathbb{P}^n , let *X* be the blowup of \mathbb{P}^n with *Z* as the blowup center. Let \mathcal{M} be the space of proper transformations of lines on \mathbb{P}^n intersecting *Z* and not contained in \mathbb{P}^{n-1} . Then $\mathcal{D} \subset T\mathcal{M}$ is a Goursat distribution, providing many examples of Main Theorem in any dimension.

Geometric feature of Proof of Main Theorem

When D ⊂ TM is Goursat, each nonzero element s ∈ D_[C] at a point [C] ∈ M corresponding to a rational curve C ⊂ X is a nonzero section

$$s \in H^0(C, N^+_{C/X}) \cong H^0(\mathbb{P}^1, \mathcal{O}(1))$$

which has a unique zero $\operatorname{Zero}(s) \in C \subset X$.

- This determines a natural holomorphic submersion $\mu : \mathbb{PD} \to X$ sending *s* to Zero(*s*).
- We have a natural double fibration

$$\begin{array}{ccc} \mathbb{P}\mathcal{D} & \stackrel{\mu}{\longrightarrow} & X \\ \downarrow \rho \\ \mathcal{M} \end{array}$$

giving two foliations T^{ρ} and T^{μ} of rank 1 on $\mathbb{P}\mathcal{D}$.



Local structure theory of Goursat distributions

- By E. Cartan's local structure theory of Goursat distributions, a Goursat distribution at a general point is isomorphic to the natural contact distribution on the space of jets of functions with one independent and one dependent variables.
- This implies that on a neighborhood U ⊂ PD of a general point of PD, the data T^ρ and T^μ correspond to an ODE of order n = dim M of the form ("holonomic ODE")

$$y^{(n)} = F(t, y, y^{(1)}, \dots, y^{(n-1)}),$$

where *F* is a local holomorphic function in n + 1 variables.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Doubrov-Komrakov-Morimoto 1999)

We can canonically associate a Cartan connection to a holonomic ODE.

- In our setting, this says that over a neighborhood U ⊂ PD of a general point of PD, there exists a natural principal bundle P with a natural affine connection ∇ on P.
- The naturalness implies that a formal equivalence of formal neighborhoods of rational curves induces a formal equivalence of such affine connections.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Convergence of formal equivalence of affine connections

The proof of Main Theorem is reduced to the question whether a **formal equivalence of affine connections is convergent**.

Theorem (Kobayashi-Nomizu 1963)

Let ∇ (resp. $\widetilde{\nabla}$) be an affine connection on a complex manifold Y (resp. \widetilde{Y}). Let

$$\psi:(\mathbf{y}/\mathbf{Y})_{\infty}\cong(\widetilde{\mathbf{y}}/\widetilde{\mathbf{Y}})_{\infty}$$

be a formal isomorphism at points $y \in Y$ and $\widetilde{y} \in \widetilde{Y}$ such that

$$\psi_*\nabla = \widetilde{\nabla}.$$

うして 山田 マイボット ボット シックション

Then ψ is convergent.

Thank you very much !!

Najlepša hvala !!