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Goal: understand the parabolic basin B0 of F : Cn → Cn such
that F (0) = 0 and D0F = id

B0 = {z ∈ Cn | F ◦m(z) −−−−−→
m→+∞

0}

Parabolic domain: connected component P of B̊0, F (P) ⊂ P.



Theorem (Buff-R., in progress)

There exist F : C2 → C2 polynomial maps tangent to the
identity at the origin with infinitely many parabolic domains of
spiralling type.



Dimension 1
f : (C,0)→ (C,0) tangent to the identity and f 6= id:

f (z) = z + azk+1 + O(zk+2) with a ∈ Cr {0}.

k = 3



Dimension 1

f : (C,0)→ (C,0) tangent to the identity and f 6= id:

f (z) = z + azk+1 + O(zk+2) with a ∈ Cr {0}.

k = 3

f is topologically conjugate to
the time-1 flow of zk+1 ∂

∂z .



Dimension 2

Setting:

z =

(
x
y

)
∈ C2

F (z) = z + v(z) + O
(
‖z‖k+2), k ≥ 1

v : C2 → C2 homogeneous map of degree k + 1.

Idea: Look at ~v(z)

search for preferred directions for the dynamics
understand orbits of f using real time trajectories of ~v(z).
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F (z) = z + v(z) + O
(
‖z‖k+2

)
, F ◦n(z) = zn

Fact: zn → 0 tangentially to [t] ∈ P1(C) =⇒ ∃λ ∈ C s.t. v(t) = λt.

[t] ∈ P1(C) is a characteristic direction if v(t) = λt. [t] is
non-degenerate if λ 6= 0, degenerate if λ = 0.
v is dicritical if all directions are characteristic,
non-dicritical otherwise.

From now on: v non-dicritical
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Maps tangent to the identity in dimension 2

Assumptions:
~v is a homogeneous vector field of degree k + 1 on C2:

~v := U∂x + V∂y

with U and V homogeneous polynomials of degree k + 1;

Φ := xV − yU

vanishes on k + 2 characteristic directions, counting
multiplicities;

F (x) = x + ~v(x) + O
(
‖x‖k+2).

Observation:
Near 0, orbits of F shadow real-time trajectories of ~v .



Known results

Theorem (Écalle, Hakim, Abate, . . . , López-Hernanz,
Rosas)
For any F, tangentially to each characteristic direction, there is
either a curve of fixed points, or at least one parabolic petal.

F (x , y) = (x + y2 + x3, y + x2)



Known results

Proposition (Écalle, Hakim)
Existence of F which have parabolic domains on which orbits
converge to 0 tangentially to a characteristic direction.

F (x , y) = (x + x2, y + y2)



Known results

If an orbit converges to the origin, does it converge tangentially
to a characteristic direction?

Proposition (Rivi, Rong)
Existence of F which have parabolic domains on which orbits
converge to 0 spiralling around a characteristic direction.
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Spiralling domains in dimension 2

Theorem (Buff-R., in progress)

For a ∈ Rr {0}, the polynomial endomorphism Fa : C2 → C2

defined by

Fa

(
x
y

)
=

(
x
y

)
+

(
y2

x2

)
+ a

(
x(x − y)
y(x − y)

)
has infinitely many spiralling domains contained in distinct
invariant Fatou components.

Tools
homogeneous vector fields;
affine surfaces;
triangular billiards.



The family Fa

Fa

(
x
y

)
=

(
x
y

)
+

(
y2

x2

)
+ a

(
x(x − y)
y(x − y)

)



The dynamics of Fa for a = 0



Trajectories for ~v = y2 ∂
∂x + x2 ∂

∂y

~v is a Hamiltonian vector field
Complex trajectories of ~v :

Sκ :=
{

z ∈ C2 | Φ(z) := x3 − y3 = κ
}

with κ ∈ C.

S0 = {y = x} ∪ {y = jx} ∪ {y = j2x} with j = e
2πi
3

0 6∈ S κ for κ 6= 0, and so real trajectories of ~v in Sκ do not
converge to 0.
For κ 6= 0, Sκ ' Torus \ {3 points}, on which ~v is a
translation vector field.
If κ = (p + jq)3r , with (p,q) ∈ Z2 \ {0} and r ∈ R \ {0},
then the real trajectories of ~v are periodic, that is closed.



The dynamics of Fa for a = 0.1



The dynamics of Fa for a = 0.1



The dynamics of Fa for a = 0.1



The dynamics of Fa for a = 0.1



The dynamics of Fa for a = 0.1



Dynamics of homogeneous vector fields

A trajectory for ~v is a solution of the differential equation

γ̇ = ~v ◦ γ.

Complex-time trajectories are Riemann surfaces which
cover CP1 minus the characteristic directions.
What does the projection to CP1 of a real-time trajectory
look-like?

Proposition (Abate-Tovena)

We may equip CP1 with the structure of an affine surface S~v so
that the projection to S~v of real-time trajectories of ~v are
geodesics.
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Affine surfaces and geodesics

Definition (Affine surface)
An affine surface S is a Riemann surface whose change of
charts are affine maps z 7→ λz + µ with λ ∈ Cr {0} and µ ∈ C.

Example: C is the complex plane with its canonical affine
structure.

Definition (Affine map)
A map between affine surfaces is an affine map if its expression
in affine charts is of the form z 7→ λz + µ.

Definition (Geodesic)
A curve δ : I → S defined on an interval I ⊆ R is a geodesic if δ
is the restriction of an affine map ϕ : U → S defined on an open
subset U ⊆ C.



An example

The dilation plane C̃ with underlying Riemann surface C,
whose affine charts are the restrictions of

exp(z) : C̃→ C r {0}.

A family of parallel geodesics in C̃.



Nonlinearity

The nonlinearity of a holomorphic map ϕ : S→ T with non
vanishing derivative is the 1-form Nϕ defined on S by

Nϕ := d(logϕ′) =
dϕ′

ϕ′
.

Nϕ = 0 if and only if ϕ is an affine map.
If ϕ : S→ T and ψ : T→ U are holomorphic maps, then

Nψ◦ϕ = Nϕ + ϕ∗(Nψ).



Affine surface of a homogeneous vector field

~v = U∂x + V∂y is homogeneous of degree k + 1.

z : CP1 3 [x : y ] 7→ x
y
∈ Ĉ.

f
(

x
y

)
=

U(x , y)

V (x , y)
.

p
(

x
y

)
=

xU(x , y)− yV (x , y)

yk+2 .

Proposition
The nonlinearity of z : S~v → C is

ν :=

(
p′(z)

p(z)
− k

z − f (z)

)
dz.



Affine surface of a homogeneous vector field
Singularities of ν are characteristic directions.
Assume there is a simple pole and let ρ be the residue.

Re(ρ) > 1 Re(ρ) < 1

Theorem (Écalle, Hakim)
If ν has a simple pole and Re(ρ) > 1, there is a parabolic
domain on which orbits converge to 0 tangentially to the
characteristic direction.



Affine surface of a homogeneous vector field
Singularities of ν are characteristic directions.
Assume there is a simple pole and let ρ be the residue.

ρ = 1− 2i ρ = 1− 4i

Proposition (Rivi,Rong)
If ν has a simple pole and Re(ρ) = 1, there is a parabolic
domain on which orbits converge to 0 spiralling around the
characteristic direction.



Closed geodesics
A geodesic δ : I → S is closed if there exists λ ∈ (0,+∞)
and t0 < t1 in I such that

δ(t1) = δ(t0) and δ̇(t1) = λδ̇(t0).

Such a geodesic is attracting if λ ∈ (0,1).



Spiralling domains
If an affine surface contains an attracting closed geodesic,
it contains an attracting dilation cylinder foliated by
attracting closed geodesic.

Proposition (Buff-R., in progress)
Assume F (x) = x + ~v(x) with ~v homogeneous. If S~v contains
an attracting dilation cylinder C, then F has a spiralling domain
in which orbits converge to 0, spiralling towards an attracting
closed geodesic of C.

Proposition (Buff-R.)
Assume a ∈ Rr {0} and

~v :=
(
y2 + ax(x − y)

)
∂x +

(
x2 + ay(x − y)

)
∂y .

Then, S~v contains infinitely many non homotopic attracting
dilation cylinders.



Polygonal models

If
~v = y2∂x + x2∂y ,

the affine surface S~v may be obtained by gluing equilateral
triangles.
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One attracting cylinder



A second attracting cylinder



A third attracting cylinder



Three attracting cylinders



Thanks for your attention!


