Spiralling Domains in Dimension 2

Jasmin Raissy

Institut de Mathématiques de Bordeaux

(Joint work in progress with Xavier Buff)

June 6, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Goal: understand the parabolic basin \mathscr{B}_0 of $F : \mathbb{C}^n \to \mathbb{C}^n$ such that F(0) = 0 and $D_0F = \mathrm{id}$

$$\mathscr{B}_0 = \{ z \in \mathbb{C}^n \mid F^{\circ m}(z) \xrightarrow[m \to +\infty]{} 0 \}$$

Parabolic domain: connected component *P* of \mathscr{B}_0 , $F(P) \subset P$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

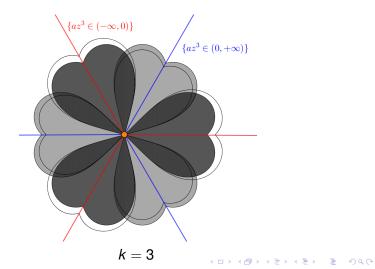
Theorem (Buff-R., in progress)

There exist $F : \mathbb{C}^2 \to \mathbb{C}^2$ polynomial maps tangent to the identity at the origin with infinitely many parabolic domains of spiralling type.

・ロト・日本・日本・日本・日本

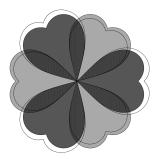
• $f : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ tangent to the identity and $f \neq id$:

$$f(z) = z + az^{k+1} + O(z^{k+2})$$
 with $a \in \mathbb{C} \setminus \{0\}$.



• $f: (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ tangent to the identity and $f \neq id$:

 $f(z) = z + az^{k+1} + O(z^{k+2})$ with $a \in \mathbb{C} \setminus \{0\}$.



f is topologically conjugate to the time-1 flow of $z^{k+1} \frac{\partial}{\partial z}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

k = 3

Setting:

•
$$\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$$

• $F(\mathbf{z}) = \mathbf{z} + v(\mathbf{z}) + O(||\mathbf{z}||^{k+2}), k \ge 1$
• $v : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous map of degree $k + 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Setting:

- $\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$ • $F(\mathbf{z}) = \mathbf{z} + v(\mathbf{z}) + O(\|\mathbf{z}\|^{k+2}), k \ge 1$
- $v : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous map of degree k + 1.

Idea: Look at $\vec{v}(\mathbf{z})$

- search for preferred directions for the dynamics
- understand orbits of *f* using real time trajectories of $\vec{v}(\mathbf{z})$.

(日) (日) (日) (日) (日) (日) (日)

$$F(\mathbf{z}) = \mathbf{z} + \mathbf{v}(\mathbf{z}) + O\left(\|\mathbf{z}\|^{k+2}\right), \quad F^{\circ n}(\mathbf{z}) = \mathbf{z}_n$$

Fact: $\mathbf{z}_n \to \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^1(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } \mathbf{v}(\mathbf{t}) = \lambda \mathbf{t}.$

 [t] ∈ P¹(C) is a characteristic direction if v(t) = λt. [t] is non-degenerate if λ ≠ 0, degenerate if λ = 0.

(日) (日) (日) (日) (日) (日) (日)

 v is dicritical if all directions are characteristic, non-dicritical otherwise.

$$F(\mathbf{z}) = \mathbf{z} + \mathbf{v}(\mathbf{z}) + O\left(\|\mathbf{z}\|^{k+2}\right), \quad F^{\circ n}(\mathbf{z}) = \mathbf{z}_n$$

Fact: $\mathbf{z}_n \to \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^1(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } \mathbf{v}(\mathbf{t}) = \lambda \mathbf{t}$.

 [t] ∈ P¹(C) is a characteristic direction if v(t) = λt. [t] is non-degenerate if λ ≠ 0, degenerate if λ = 0.

(日) (日) (日) (日) (日) (日) (日)

 v is dicritical if all directions are characteristic, non-dicritical otherwise.

From now on: v non-dicritical

Maps tangent to the identity in dimension 2

Assumptions:

• \vec{v} is a homogeneous vector field of degree k + 1 on \mathbb{C}^2 :

$$\vec{\mathbf{v}} := U\partial_{\mathbf{x}} + V\partial_{\mathbf{y}}$$

with U and V homogeneous polynomials of degree k + 1;

٥

$$\Phi := xV - yU$$

vanishes on k + 2 characteristic directions, counting multiplicities;

٥

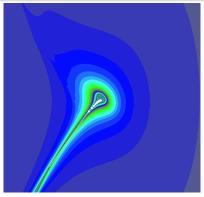
$$F(\mathbf{x}) = \mathbf{x} + \vec{\mathbf{v}}(\mathbf{x}) + O(||\mathbf{x}||^{k+2}).$$

Observation:

• Near **0**, orbits of *F* shadow real-time trajectories of \vec{v} .

Theorem (Écalle, Hakim, Abate, ..., López-Hernanz, Rosas)

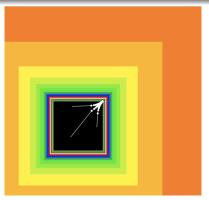
For any F, tangentially to each characteristic direction, there is either a curve of fixed points, or at least one parabolic petal.



 $F(x, y) = (x + y^2 + x^3, y + x^2)$ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (Écalle, Hakim)

Existence of F which have *parabolic domains* on which orbits converge to **0** tangentially to a characteristic direction.



 $F(x, y) = (x + x^2, y + y^2)$

(日) (日) (日) (日) (日) (日) (日)

If an orbit converges to the origin, does it converge tangentially to a characteristic direction?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If an orbit converges to the origin, does it converge tangentially to a characteristic direction?

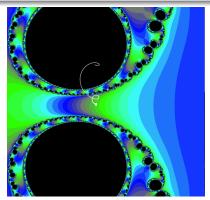
Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiralling* around a characteristic direction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiralling* around a characteristic direction.

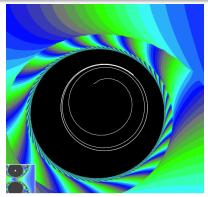


$F(x,y) = (x - x^2, y + y^2 + 4x^2)$ Example by Astorg and Boc-Thaler

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiralling* around a characteristic direction.



 $F(x, y) = (x - x^2, y + y^2 + 4x^2)$ Example by Astorg and Boc-Thaler

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spiralling domains in dimension 2

Theorem (Buff-R., in progress)

For $a\in\mathbb{R\smallsetminus}\{0\},$ the polynomial endomorphism $F_a:\mathbb{C}^2\to\mathbb{C}^2$ defined by

$$F_a\left(egin{array}{c} x\\ y\end{array}
ight)=\left(egin{array}{c} x\\ y\end{array}
ight)+\left(egin{array}{c} y^2\\ x^2\end{array}
ight)+a\left(egin{array}{c} x(x-y)\\ y(x-y)\end{array}
ight)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

has infinitely many spiralling domains contained in distinct invariant Fatou components.

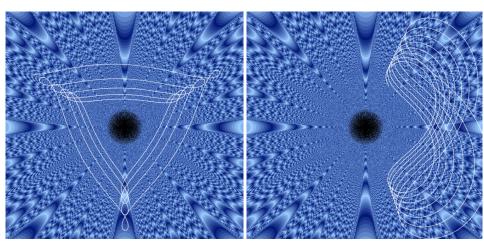
Tools

- homogeneous vector fields;
- affine surfaces;
- triangular billiards.

The family F_a

$$F_{a}\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x\\y\end{array}\right) + \left(\begin{array}{c}y^{2}\\x^{2}\end{array}\right) + a\left(\begin{array}{c}x(x-y)\\y(x-y)\end{array}\right)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○



▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

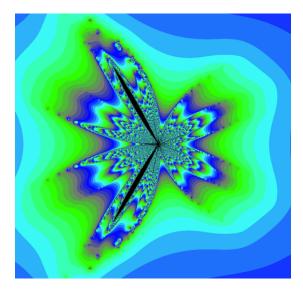
Trajectories for $\vec{v} = y^2 \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y}$

- \vec{v} is a Hamiltonian vector field
- Complex trajectories of \vec{v} :

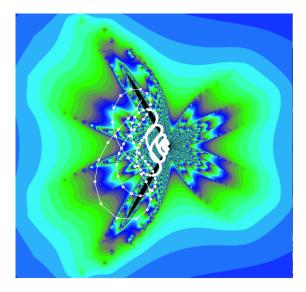
$$\mathscr{S}_{\kappa} := \left\{ \mathbf{z} \in \mathbb{C}^2 \mid \Phi(\mathbf{z}) := x^3 - y^3 = \kappa \right\}$$
 with $\kappa \in \mathbb{C}$.

•
$$\mathscr{S}_0 = \{y = x\} \cup \{y = jx\} \cup \{y = j^2x\}$$
 with $j = e^{\frac{2\pi i}{3}}$

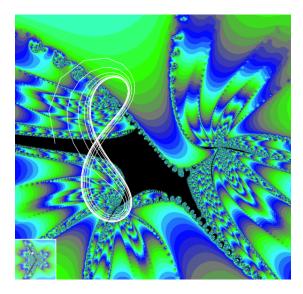
- 0 ∉ 𝔅 𝔅 𝑘 for κ ≠ 0, and so real trajectories of ν in 𝔅 𝑘 do not converge to 0.
- For κ ≠ 0, 𝒴_κ ≃ Torus \ {3 points}, on which ν is a translation vector field.
- If κ = (p + jq)³r, with (p, q) ∈ Z² \ {0} and r ∈ ℝ \ {0}, then the real trajectories of v are periodic, that is closed.



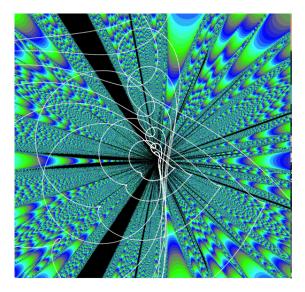
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙



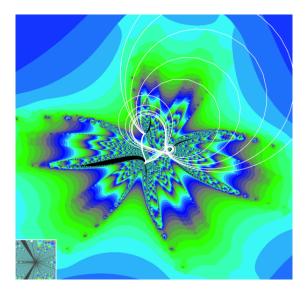
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Dynamics of homogeneous vector fields

• A trajectory for \vec{v} is a solution of the differential equation

$$\dot{\boldsymbol{\gamma}} = \boldsymbol{ec{v}} \circ \boldsymbol{\gamma}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Complex-time trajectories are Riemann surfaces which cover CP¹ minus the characteristic directions.
- What does the projection to CP¹ of a real-time trajectory look-like?

Dynamics of homogeneous vector fields

• A trajectory for \vec{v} is a solution of the differential equation

$$\dot{\boldsymbol{\gamma}} = \boldsymbol{ec{v}} \circ \boldsymbol{\gamma}.$$

- Complex-time trajectories are Riemann surfaces which cover CP¹ minus the characteristic directions.
- What does the projection to CP¹ of a real-time trajectory look-like?

Proposition (Abate-Tovena)

We may equip \mathbb{CP}^1 with the structure of an affine surface $S_{\vec{v}}$ so that the projection to $S_{\vec{v}}$ of real-time trajectories of \vec{v} are geodesics.

Affine surfaces and geodesics

Definition (Affine surface)

An *affine surface* **S** is a Riemann surface whose change of charts are affine maps $z \mapsto \lambda z + \mu$ with $\lambda \in \mathbb{C} \setminus \{0\}$ and $\mu \in \mathbb{C}$.

Example: **C** is the complex plane with its canonical affine structure.

Definition (Affine map)

A map between affine surfaces is an *affine map* if its expression in affine charts is of the form $z \mapsto \lambda z + \mu$.

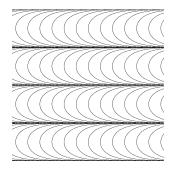
Definition (Geodesic)

A curve $\delta : I \to \mathbf{S}$ defined on an interval $I \subseteq \mathbb{R}$ is a *geodesic* if δ is the restriction of an affine map $\varphi : U \to \mathbf{S}$ defined on an open subset $U \subseteq \mathbf{C}$.

An example

• The dilation plane $\widetilde{\textbf{C}}$ with underlying Riemann surface $\mathbb{C},$ whose affine charts are the restrictions of

$$\exp(z): \widetilde{\mathbf{C}}
ightarrow \mathbf{C} \smallsetminus \{\mathbf{0}\}.$$



A family of parallel geodesics in \tilde{C} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Nonlinearity

The nonlinearity of a holomorphic map φ : S → T with non vanishing derivative is the 1-form N_φ defined on S by

$$\mathcal{N}_{arphi} := \mathrm{d}(\log arphi') = rac{\mathrm{d}arphi'}{arphi'}.$$

• $\mathcal{N}_{\varphi} = 0$ if and only if φ is an affine map.

If φ : S → T and ψ : T → U are holomorphic maps, then

$$\mathcal{N}_{\psi\circ\varphi} = \mathcal{N}_{\varphi} + \varphi^*(\mathcal{N}_{\psi}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Affine surface of a homogeneous vector field

•
$$\vec{v} = U\partial_x + V\partial_y$$
 is homogeneous of degree $k + 1$.
• $z : \mathbb{CP}^1 \ni [x : y] \mapsto \frac{x}{y} \in \widehat{\mathbb{C}}$.
• $f\left(\frac{x}{y}\right) = \frac{U(x, y)}{V(x, y)}$.
• $p\left(\frac{x}{y}\right) = \frac{xU(x, y) - yV(x, y)}{y^{k+2}}$.

Proposition

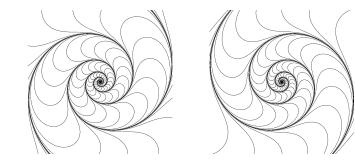
The nonlinearity of $z: \mathbf{S}_{\vec{\boldsymbol{v}}} \to \mathbf{C}$ is

$$\nu := \left(\frac{p'(z)}{p(z)} - \frac{k}{z - f(z)}\right) \mathrm{d}z$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.



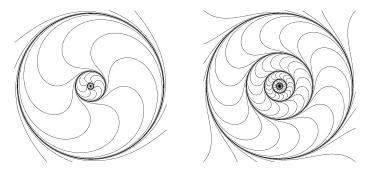
$\operatorname{Re}(\rho) > 1$

Theorem (Écalle, Hakim)

If ν has a simple pole and $\operatorname{Re}(\rho) > 1$, there is a parabolic domain on which orbits converge to **0** tangentially to the characteristic direction.

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.



$$ho = 1 - 2i$$

 $\rho = 1 - 4i$

Proposition (Rivi,Rong)

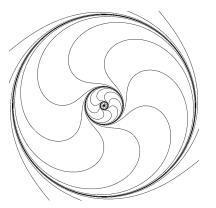
If ν has a simple pole and $\text{Re}(\rho) = 1$, there is a parabolic domain on which orbits converge to **0** spiralling around the characteristic direction.

Closed geodesics

 A geodesic δ : I → S is closed if there exists λ ∈ (0, +∞) and t₀ < t₁ in I such that

$$\delta(t_1) = \delta(t_0)$$
 and $\dot{\delta}(t_1) = \lambda \dot{\delta}(t_0)$.

• Such a geodesic is *attracting* if $\lambda \in (0, 1)$.



Spiralling domains

 If an affine surface contains an attracting closed geodesic, it contains an *attracting dilation cylinder* foliated by attracting closed geodesic.

Proposition (Buff-R., in progress)

Assume $F(\mathbf{x}) = \mathbf{x} + \vec{\mathbf{v}}(\mathbf{x})$ with $\vec{\mathbf{v}}$ homogeneous. If $\mathbf{S}_{\vec{\mathbf{v}}}$ contains an attracting dilation cylinder C, then F has a spiralling domain in which orbits converge to $\mathbf{0}$, spiralling towards an attracting closed geodesic of C.

Proposition (Buff-R.)

Assume $a \in \mathbb{R} \smallsetminus \{0\}$ and

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

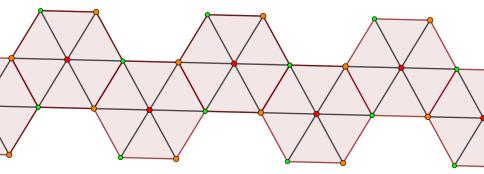
Then, $\mathbf{S}_{\vec{v}}$ contains infinitely many non homotopic attracting dilation cylinders.

Polygonal models

If

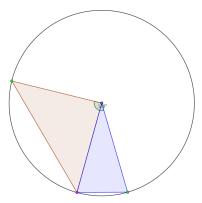
$$\vec{\prime} = y^2 \partial_x + x^2 \partial_y,$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing equilateral triangles.



If

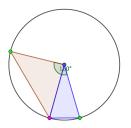
$$ec{m{v}} := ig(y^2 + ax(x-y)ig)\partial_x + ig(x^2 + ay(x-y)ig)\partial_y.$$



If

$$ec{m{v}} := ig(y^2 + ax(x-y)ig)\partial_x + ig(x^2 + ay(x-y)ig)\partial_y.$$

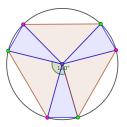
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



If

$$ec{m{v}} := ig(y^2 + ax(x-y)ig)\partial_x + ig(x^2 + ay(x-y)ig)\partial_y.$$

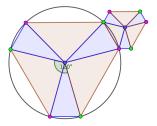
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ



If

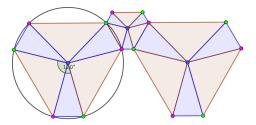
$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



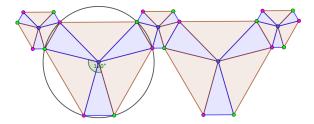
If

$$ec{m{v}} := ig(y^2 + ax(x-y)ig)\partial_x + ig(x^2 + ay(x-y)ig)\partial_y.$$



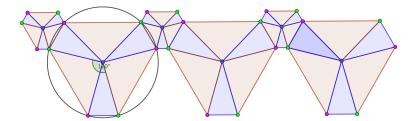
If

$$ec{\mathbf{v}} := ig(y^2 + ax(x-y)ig)\partial_x + ig(x^2 + ay(x-y)ig)\partial_y.$$

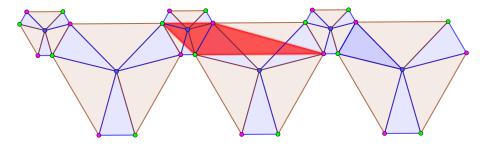


If

$$ec{m{v}} := ig(y^2 + ax(x-y)ig)\partial_x + ig(x^2 + ay(x-y)ig)\partial_y.$$

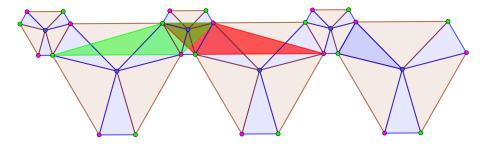


One attracting cylinder



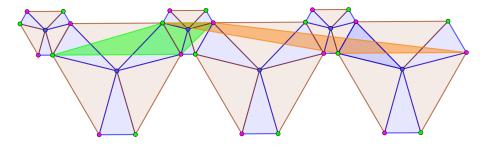
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A second attracting cylinder



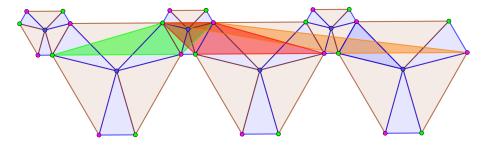
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A third attracting cylinder



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Three attracting cylinders



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thanks for your attention!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●