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Variable Lebesgue spaces
Let (Ω,Σ, µ) be a finite or σ-finite separable non-atomic measure
space.

Definition

Given p(·) : Ω → [1,∞), the variable exponent Lebesgue space (or
Nakano space) Lp(·)(Ω) is the Banach function space consisting of all
f ∈ L0(Ω, µ) with

ρ

(
f
r

)
:=

∫
Ω

∣∣∣∣ f (t)r

∣∣∣∣p(t) dµ(t) < ∞, for some r > 0,

endowed with the Luxemburg norm

∥f∥p(·) := inf

{
r > 0 : ρ

(
f
r

)
≤ 1

}
.

p+ := ess supt∈Ω p(t).
p− := ess inf t∈Ω p(t).
Rp(·) :=

{
q ∈ [1,∞) : ∀ε > 0, µ

(
p−1(q − ε,q + ε)

)
> 0

}
.
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Musielak-Orlicz spaces

Definition
A Musielak-Orlicz function is a measurable function
Φ : Ω× [0,∞) → [0,∞) such that Φ(t , ·) is an Orlicz function for every
t ∈ Ω.
The Musielak-Orlicz space is the space of all f ∈ L0(Ω) with∫

Ω

Φ

(
t ,
∣∣∣∣ f (t)r

∣∣∣∣)dt < ∞, for some r > 0,

with the Luxemburg norm

∥f∥Φ = inf

{
r > 0 :

∫
Ω

Φ

(
t ,
∣∣∣∣ f (t)r

∣∣∣∣)dt ≤ 1
}
.

If Φ(t , x) = φ(x), then LΦ(Ω) = Lφ(Ω) is an Orlicz space.
If Φ(t , x) = xp(t), then LΦ(Ω) = Lp(·)(Ω) is a variable exponent
Lebesgue space.
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Basic properties of Lp(·)(Ω)

Lp(·)(Ω) is separable ⇔ p+ < ∞.

If p+ < ∞, then
(
Lp(·)(Ω)

)∗
= Lp∗(·)(Ω), where 1

p(t) +
1

p∗(t) = 1,
µ-a.e.
Lp(·)(Ω) is reflexive ⇔ 1 < p− ≤ p+ < ∞.
By Eberlein-Smulian, if 1 < p− ≤ p+ < ∞, every bounded
subset S ⊂ Lp(·)(Ω) is relatively weakly compact.
Which subsets S ⊂ Lp(·)(Ω) are weakly compact for variable
exponents with p− = 1?
Variable Lebesgue spaces are not rearrangement invariant
(symmetric) Banach function spaces.
ℓr is lattice embedded in Lp(·)(Ω) ⇔ r ∈ Rp(·).
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Weak compactness in L1(Ω)

S ⊂ Lp(·)(Ω) is equi-integrable if it BOTH is uniformly integrable,
i.e.

lim
µ(E)→0

sup
f∈S

∫
E
|f (t)|p(t)dt = 0

and decays uniformly at infinity, i.e. given ε > 0 there exists A ⊂ Ω
with µ(A) < ∞ such that

sup
f∈S

∫
Ω\A

|f (t)|p(t)dt < ε.

Theorem (De La Vallée Poussin)

S ⊂ L1(Ω) for a finite measure space Ω is equi-integrable ⇔ S is
norm bounded in some Orlicz space Lφ(Ω) for a N-function φ, i.e.

lim
x→∞

φ(x)
x

= ∞.

Theorem (Dunford-Pettis)

S ⊂ L1(Ω) is relatively weakly compact ⇔ S is equi-integrable.
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Equi-integrability in Lp(·)(Ω) (for µ(Ω) < ∞)

For finite measures µ, S ⊂ Lp(·)(Ω) is equi-integrable ⇔

lim
x→∞

sup
f∈S

∫
{|f |>x}

|f (t)|p(t)dµ = 0.

Theorem (De La Vallée-Poussin’s type)

Let Lp(·)(Ω) with µ(Ω) < ∞ and p+ < ∞. S ⊂ Lp(·)(Ω) is
equi-integrable ⇔ it is bounded and there exists an N-function φ such
that

sup
f∈S

∥φ(f )∥p(·) < ∞.

There is not an analogous to Dunford-Pettis’s theorem, since we can
find non-equi-integrable weakly compact subsets in Lp(·)(Ω) spaces.
For example, ℓr ⊂∼ Lp(·)(Ω) for r ∈ Rp(·) (and r ̸= 1).
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Weak compactness in Orlicz spaces (for µ(Ω) < ∞)

Theorem (Luxemburg)

S ⊂ Lφ(Ω) for an N-function φ satisfying the ∆2-condition is relatively
weakly compact ⇔ for every g ∈ Lφ∗

(Ω),

lim
µ(E)→0

sup
f∈S

∫
E
|f (t) · g(t)|dt = 0

and, given ε > 0, there exists A ⊂ Ω with µ(A) < ∞ such that

sup
f∈S

∫
Ω\A

|f (t) · g(t)|dt < ε.

Theorem (Ândo, Nowak)

S ⊂ Lφ(Ω) for an N-function φ satisfying the ∆2-condition is relatively
weakly compact ⇔

lim
λ→0

sup
f∈S

1
λ

∫
Ω

φ (|λ · f (t)|)dt = 0.

Mauro Sanchiz Alonso Weak compactness in variable exponent Lebesgue spaces



Weak compactness in Orlicz spaces (for µ(Ω) < ∞)

Theorem (Luxemburg)

S ⊂ Lφ(Ω) for an N-function φ satisfying the ∆2-condition is relatively
weakly compact ⇔ for every g ∈ Lφ∗

(Ω),

lim
µ(E)→0

sup
f∈S

∫
E
|f (t) · g(t)|dt = 0

and, given ε > 0, there exists A ⊂ Ω with µ(A) < ∞ such that

sup
f∈S

∫
Ω\A

|f (t) · g(t)|dt < ε.
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Weak compactness in Lp(·)(Ω)-spaces

Theorem (Luxemburg’s type)

Let Lp(·)(Ω) with µ(Ω) < ∞ and p+ < ∞. S ⊂ Lp(·)(Ω) is relatively
weakly compact ⇔ it is norm bounded and, for every g ∈ Lp∗(·)(Ω),

lim
µ(E)→0

sup
f∈S

∫
E
|fg|dµ = 0.

Denote Ω1 := p−1({1}).

Theorem (Andô’s type)

Let Lp(·)(Ω) with p+ < ∞ and µ(Ω1) = 0. S ⊂ Lp(·)(Ω) is relatively
weakly compact ⇔

lim
λ→0

sup
f∈S

1
λ

∫
Ω

|λf (t)|p(t)dµ = 0.
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Consequences

Proposition

Let Lp(·)(Ω) with µ(Ω) < ∞ and p+ < ∞. A sequence (fn) in Lp(·)(Ω)
converges weakly to f ∈ Lp(·)(Ω) ⇔
(i) limn

∫
A(fn − f )dµ = 0 for each A ∈ Σ, and

(ii) limµ(A)→0 supn
∫

A |(fn − f )g|dµ = 0 for each function g ∈ Lp∗(·)(Ω).

Proposition

Let Lp(·)(Ω) with p+ < ∞. A sequence (fn) in Lp(·)(Ω) converges
weakly to f ∈ Lp(·)(Ω) ⇔
(i) limn

∫
A fn dt =

∫
A f dt for each measurable set A ⊂ Ω, and

(ii) limλ→0 supn
1
λ

∫
Ω
|λ(fn − f )|p(t) dt = 0.

Theorem

Lp(·)(Ω) is weakly Banach-Saks ⇔ p+ < ∞.
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The purely atomic case. Nakano sequence spaces

Corolary

Let ℓpn be a Nakano sequence space with (pn) bounded and pn ̸= 1.
S ⊂ ℓpn is relatively weakly compact ⇔

lim
λ→0

sup
x=(xn)∈S

1
λ

∞∑
n=1

|λxn|pn = 0.

Corolary

Let ℓpn with p+ < ∞ and pn ̸= 0. A sequence (xk )k in ℓpn converges
weakly to y = (yn) ∈ ℓpn ⇔
(i) For each coordinate n, limk→∞ xk

n = yn, and
(ii) limλ→0 supk∈N

1
λ

∑∞
n=1 |λ(xk

n − yn)|pn = 0.

Corolary (Kaminska and Lee)

A Nakano sequence space ℓpn is weakly Banach-Saks ⇔ p+
n < ∞.
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A criterion through Musielak-Orlicz spaces
Definition

A Musielak-Orlicz function Ψ(t , x) increases uniformly more rapidly
than another function Φ(t , x) at infinity if, ∀ε > 0 ∃δ > 0 and x0 > 0
such that ∀x ≥ x0 and a.e-t ∈ Ω,

εΨ(t , x) ≥ 1
δ
Φ(t , δx).

Theorem (Andô’s type)

Let Lp(·)(Ω) with µ(Ω) < ∞ and p+ < ∞. S ⊂ Lp(·)(Ω) is relatively
weakly compact ⇔ there exists a Musielak-Orlicz function Ψ(t , x)
increasing uniformly more rapidly than Φ(t , x) = xp(t) at infinity such
that S is norm bounded in LΨ(Ω).

Theorem (Nowak’s type)

Let Lp(·)(Ω) be with µ(Ω) = ∞ and p+ < ∞. S ⊂ Lp(·)(Ω) is relatively
weakly compact ⇔ there exists a Musielak-Orlicz function Ψ(t , x)
increasing uniformly more rapidly than Φ(t , x) = xp(t) for all x such
that S is norm bounded in LΨ(Ω).
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Inclusions between variable Lebesgue spaces

Proposition

Let Ω be a non-atomic measure space and p(·),q(·) ∈ P(Ω). The
inclusion Lp(·)(Ω) ⊂ Lq(·)(Ω) holds if and only if p(t) ≥ q(t) a.e-µ and
there exists λ > 1 such that∫

Ωd

λ−r(t)dµ < ∞,

where Ωd = {t ∈ Ω : p(t) > q(t)} and r(·) is the defect exponent
defined by

1
r(·)

:=
1

q(·)
− 1

p(·)
.

Note that, if µ(Ω) < ∞, then the condition
∫
Ωd

λ−r(t)dµ < ∞ is trivially
satisfied, so the inclusion holds if and only if p(·) ≥ q(·). The atomic
case will be considered later.
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Weakly compact and L-weakly compact inclusions
Definition
• An operator T : X → Y is weakly compact if the image of the unit
ball T (BX ) is a relatively weakly compact set in Y .
• An operator T : X → E(Ω) is L-weakly compact if the image of the
unit ball T (BX ) is an equi-integrable set in E(Ω).

Proposition

The inclusion Lp(·)(Ω) ⊂ Lq(·)(Ω) for bounded exponent functions
p(·) ≥ q(·) and µ(Ω) < ∞ is L-weakly compact ⇔ if there exists an
N-function φ such that Lp(·)(Ω) ⊂ LΦ(Ω), where Φ is the
Musielak-Orlicz function Φ(t , x) := (φ(x))q(t).

Proposition

The inclusion Lp(·)(Ω) ⊂ Lq(·)(Ω) for bounded exponent functions
p(·) ≥ q(·) and µ(Ω

q(·)
1 ) = 0 is weakly compact ⇔

lim
λ→0

sup
∥f∥p(·)≤1

1
λ

∫
Ω

|λf (t)|q(t)dµ = 0.
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Weakly compact and L-weakly compact inclusions
Definition
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There is more

We can say a bit more when Ω is non-atomic and µ(Ω) = ∞.

Theorem

Let the inclusion Lp(·)(Ω) ⊂ Lq(·)(Ω) hold for a non-atomic space Ω
with µ(Ω) = ∞ and p+ < ∞. Then, it is not L-weakly compact.

Denote Ω
p(·)
1+ε := {x ∈ Ω : p(x) < 1 + ε}.

Proposition

Let Lp(·)(Ω) ⊂ Lq(·)(Ω) for a non-atomic separable measure space. If
µ(Ω

p(·)
1+ε) = ∞ for every ε > 0, then the inclusion Lp(·)(Ω) ↪→ Lq(·)(Ω) is

not weakly compact.
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THANK YOU VERY MUCH
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