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Introduction.

Let T be an arbitrary set and let ¢’ be the set of all functions
defined on T with values in the universally complete Riesz
space € with weak order unit E. We note that ¢ is an f-algebra
with E as algebraic unit.

By defining the operations point wise, i.e., forall r € T,

(X+Y)(1) :==X()+Y (1), (cX)(t) :=cX(t), X<Y <<= X(t) <Y(¢1),

it follows that ¢7 is a Dedekind complete Riesz space with
weak order unit (E(r)), where E(t) = Eforallr € T.
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The Daniell integral

Let L be a Riesz subspace of ¢’ contained in the ideal
generated in ¢7 by the weak order unit £ = E(¢) forallr € T.

Definition

A positive linear operator / : . — € is called a vector-valued
I-integral whenever, for every sequence (X,,) in L that satisfies
X, (2) | 0 for every t € €7 it follows that 1(X,,) | 0.

We refer to L as the initial domain of the integral 1.

The integral is a positive o-order continuous linear operator
mapping L into €.

The vector-valued I-integral is then extended by the well-known
Daniell extension process to a positive integral. We denote the
extended integral again by 7. A function X(¢) is called
I-summable if I(X (7)) € €. The set of all I-summable functions
are denoted by £;. For the detail we refer the reader to [1].
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Stochastic &-homogeneous Integral

Definition
@ We call I a stochastic integral if I(E(t)) = E.
© The integral is called &- homogeneous, if

[(XY(1)) = XI(Y(1)) forall X € &, Y(¢) € Ly.

If 7 is &-homogeneous, then every constant vector X in € is
summable because

I(X) = I(XE(1)) = XI(E(1)) = XE = X € €.

We also note that a stochastic &-homogeneous integral I is a
projection:

= I(I(X(1)]E(1)))
= X (@)H(E®))
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The double integral

Let 7 and J denote two extended positive vector valued Daniell
integrals each of which is stochastic and &-homogeneous with
values in €, the latter being a universally complete Riesz space.
The spaces £; and £; of summable functions are subspaces of
¢S and ¢ respectively.

If we identify the element X(s) ® Y(¢) € £; ® L; with the element
X(s)Y(t) € &*T we find that £; ® £ is a subspace of the
Dedekind complete Riesz space ¢5*7. Hence, the Fremlin
tensor product £;®L; is, in this case, the Archimedean Riesz
subspace generated by £; ® £; in the Riesz space &5*7.
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The double integral (continued)

We now define a bilinear operator
b(X(s),Y(2) =1(X(s))J(Y(r)) € €, X(s) € L1,Y(t) € Ly, (0.1)

This is a positive bilinear operator defined on £; x £; with
values in the f-algebra €.

Using the universal properties of the Fremlin vector lattice
tensor product, there exists a unique positive linear operator
K : Li®L; — & with the property that

K(X®Y)=IX)J(Y), forall X € L;, Y € L;.
We shall show that K is a Daniell integral with initial domain

E[@ﬁj C @SXT.
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The double integral (continued)

In exactly the same manner, by interchanging the variable in
the above defjnition of K, we find a unique extension K of the
bilinear form b(Y, X) := J(Y)I(X) satisfying

K(Y®X) =J()I(X)=I(X)J(Y) =K(X®Y),

since the f-algebra & is commutative.
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The iterated integral

Following Zaanen [4] (see also Rompf and Kersting [3]), we
denote by £; * £; the collection of all elements U(s, ) € &S*T
with the property that for fixed s we have that U(s,t) € £; and
J(U(s,t)) € Ly e,

LrxLy:={U(s,1) € €T [(J(U(s,1))) € €}.

Observe that £;  £; is a Riesz subspace of <7 that contains
L; ® L; and therefore also £;®L;. We define the positive
operator I «J on L; = L; by

I[xJ(U):=1(J(U(s,1))) € €.

For every element U(s, t) in the tensor product £; ® L, of the
form

U(s,t) = Zn:Xi(S) ® Yi(t), Xi(s) € Ly, Yi(t) € Ly.
i=1

we have that
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= ZI(Xi(S)J(Yi(I)))(J is &-homogeneous)
i=1

= zn:J(Yi(t))I(X,-(s))(I is &-homogeneous)
i=1

=Y I(X(s))J (Y;(1))( f-algebra is commutative).
i=1

= K(U(s,1))-

Hence K and I x J are positive operators on £;® L, that coincide
on L; ® Ly, and so they are equal.

J.J. Grobler Fubini’s Theorem



Fubini’s theorem

We show that K is a Daniell integral on £;®L;. Let Z,(s,t) L 0
for every (s,1) € S x T, with Z, € £;®L;. Then for every fixed s
Z3(t) : Zu(s,t) L 0and so J(Z)(r)) | O for every fixed s. But then,
I+ J(Zy(s,t) =1(J(Zy(s,1))) L 0. But, on £L;®RLy, I« J is equal to
K and so K(Z,(s,t)) | 0. This shows that K = I « J is a primitive
Daniell integral on the initial domain £,;®L; and can be
extended to the Riesz space of Daniell summable functions
using Daniell’s extension procedure. This extension process
preserves the property that 7 « J = K and we get Fubini’s
theorem:

Every K-summable function belongs to L; x L; and moreover,
K(U) = 1J(U) for every I ® J-summable function.
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1. If € is super Dedekind complete, every stochastic
¢-homogeneous Daniell integral is a conditional expectation.
This is because the integral is order continuous mapping £,
onto &, mapping the order unit onto the order unit, and is a
projection. To see that it is a mapping onto €, let X € &
Consider the function E(#)X € ¢T. Then

I(E(1)X) = XI(E(1)) = XE = X.

2. Our final remark is that if one considers the Bochner integral
in a Banach space B which is also a Banach algebra, then the
integral is B-homogeneous, for every step function of the form

a(t) =Y aixz, (1),
i=1

with integral I(a(z)) = Y"1, w(E:)a;, satisfies I(ca(t)) = cl(a(1)).
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