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Introduction to pre-Riesz spaces

Let V be a vector space over R. C ⊆ V is a cone if C + C ⊆ C ,
λC ⊆ C for all λ ∈ [0,∞), and C ∩ −C = {0}.
Partial order ≤ on V given by x ≤ y ⇐⇒ y − x ∈ C .
(V ,C ) is a partially ordered vector space.

A partially ordered vector space (V ,C ) is a Riesz space or vector
lattice if for all x , y ∈ V the set {x , y} has a supremum.

Why partially ordered vector spaces instead of Riesz spaces?
• subspaces of Riesz spaces
• spaces of operators between Riesz spaces
are partially ordered vector spaces but not always Riesz spaces

A partially ordered vector space (V ,C ) is
• directed if C − C = V and
• Archimedean if nx ≤ y for all n ∈ N implies x ≤ 0.



Introduction to pre-Riesz spaces

Idea: View partially ordered vector spaces as subspaces of Riesz
spaces and use theory of Riesz spaces.

W. Luxemburg (1986): for every partially ordered vector space V
there exists a Riesz space Y and a bipositive linear map i : V → Y .
bipositive: i(x) ≥ 0 ⇐⇒ x ≥ 0

Let V partially ordered vector space, Y Riesz space, V ⊆ Y linear
subspace, x , y ∈ V .
Say x , y are disjoint in V if they are disjoint in Y .
Problem: does depend on Y .

V is order dense in Y if for every y ∈ Y
y = inf{v : v ∈ V , v ≥ y} Buskes and van Rooij, 1993

If x , y ∈ V , V order dense in Y1 and order dense in Y2, then x and y
disjoint in Y1 if and only if disjoint in Y2.



Introduction to pre-Riesz spaces

Approach:
• Write definition in terms of upper and lower bounds.
In a Riesz space:
x , y are disjoint ⇐⇒ |x − y | = |x + y | ⇐⇒
{x − y ,−x + y}u = {x + y ,−x − y}u

• Show compatibility with order dense embedding.
If V order dense in Y , then x , y disjoint in V if and only if x , y
disjoint in Y .

• Use theory of Riesz spaces.
For A ⊆ V , Ad := {v ∈ V : v and a disjoint for all a ∈ A} is a linear
subspace of V .



Introduction to pre-Riesz spaces

Which partially ordered vector spaces can be embedded order densely
in Riesz spaces?

A partially ordered vector space (V ,C ) is a pre-Riesz space if for all
x , y , z ∈ V {x + z , y + z}u ⊆ {x , y}u implies z ≥ 0.

Theorem (van Haandel, 1993)

Let (V ,C ) be a partially ordered vector space. Then V is pre-Riesz if
and only if there exists a vector lattice Y and a bipositive map
i : V → Y such that i [V ] is order dense in Y .

(Y , i) is then called a vector lattice cover of V . There is a unique
smallest vector lattice cover, called the Riesz completion of V .

Van Haandel (1993): (V ,C ) directed and Archimedean =⇒ (V ,C ) is
pre-Riesz =⇒ (V ,C ) is directed.
order dense: x = inf{d ∈ D : d ≥ x}.
bipositive: x ≥ 0 in V ⇐⇒ i(x) ≥ 0 in W .



Introduction to pre-Riesz spaces

(V ,C , e) order unit space:

• ∃e ∈ V which is an order unit if ∀x ∈ V ∃λ ∈ R such that
−λe ≤ x ≤ λe.
• (V ,C ) is Archimedean;

∥x∥e = inf{λ ∈ R : − λe ≤ x ≤ λe} order unit norm.

Note that an order unit space is directed.

Hence order unit spaces are pre-Riesz spaces.



Introduction to pre-Riesz spaces

Let (V ,C , e) be an order unit space. Vector lattice cover of V ?

Functional representation of V :
Σ = {φ : V → R : φ positive linear, φ(e) = 1}
Λ = extreme points of Σ
Λ = weak* closure of Λ in Σ
Φ(x)(φ) = φ(x), φ ∈ Λ, x ∈ V

Kalauch–Lemmens–vG (2014):
(C (Λ),Φ) is a vector lattice cover of V , i.e.,
Φ: V → C (Λ) is bipositive and Φ[V ] is order dense in C (Λ)

More talks on pre-Riesz spaces: Anke Kalauch, Florian Boisen, Janko
Stennder



Introduction to JB-algebras

See Alfsen–Shultz, Geometry of state spaces of operator algebras,
2003.
Let Ω be a compact Hausdorff space,
C (Ω) = {x : Ω → R : x is continuous}. This is a vector space over R
• with a product: (xy)(ω) = x(ω)y(ω), s ∈ Ω
• and a partial order: x ≤ y ⇐⇒ ∀ω ∈ Ω: x(s) ≤ y(s).
• The constant function 1 is an order unit and an identity for the
product.
• Note that x ≥ 0 if and only if ∃y such that x = y2 (namely,
y =

√
x), so C (Ω)+ = {x2 : x ∈ C (Ω)}.

C (Ω) is a commutative C ∗-algebra.



Introduction to JB-algebras

Let H be a Hilbert space over C,
B(H) = {x : H → H : x is bounded linear}. This is a vector space
over R
• with a product: composition
• and a partial order: x is positive if σ(x) ⊆ [0,∞),
x ≤ y ⇐⇒ y − x ≥ 0.
• The identity operator is an identity for the product, but not an order
unit. Actually, B(H)+ does not even span B(H) (over R).



Introduction to JB-algebras

Rather consider B(H)sa = {x ∈ B(H) : x is self adjoint}.
But B(H)sa is not closed under composition:
(xy)∗ = y∗x∗ = yx ̸= xy .
Consider the Jordan product x ◦ y = 1

2(xy + yx).
Note: x ◦ x = xx , so we can unambiguously write x2.

The Jordan product on B(H)sa distributes over sums:
• (x + y) ◦ z = x ◦ z + y ◦ z and x ◦ (y + z) = x ◦ y + x ◦ z
• is commutative: x ◦ y = y ◦ x
but not associative:
(x ◦ y) ◦ z = 1

2

(
(x ◦ y)z + z(x ◦ y)

)
= 1

2

(
1
2(xy + yx)z + 1

2z(xy + yx)
)

and
x ◦ (y ◦ z) = 1

2

(
x(y ◦ z)+ (y ◦ z)x

)
= 1

2

(
1
2x(yz + zy)+ 1

2(yz + zy)x
)
,

• so (x ◦ y) ◦ z ̸= x ◦ (y ◦ z).

A very weak form of associativity still holds true:
• x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 Jordan identity.



Introduction to JB-algebras

B(H)sa = {x ∈ B(H) : x is self adjoint},
Jordan product x ◦ y = 1

2(xy + yx)
distributes over sums, is commutative, not associative, and

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 Jordan identity.

The identity operator I is an identity for the Jordan product and I is
an order unit:
∀x ∈ B(H)sa ∃λ ∈ R such that −λI ≤ x ≤ λI .

Note that B(H)+sa = {x2 : x ∈ B(H)sa}.

Compatibility between the norm and the Jordan product:
∥x ◦ y∥ ≤ ∥x∥∥y∥, ∥x2∥ = ∥x∥2, ∥x2∥ ≤ ∥x2 + y2∥.



Introduction to JB-algebras

Two more notes on the Jordan product.

Recall the Jordan identity: x ◦ (y ◦ x2) = (x ◦ y) ◦ x2:

• powers of x : x2 = x ◦ x = xx , x3 = x ◦ (x ◦ x) = x ◦ x2 = x2 ◦ x .
How about x4? By Jordan identity,
x ◦ x3 = x ◦ (x ◦ x2) = (x ◦ x) ◦ x2 = x2 ◦ x2 = x3 ◦ x ,
so x4 is unambiguously defined. Similar for xn.

• Consider the left multiplication by a ∈ A, Tax = a ◦ x for all x ∈ A.
TaTb = TbTa if and only if ∀x ∈ A : a ◦ (b ◦ x) = b ◦ (a ◦ x), or,
equivalently, (a ◦ x) ◦ b = a ◦ (x ◦ b).
a and b are then said to operator commute.



Introduction to JB-algebras

Definition
A Jordan algebra (A, ◦) is a commutative, not necessarily associative
algebra such that

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x , y ∈ A.

A JB-algebra (A, ◦) is a Jordan algebra over R with a norm ∥·∥ such
that it is norm complete and

∥x ◦ y∥ ≤ ∥x∥∥y∥, ∥x2∥ = ∥x∥2, ∥x2∥ ≤ ∥x2 + y2∥
for all x , y ∈ A.



JB-algebras as order unit spaces

Recall

Definition
A JB-algebra (A, ◦) is a commutative, not necessarily associative
algebra over R such that

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x , y ∈ A.

endowed with a norm which makes it complete and
∥x ◦ y∥ ≤ ∥x∥∥y∥, ∥x2∥ = ∥x∥2, ∥x2∥ ≤ ∥x2 + y2∥

for all x , y ∈ A.

We assume A has an algebraic identity e.

It is known that
• C = {x2 : x ∈ A} is a closed cone in A,
• e is an order unit in A,
• the norm of A equals the order unit norm.

So, with x ≤ y ⇐⇒ y − x ∈ C , A is an order unit space.



JB-algebras as order unit spaces

Example

• C (Ω), x ◦ y pointwise product, constant 1 function is the identity,
maximum-norm, pointwise order. This is an associative JB-algebra.

• B(H)sa, Jordan product x ◦ y = 1
2(xy + yx), identity operator is the

identity, operator norm, ordered by the cone of ‘being positive
definite’.

• Spin factor: H ×R, where (H, ⟨·, ·, ⟩) is a real Hilbert space, product
(x , α) ◦ (y , β) = (βx + αy , ⟨x , y⟩+ αβ),

(0, 1) is the identity, norm ∥(x , α)∥ =
√

⟨x , x⟩+ |α|, ordered by the
Lorentz cone {(x , α) :

√
⟨x , x⟩ ≤ α}.

The following is known:

Theorem
Each associative unital JB-algebra is as JB-algebra isomorphic to
C (Ω) for some compact Hausdorff space Ω.



JB-algebras as order unit spaces

Let (A, ◦) be a JB-algebra with identity e.

Question: How are the order structure and algebra structure related?

Algebraic center of A:
Z (A) = {z ∈ A : ∀a ∈ A : TzTa = TaTz},

where Tax = a ◦ x (left multiplication by a).

Order center of A:
E (A) = {T : A → A linear : ∃α ∈ R such that − αI ≤ T ≤ αI},

where I is the identity operator on A.

Theorem: Z (A) and E (A) are isomorphic as JB-algebras.



Order center

Let (V ,C ) be an Archimedean directed partially ordered vector space.

Order center of V :
E (A) = {T : A → A linear : ∃α ∈ R s.t. − αI ≤ T ≤ αI} ⊆ Lr (V ).
is a partially ordered vector space with order unit I .

• Well-known: If V = C (Ω) then T ∈ E (V ) if and only if ∃v ∈ V
such that T = Mv , where

(Mvx)(ω) = v(ω)x(ω), ω ∈ Ω, x ∈ V . multiplication operator

• R.C. Buck (1961): V is isomorphic to a subspace of some C (Ω) and
elements of E (V ) correspond to multiplication operators.

• If (V ,C , e) is an order unit space and Φ: V → C(Λ) its functional
representation, then for every T ∈ E (V ) the multiplication operator
MΦ(Te) maps Φ[V ] into Φ[V ] and T = Φ−1 ◦MΦ(Te) ◦ Φ.



Order center

Let (V ,C , e) be an order unit space.
E (A) = {T : A → A linear : ∃α ∈ R s.t. − αI ≤ T ≤ αI}
T ∈ E (V ) =⇒ T = Φ−1 ◦MΦ(Te) ◦ Φ.

Proposition

• ∀S ,T ∈ E (V ) : ST ∈ E (V )
• ∀S ,T ∈ E (V ) : ST = Φ−1 ◦MΦ(Se)Φ(Te) ◦ Φ = TS .
• T ∈ E (V ) =⇒ T is continuous.
• On E (V ) the operator norm and the norm induced by the order unit
I are equal.
• E (V ) is a closed subspace of the bounded linear operators on V .
• ∀S ,T ∈ E (V ) : ∥ST∥ ≤ ∥S∥∥T∥, ∥T 2∥ = ∥T∥2, and
∥T 2∥ ≤ ∥S2 + T 2∥.



Order center

Corollary

• E (V ) with composition is a commutative associative algebra.
• If (V ,C , e) is norm complete, then E (V ) is an associative unital
JB-algebra, hence isomorphic to C (Ω) as JB-algebras.

Corollary

If (V ,C , e) is norm complete, then E (V ) is a vector lattice.

Example

V = C 1[0, 1], pointwise order, e = 1. Order unit norm is ∥ · ∥∞, not
complete. We have E (V ) = {Mf : f ∈ V }, which is not a vector
lattice.



Algebraic center and order center

Let (A, ◦) be a JB-algebra with identity e.

Algebraic center of A:
Z (A) = {z ∈ A : ∀a ∈ A : TzTa = TaTz},

where Tax = a ◦ x (left multiplication by a).

Z (A) is a JB-subalgebra of A and it is associative, hence JB-algebra
isomorphic to a C (Ω).



Algebraic center and order center

Theorem: Let (A, ◦) be a JB-algebra with identity e.
• The algebraic center Z (A) and the order center E (A) are isomorphic
as JB-algebras.
• f (z) = Tz is a JB-algebra isomorphism from Z (A) onto E (A).
Tzx = z ◦ x
B(A) = {T : A → A : T linear and bounded} with the operator norm.

It is routine to show:

Lemma
f : Z (A) → B(A) is linear, multiplicative, injective, and f (e) = I (with
I the identity operator on A). Moreover, ∥Tz∥ = ∥z∥ for all z ∈ Z (A).

Remains to show: f maps into and onto E (A).



Algebraic center and order center

Goal: show that f : z 7→ Tz maps Z (A) onto E (A).

Strategy: show that f is a bijection from [0, e] ∩ Z (A) onto [0, I ] by
means of extreme points.

We need enough extreme points. Therefore, consider JBW-algebras
first.

Definition: A JBW-algebra M is a JB-algebra which is the dual space
of some Banach space M∗.



Algebraic center and order center

Let M be a JBW-algebra with identity e.
p ∈ M is central projection if p2 = p and p ∈ Z (M).

Lemma
• The extreme points of [0, e] are precisely the central projections in
M.
• The extreme points of [0, I ] are of the form Tp for some central
projection p in M with p ∈ Z (M).

Hence z 7→ Tz maps extreme points of [0, e] ∩ Z (M) onto extreme
points of [0, I ].

• [0, e] ∩ Z (M) is convex and σ-weakly compact.
• [0, I ] is convex and compact for the σ-weak operator topology.
(Choi and Kim, 2008)
• z 7→ Tz : M → B(M) is continuous with respect to the σ-weak
topology on [0, e] ∩ Z (M) and the σ-weak operator topology on
B(M).



Algebraic center and order center

Theorem
Let M be a JBW-algebra with identity e. Then
• f : z 7→ Tz : Z (M) → E (M) is a linear, multiplicative, isometric
bijection.
• the map f is also a homeomorphism for the σ-weak topology of M
on Z (M) and the σ-weak operator topology of B(M) on E (M).

The bidual A∗∗ of a JB-algebra A is a JBW-algebra. Thus:

Theorem
Let A be a JB-algebra with identity e. Then
• f : z 7→ Tz : Z (A) → E (A) is an isometric isomorphism of
JB-algebras.
• on E (A) the operator norm and the order unit norm induced by I
are equal
• The map f is also a homeomorphism for the weak topology of A on
Z (A) and the weak operator topology of B(A) on E (A).



Summary

Let A be a JB-algebra, i.e., a Banach space with a product ◦ such that
it is a commutative, not necessarily associative algebra over R with

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x , y ∈ A and
∥x ◦ y∥ ≤ ∥x∥∥y∥, ∥x2∥ = ∥x∥2, ∥x2∥ ≤ ∥x2 + y2∥.

Algebraic center of A: Z (A) = {z ∈ A : ∀a ∈ A : TzTa = TaTz},
where Tax = a ◦ x (left multiplication by a).

Order center: E (A) = {T : A → A : ∃α ∈ R s.t. − αI ≤ T ≤ αI}.

Theorem
If (V ,C , e) is a norm complete order unit space, then E (V ) is a
JB-algebra.

Theorem
The map a 7→ Ta : Z (A) → E (A) is an isomorphism of JB-algebras,



Summary

Let A be a JB-algebra, i.e., a Banach space with a product ◦ such that
it is a commutative, not necessarily associative algebra over R with

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x , y ∈ A and
∥x ◦ y∥ ≤ ∥x∥∥y∥, ∥x2∥ = ∥x∥2, ∥x2∥ ≤ ∥x2 + y2∥.

Algebraic center of A: Z (A) = {z ∈ A : ∀a ∈ A : TzTa = TaTz},
where Tax = a ◦ x (left multiplication by a).

Order center: E (A) = {T : A → A : ∃α ∈ R s.t. − αI ≤ T ≤ αI}.

Theorem
If (V ,C , e) is a norm complete order unit space, then E (V ) is a
JB-algebra.

Theorem
The map a 7→ Ta : Z (A) → E (A) is an isomorphism of JB-algebras,

THANK YOU!







Algebraic center and order center

Goal: show that f : z 7→ Tz maps Z (A) onto E (A).

Strategy: show that f is a bijection from [0, e] ∩ Z (A) onto [0, I ] by
means of extreme points.

Lemma
The extreme points of [0, e] are precisely the projections in A.

p ∈ A is a projection if p2 = p.

We need enough extreme points. Therefore, consider JBW-algebras
first.

Definition: A JBW-algebra M is a JB-algebra which is the dual space
of some Banach space M∗.



Algebraic center and order center

A JBW-algebra M is a JB-algebra which is the dual space of some
Banach space M∗.
Let M be a JBW-algebra with identity e.

φ ∈ M∗ is a normal state if it is a state (i.e., φ is positive and
φ(e) = 1) and for every bounded increasing net (xi )i with supremum
x we have φ(xi ) → φ(x).

For (xi )i and x in M we say that xi → x σ-weakly if φ(xi ) → φ(x) for
every normal state φ on M.

For bounded linear (Ti )i and T on M we say that Ti → T in the
σ-weak operator topology if φ(Tix) → φ(Tx) for all x ∈ M and all
normal states φ on M.



Algebraic center and order center

Let M be a JBW-algebra with identity e.

Lemma
• The convex set [0, e] ∩ Z (M) in M is σ-weakly compact.
• The convex set [0, I ] in B(M) is compact for the σ-weak operator
topology. (Choi and Kim, 2008)

Lemma
The map z 7→ Tz : M → B(M) is continuous with respect to the
σ-weak topology on [0, e] ∩ Z (M) and the σ-weak operator topology
on B(M).

Lemma
• The extreme points of [0, e] are precisely the projections in M.
• The extreme points of [0, I ] are of the form Tp for some projection
p in M with p ∈ Z (M).



Algebraic center and order center

Claim: f : z 7→ Tz maps [0, e] ∩ Z (M) into [0, I ]:
Indeed, let z ∈ Z (M). Then

• z extreme point of [0, e] ∩ Z (M)
=⇒ z is projection in M and z ∈ Z (M)
=⇒ Tz ∈ [0, I ]

• z convex combination of extreme points of [0, e] ∩ Z (M)
=⇒ Tz ∈ [0, I ]

• As [0, e] ∩ Z (M) is compact and convex, by Krein-Milman,
∀z ∈ [0, e] ∩ Z (M) we have Tz ∈ [0, I ].



Algebraic center and order center

Claim: f : z 7→ Tz maps [0, e] ∩ Z (M) onto [0, I ]:
Indeed, let T ∈ [0, I ]. Then

• T extreme point of [0, I ]
=⇒ ∃ projection p ∈ M with p ∈ Z (M) such that Tp = T
=⇒ T ∈ f [[0, e] ∩ Z (M)].

• T convex combination of extreme points of [0, I ]
−→ T ∈ f [[0, e] ∩ Z (M)].

• As [0, I ] is compact and convex, by Krein-Milman,
∀T ∈ [0, I ] we have T ∈ f [[0, e] ∩ Z (M)].



Algebraic center and order center

Theorem
Let M be a JBW-algebra with identity e. Then
• f : z 7→ Tz : Z (M) → E (M) is a linear, multiplicative, isometric
bijection.
• the map f is also a homeomorphism for the σ-weak topology of M
on Z (M) and the σ-weak operator topology of B(M) on E (M).

The bidual A∗∗ of a JB-algebra A is a JBW-algebra. Thus:

Theorem
Let A be a JB-algebra with identity e. Then
• f : z 7→ Tz : Z (A) → E (A) is an isometric isomorphism of
JB-algebras.
• on E (A) the operator norm and the order unit norm induced by I
are equal
• The map f is also a homeomorphism for the weak topology of A on
Z (A) and the weak operator topology of B(A) on E (A).


