Various characterizations of unbounded order convergence

Eugene Bilokopytov (joint work with Vladimir G. Troitsky)

University of Alberta

July 11, 2023

Order convergence in a vector lattice

For a net $(f_{\alpha}) \subset F$ and $f \in F$ TFAE (and is denoted by $f_{\alpha} \xrightarrow{o} f$):

- There is a net (g_β) ⊂ F which decreases to 0_F and such that for every β there is α_β and such that |f_α − f| ≤ g_β, for α ≥ α_β;
- There are $C, D \subset F$ with $\bigvee C = f = \bigwedge D$ and such that for every $c \in C$ and $d \in D$ there is $\alpha_{c,d}$ such that $f_{\alpha} \in [c, d]$, for $\alpha \geq \alpha_{c,d}$;
- *f* is the only element greater than every eventual lower bound, and smaller than every eventual upper bound;
- There is a family of order intervals in *F* whose intersection is {*f*}, and each of which contains a tail of the net;
- Same, but the family is directed downward.

Theorem 1 (Dabboorasad + Emelyanov + Marabeh, 2020)

Order convergence if topological iff dim $F < \infty$.

If for some α_0 all extremums exist in $f = \bigvee_{\alpha \ge \alpha_0} \bigwedge_{\beta \ge \alpha} f_{\beta} = \bigwedge_{\alpha \ge \alpha_0} \bigvee_{\beta \ge \alpha} f_{\beta}$, then

 $f_{\alpha} \xrightarrow{o} f$. " \Leftarrow " holds if every order bounded set in *F* has a supremum.

Uo convergence in a vector lattice

Let *F* be Archimedean. A net $(f_{\alpha}) \subset F$ unbounded order converges to $f \in F$ (denoted $f_{\alpha} \xrightarrow{uo} f$) if $e \vee f_{\alpha} \wedge h \xrightarrow{o} e \vee f \wedge h$, for every $e \leq h$.

Theorem 2 (Papangelou, 1964-1965)

TFAE:

•
$$f_{\alpha} \xrightarrow{uo} f;$$

•
$$|f_{\alpha} - f| \wedge h \xrightarrow{o} 0_{F}$$
, for all $h \ge 0_{F}$;

• f is the only element with the property that for every α :

$$\bigvee_{eta \geq lpha} (f \wedge f_eta) = f = \bigwedge_{eta \geq lpha} (f \lor f_eta).$$

A sublattice $E \subset F$ is *order dense* if for every $f > 0_F$ there is $e \in E$ with $0_F < e \le f$.

Theorem 3 (Implicit in Ellis, 1968)

UO convergence is topological iff F is atomic, i.e. embeds into \mathbb{R}^X , for some set X, as an order dense linear sublattice.

Eugene Bilokopytov (University of Alberta)

Unbounded order convergence

Homomorphisms and sublattices

Theorem 4 (Turan + Altın + Gürkök, 2022, B., 2023)

A lattice homomorphism is order continuous iff it is UO-continuous.

A sublattice $E \subset F$ is *regular* if $A \subset E$: $\bigwedge_E A = 0_F \Rightarrow \bigwedge_F A = 0_F$.

Every order dense sublattice as well as every ideal are regular.

Corollary 1 (Papangelou, 1964, rediscovered by Abramovich + Sirotkin & Gao + Troitsky + Xanthos)

For a sublattice $E \subset F$ TFAE:

- E is regular;
- [0_E, e] (interval in E) order-homeomorphically embeds into F, for every e ∈ E;
- the inclusion map is UO-continuous;
- the inclusion map is a UO-homeomorphic embedding.

Criteria for convergence

Theorem 5 (Troitsky + B., 2022)

In C(X) we have $f_{\alpha} \xrightarrow{u_0} \mathbb{O}$ iff for every open $U \neq \emptyset$ and $\varepsilon > 0$ there is an open $\emptyset \neq V \subset U$ and α_0 such that $|f_{\alpha}|_{|V} \leq \varepsilon$, for $\alpha \geq \alpha_0$.

Corollary 2 (Kantorovich + Pinsker + Vulikh, 1950; van der Waalt, 2018; Troitsky + B., 2022)

If $f_{\alpha} \xrightarrow{uo} f$, then $f_{\alpha}(x) \to f(x)$, for all x outside of a meager set. The converse holds if X is Baire and the net is countable.

Note that in $L_{\rho}(\mu)$ uo convergence of sequences = a.e. convergence.

Theorem 6 (B., 2023)

 $0_F \leq f_{\alpha} \xrightarrow{uo} 0_F$ iff for every $h > 0_F$ there is $e \in (0_F, h]$ and α_0 such that $(f_{\alpha} - h)^+ \perp e$, for all $\alpha \geq \alpha_0$.

Uo convergence via BANDS

For $f \in F$ let $\mathcal{B}(f) := \{f\}^{dd}$. Note that the set \mathcal{B}_F of all bands in F is a Boolean algebra.

Corollary 3 (B., 2023)

If g is a weak unit of F, then $0_F \leq f_\alpha \xrightarrow{u_0} 0_F$ iff

$$\mathcal{B}(f_{\alpha} - \varepsilon g)^{+} \xrightarrow{o} \{\mathbf{0}_{F}\}$$

(order convergence in \mathcal{B}_F), for every $\varepsilon > 0$.

Proposition 1 (Troitsky + B., 2022)

In a Boolean algebra B we have $B \ni b_{\alpha} \xrightarrow{o} 0_{B}$ iff for every $c > 0_{B}$ there is $d \in (0_{B}, c]$ and α_{0} such that $b_{\alpha} \perp d$, for all $\alpha \geq \alpha_{0}$.

Let μ be a finite measure. Then, in $F = L_p(\mu)$ the algebra \mathcal{B}_F consists of classes of measurable sets up to μ -negligible sets.

Eugene Bilokopytov (University of Alberta)

Corollary 4 (B., 2023)

If μ is a finite measure, then $L_p(\mu) \ni f_\alpha \xrightarrow{uo} \mathbb{O}$ iff for every U with $\mu(U) > 0$ and $\varepsilon > 0$ there is $V \subset U$ with $\mu(V) > 0$ and α_0 such that $|f_\alpha|_{|V} \le \varepsilon$, for $\alpha \ge \alpha_0$.

How is this connected with Egoroff's theorem?

Let η be a "nice enough" locally solid convergence on \mathcal{B}_F . Then, it generates two locally solid convergences on F by:

•
$$f_{\alpha} \xrightarrow{h\eta} 0_F$$
 if $\mathcal{B}(f_{\alpha}) \xrightarrow{\eta} \{0_F\}$ (this is non-linear convergence).

•
$$f_{\alpha} \xrightarrow{\ell\eta} 0_{\mathcal{F}}$$
 if $\mathcal{B}(f_{\alpha} - \varepsilon g)^+ \xrightarrow{\eta} \{0_{\mathcal{F}}\}$, for every $\varepsilon > 0$.

For example, in $F = L_p(\mu)$, then μ induces a convergence η on \mathcal{B}_F given by a metric on \mathcal{B}_F by $\mu(A \triangle B)$, where A, B are representatives.

Then $h\eta$ is given by $\rho(f) := \mu(\text{supp} f)$, while $\ell\eta$ is the convergence in measure.

Connection with minimal topologies

Theorem 7 (Sarymsakov + Rubinstein + Chillin & Weber, 70s)

There is at most one Hausdorff order continuous locally solid topology on a Boolean algebra.

Question 1

If such topology exist, is it equal to the order topology?

For example, in the measure algebra this topology is precisely the one given by the metric generated by μ .

Theorem 8 (B., 2023)

F admits an order continuous Hausdorff topology iff \mathcal{B}_F does. Moreover, a locally solid Hausdorff τ on *F* is minimal iff $\tau = \ell \pi$, where π is the order continuous topology on \mathcal{B}_F .

THANK YOU!

Eugene Bilokopytov (University of Alberta)