Quasi-modular spaces and copies of I_{∞}

Paweł Kolwicz Institute of Mathematics Poznań University of Technology, POLAND

POSITIVITY XI

Ljubljana, 10-14.07.2023

(1) The notion of a modular leads to the *F*-norm ([1]).
(2) The notion of a convex modular leads to the norm ([1]).

 J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. vol. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. (1) The notion of a modular leads to the *F*-norm ([1]).
(2) The notion of a convex modular leads to the norm ([1]).

 J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. vol. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

• Which functional leads (in a natural way) in the context of modular spaces to the quasi-norm?

- Introduction.
- Quasi-modular spaces.
- S Quasi-normed Calderón–Lozanovskiĭ spaces E_{φ} .
- Isomorphic and isometric copies of I_{∞} in E_{φ} .

The talk is based on the paper :

[2] P. Foralewski, H. Hudzik and P. Kolwicz, *Quasi-modular spaces with application to quasi-normed Calderón–Lozanovskiĭ spaces*, submitted.

The talk is supported by the Poznan University of Technology, grant no. 0213/SBAD/0118.

Given a real vector space X the functional x → ||x|| is called a quasi-norm if the following conditions are satisfied:
(i) ||x|| = 0 if and only if x = 0;
(ii) ||ax|| = |a|||x|| for any x ∈ X and a ∈ ℝ.;
(iii) there exists C = C_X ≥ 1 such that ||x + y|| ≤ C(||x|| + ||y||) for all x, y ∈ X.

- Given a real vector space X the functional x → ||x|| is called a quasi-norm if the following conditions are satisfied:
 (i) ||x|| = 0 if and only if x = 0;
 (ii) ||ax|| = |a|||x|| for any x ∈ X and a ∈ ℝ.;
 (iii) there exists C = C_X ≥ 1 such that ||x + y|| ≤ C(||x|| + ||y||) for all x, y ∈ X.
- For 0 1</sub> is called a *p-norm* if it satisfies the first two conditions of the quasi-norm and the condition ||x + y||₁^p ≤ ||x||₁^p + ||y||₁^p for any x, y ∈ X.

- Given a real vector space X the functional x → ||x|| is called a *quasi-norm* if the following conditions are satisfied:
 (i) ||x|| = 0 if and only if x = 0;
 (ii) ||ax|| = |a|||x|| for any x ∈ X and a ∈ ℝ.;
 (iii) there exists C = C_X ≥ 1 such that ||x + y|| ≤ C(||x|| + ||y||) for all x, y ∈ X.
- For 0 1</sub> is called a p-norm if it satisfies the first two conditions of the quasi-norm and the condition ||x + y||₁^p ≤ ||x||₁^p + ||y||₁^p for any x, y ∈ X.
- Each p-norm is a quasi-norm. By the Aoki-Rolewicz theorem, given a quasi-norm || · ||, if 0 1/p-1</sup>, then there exists a p-norm || · ||₁ which is equivalent to || · ||.

通 と く ヨ と く ヨ と

- Given a real vector space X the functional x → ||x|| is called a quasi-norm if the following conditions are satisfied:
 (i) ||x|| = 0 if and only if x = 0;
 (ii) ||ax|| = |a|||x|| for any x ∈ X and a ∈ ℝ.;
 (iii) there exists C = C_X ≥ 1 such that ||x + y|| ≤ C(||x|| + ||y||) for all x, y ∈ X.
- For $0 , the functional <math>x \mapsto ||x||_1$ is called a *p*-norm if it satisfies the first two conditions of the quasi-norm and the condition $||x + y||_1^p \le ||x||_1^p + ||y||_1^p$ for any $x, y \in X$.
- Each p-norm is a quasi-norm. By the Aoki-Rolewicz theorem, given a quasi-norm || · ||, if 0 1/p-1</sup>, then there exists a p-norm || · ||₁ which is equivalent to || · ||.
- The quasi-norm || · || induces a metric topology on X: in fact a metric can be defined by d(x, y) = ||x y||₁^p. We say that X = (X, || · ||) is a *quasi-Banach space* if it is complete for this metric.

イロト 不得下 イヨト イヨト 二日

- Given a real vector space X the functional x → ||x|| is called a quasi-norm if the following conditions are satisfied:
 (i) ||x|| = 0 if and only if x = 0;
 (ii) ||ax|| = |a|||x|| for any x ∈ X and a ∈ ℝ.;
 (iii) there exists C = C_X ≥ 1 such that ||x + y|| ≤ C(||x|| + ||y||) for all x, y ∈ X.
- For 0 1</sub> is called a p-norm if it satisfies the first two conditions of the quasi-norm and the condition ||x + y||₁^p ≤ ||x||₁^p + ||y||₁^p for any x, y ∈ X.
- Each p-norm is a quasi-norm. By the Aoki-Rolewicz theorem, given a quasi-norm || · ||, if 0 1/p-1</sup>, then there exists a p-norm || · ||₁ which is equivalent to || · ||.
- The quasi-norm || · || induces a metric topology on X: in fact a metric can be defined by d(x, y) = ||x y||₁^p. We say that X = (X, || · ||) is a *quasi-Banach space* if it is complete for this metric.
- Examples: L_p , l_p for $0 , <math>L_{\varphi}$, l_{φ} , Λ_w , λ_w .

4 / 25

Building the definition of quasi-modular ...

Paweł Kolwicz, Poznań ()

Quasi-modular spaces

Definition. Let X be a real linear space. We say that a functional $\rho: X \to [0, \infty]$ is a quasi-modular whenever for all $x, y \in X$ the following conditions are satisfied:

(i) $\rho(0) = 0$ and the condition $\rho(\lambda x) \le 1$ for all $\lambda > 0$ implies that x = 0.

(ii) $\rho(-x) = \rho(x)$. (iii) $\rho(\lambda x)$ is non-decreasing function of λ , where $\lambda \ge 0$. (iv) There is $M \ge 1$ such that

$$\rho\left(\alpha x+\beta y\right)\leq M\left[\rho\left(x\right)+\rho\left(y\right)
ight]$$

provided $\alpha, \beta \ge 0$ and $\alpha + \beta = 1$.

(v) There is a constant p > 0 such that for all $\varepsilon > 0$ and all A > 0 there exists $K = K(\varepsilon, A) \ge 1$ such that

$$\rho\left(\mathbf{a}\mathbf{x}\right) \leq \mathbf{K}\mathbf{a}^{\mathbf{p}}\rho\left(\mathbf{x}\right) + \varepsilon$$

for any $0 < a \le 1$ whenever $\rho(x) \le A$.

Quasi-modular spaces

• **Definition.** If ρ is a quasi-modular on X, then

$$X_{\rho} := \left\{ x \in X \colon \lim_{\lambda \to 0} \rho(\lambda x) = 0 \right\}$$
(1)

is called a quasi-modular space. It is easy to show that X_{ρ} is a linear subspace of X.

Quasi-modular spaces

• **Definition.** If ρ is a quasi-modular on X, then

$$X_{\rho} := \left\{ x \in X : \lim_{\lambda \to 0} \rho(\lambda x) = 0 \right\}$$
(1)

is called a quasi-modular space. It is easy to show that X_{ρ} is a linear subspace of X.

• Lemma. For any quasi-modular ρ , we have

$$X_{\rho} = \{ x \in X : \rho(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$
 (2)

• **Definition.** If ρ is a quasi-modular on X, then

$$X_{\rho} := \left\{ x \in X : \lim_{\lambda \to 0} \rho(\lambda x) = 0 \right\}$$
(1)

is called a quasi-modular space. It is easy to show that X_{ρ} is a linear subspace of X.

• Lemma. For any quasi-modular ρ , we have

$$X_{\rho} = \{x \in X : \rho(\lambda x) < \infty \text{ for some } \lambda > 0\}.$$
 (2)

• **Theorem.** Let ρ be a quasi-modular on X. Then the functional

$$\|x\|_{
ho} = \inf \left\{ \lambda > 0 : \rho \left(x/\lambda \right) \le 1 \right\}$$

is a quasi-norm on X_{ρ} .

• Each convex modular is a modular and a quasi-modular. But the notions of modular and a quasi-modular are incomparable.

- Each convex modular is a modular and a quasi-modular. But the notions of modular and a quasi-modular are incomparable.
- (T, Σ, μ) is a complete σ-finite measure space and L⁰ = L⁰(μ) is the space of all (equivalence) classes of Σ-measurable real-valued functions defined on Ω.

- Each convex modular is a modular and a quasi-modular. But the notions of modular and a quasi-modular are incomparable.
- (T, Σ, μ) is a complete σ-finite measure space and L⁰ = L⁰(μ) is the space of all (equivalence) classes of Σ-measurable real-valued functions defined on Ω.
- A quasi-normed lattice [quasi-Banach lattice] E = (E, ≤, || · ||_E) is called a *quasi-normed ideal space* [*quasi-Banach ideal space* (or a *quasi-Köthe space*)] if it is a linear subspace of L⁰ satisfying the following conditions:
 (i) if x ∈ L⁰, y ∈ E and |x| ≤ |y| µ-a.e., then x ∈ E and ||x||_E ≤ ||y||_E.
 (ii) There exists x ∈ E which is strictly positive on the whole T (weak unit).

 A function φ : [0,∞) → [0,∞] is called an Orlicz function if φ is non-decreasing, vanishing and right continuous at 0, continuous on (0, b_φ), where

$$b_{arphi} = \sup\left\{u \geq \mathsf{0}: \varphi\left(u
ight) < \infty
ight\}$$

and left continuous at b_{φ} . We will assume also that

 $\lim_{u\to\infty}\varphi(u)=\infty.$

Let

$$a_{arphi} = \sup\left\{ u \geq 0 : \varphi\left(u
ight) = 0
ight\}.$$

Recall that for any Orlicz function φ the *lower Matuszewska–Orlicz index* α_{φ} for all arguments is defined by the formula

$$lpha_arphi^{\mathsf{a}} = \mathsf{sup}\{ p \in \mathbb{R} : \mathsf{there} \; \mathsf{exists} \; K \geq 1 \; \mathsf{such} \; \mathsf{that} \;$$

$$arphi(\mathit{au}) \leq \mathit{Ka}^{\mathit{p}}arphi(\mathit{u}) ext{ for any } \mathit{u} \in \mathbb{R} ext{ and } 0 < \mathit{a} \leq 1 \}.$$
 (3)

Analogously the *lower Matuszewska–Orlicz indexes* for large and for small arguments are defined as

$$\begin{array}{ll} \alpha_{\varphi}^{\infty} & = & \sup\{p \in \mathbb{R}: \text{there exist } K \geq 1 \text{ and } u_0 > 0 \text{ such that } \varphi(u_0) < \infty \\ & \text{ and } \varphi(au) \leq Ka^p \varphi(u) \text{ for any } u \geq u_0 \text{ and } 0 < a \leq 1\} \end{array}$$

and

$$egin{aligned} & x^0_arphi &= \sup\{p\in \mathbb{R}: ext{there exist } K\geq 1 ext{ and } u_0>0 ext{ such that} \ & arphi(au)\leq Ka^parphi(u) ext{ for any } u\leq u_0 ext{ and } 0< a\leq 1\}, \end{aligned}$$

respectively.

10 / 25

• **Definition.** For any pair *E* and φ we define the index α_{φ}^{E} by the formula

$$\alpha_{\varphi}^{E} := \begin{cases} \alpha_{\varphi}^{a}, & \text{when neither } L_{\infty} \subset E \text{ nor } E \subset L_{\infty}, \\ \alpha_{\varphi}^{\infty}, & \text{when } L_{\infty} \subset E, \\ \alpha_{\varphi}^{0}, & \text{when } E \subset L_{\infty}. \end{cases}$$
(4)

• **Definition.** For any pair *E* and φ we define the index α_{φ}^{E} by the formula

$$\alpha_{\varphi}^{E} := \begin{cases} \alpha_{\varphi}^{a}, & \text{when neither } L_{\infty} \subset E \text{ nor } E \subset L_{\infty}, \\ \alpha_{\varphi}^{\infty}, & \text{when } L_{\infty} \subset E, \\ \alpha_{\varphi}^{0}, & \text{when } E \subset L_{\infty}. \end{cases}$$
(4)

• **Definition.** Given a quasi-Banach ideal space *E* and an Orlicz function φ , we define on L^0 a functional ρ_{φ}^E , by

$$\rho_{\varphi}^{E}(x) := \begin{cases} \|\varphi(|x|)\|_{E} & \text{if } \varphi(|x|) \in E, \\ \infty & \text{otherwise.} \end{cases}$$
(5)

• **Definition.** For any pair *E* and φ we define the index α_{φ}^{E} by the formula

$$\alpha_{\varphi}^{E} := \begin{cases} \alpha_{\varphi}^{a}, & \text{when neither } L_{\infty} \subset E \text{ nor } E \subset L_{\infty}, \\ \alpha_{\varphi}^{\infty}, & \text{when } L_{\infty} \subset E, \\ \alpha_{\varphi}^{0}, & \text{when } E \subset L_{\infty}. \end{cases}$$
(4)

• **Definition.** Given a quasi-Banach ideal space *E* and an Orlicz function φ , we define on L^0 a functional ρ_{φ}^E , by

$$\rho_{\varphi}^{E}(x) := \begin{cases} \|\varphi(|x|)\|_{E} & \text{if } \varphi(|x|) \in E, \\ \infty & \text{otherwise.} \end{cases}$$
(5)

• **Theorem.** Let *E* be a quasi-Banach ideal space and φ be an Orlicz function. If $\alpha_{\varphi}^{E} > 0$, then ρ_{φ}^{E} is a quasi-modular.

11 / 25

• **Definition.** Let a quasi-Banach ideal space E and an Orlicz function φ be such that $\alpha_{\varphi}^{E} > 0$. Then the Calderón–Lozanovskiĭ space E_{φ} is defined by

$$E_{\varphi} = \{ x \in L^0 : \lim_{\lambda \to 0} \rho_{\varphi}^E(\lambda x) = 0 \}.$$
(6)

• **Definition.** Let a quasi-Banach ideal space E and an Orlicz function φ be such that $\alpha_{\varphi}^{E} > 0$. Then the Calderón–Lozanovskiĭ space E_{φ} is defined by

$$E_{\varphi} = \{ x \in L^0 : \lim_{\lambda \to 0} \rho_{\varphi}^E(\lambda x) = 0 \}.$$
(6)

• By previous results, E_{φ} is quasi-modular space and

$$E_{\varphi} = \{ x \in L^0 : \rho_{\varphi}^{\mathsf{E}}(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$
(7)

• **Definition.** Let a quasi-Banach ideal space E and an Orlicz function φ be such that $\alpha_{\varphi}^{E} > 0$. Then the Calderón–Lozanovskiĭ space E_{φ} is defined by

$$E_{\varphi} = \{ x \in L^0 : \lim_{\lambda \to 0} \rho_{\varphi}^E(\lambda x) = 0 \}.$$
(6)

• By previous results, E_{φ} is quasi-modular space and

$$E_{\varphi} = \{ x \in L^0 : \rho_{\varphi}^{E}(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$
(7)

Moreover, the functional

$$\|x\|_{\varphi} = \inf\left\{\lambda > 0: \rho_{\varphi}^{E}\left(x/\lambda\right) \le 1\right\},\tag{8}$$

is a quasi-norm, called *Luxemburg-Nakano quasi-norm*.

• **Definition.** Let a quasi-Banach ideal space E and an Orlicz function φ be such that $\alpha_{\varphi}^{E} > 0$. Then the Calderón–Lozanovskiĭ space E_{φ} is defined by

$$E_{\varphi} = \{ x \in L^0 : \lim_{\lambda \to 0} \rho_{\varphi}^E(\lambda x) = 0 \}.$$
(6)

• By previous results, E_{φ} is quasi-modular space and

$$E_{arphi} = \{x \in L^0 :
ho^E_{arphi}(\lambda x) < \infty ext{ for some } \lambda > 0\}.$$
 (7)

Moreover, the functional

$$\|x\|_{\varphi} = \inf\left\{\lambda > 0: \rho_{\varphi}^{E}\left(x/\lambda\right) \le 1\right\},\tag{8}$$

is a quasi-norm, called *Luxemburg-Nakano quasi-norm*.

• It is easy to show, that $E_{\varphi} = (E_{\varphi}, \leq, \|\cdot\|_{\varphi})$ is a quasi-normed ideal space.

12 / 25

• Examples

3

- Examples
- If $E = L^1$ ($E = l^1$) then E_{φ} is the Orlicz space L_{φ} (l_{φ}) with the Luxemburg-Nakano quasi-norm.

- Examples
- If $E = L^1$ ($E = l^1$) then E_{φ} is the Orlicz space L_{φ} (l_{φ}) with the Luxemburg-Nakano quasi-norm.
- If $E = \Lambda_w$ ($E = \lambda_w$), the (quasi-normed) Lorentz space, then E_{φ} is the (quasi-normed) Orlicz-Lorentz space $L_{\varphi,w}$ ($l_{\varphi,w}$).

- Examples
- If $E = L^1$ ($E = l^1$) then E_{φ} is the Orlicz space L_{φ} (l_{φ}) with the Luxemburg-Nakano quasi-norm.
- If E = Λ_w (E = λ_w), the (quasi-normed) Lorentz space, then E_φ is the (quasi-normed) Orlicz-Lorentz space L_{φ,w} (I_{φ,w}).
- We say that a quasi-normed ideal space E has the Fatou property, if for any $x \in L^0$ and any $(x_n)_{n=1}^{\infty}$ in E_+ such that $x_n \uparrow |x| \mu$ -a.e and $\sup_{n \in N} ||x_n||_E < \infty$, we get $x \in E$ and $\lim_n ||x_n||_E = ||x||_E$.

- Examples
- If $E = L^1$ ($E = l^1$) then E_{φ} is the Orlicz space L_{φ} (l_{φ}) with the Luxemburg-Nakano quasi-norm.
- If E = Λ_w (E = λ_w), the (quasi-normed) Lorentz space, then E_φ is the (quasi-normed) Orlicz-Lorentz space L_{φ,w} (I_{φ,w}).
- We say that a quasi-normed ideal space E has the Fatou property, if for any $x \in L^0$ and any $(x_n)_{n=1}^{\infty}$ in E_+ such that $x_n \uparrow |x| \mu$ -a.e and $\sup_{n \in N} ||x_n||_E < \infty$, we get $x \in E$ and $\lim_n ||x_n||_E = ||x||_E$.
- If $E \in (FP)$ then $E_{\varphi} \in (FP)$, whence E_{φ} is complete, so $E_{\varphi} = (E_{\varphi}, \leq, \|\cdot\|_{\varphi})$ is a quasi-Banach ideal space.

13 / 25

• The symbol *E_a* denotes the subspace of all order continuous elements in *E*, that is

$$E_a = \{ x \in E : 0 \le u_n \le |x| \text{ and } u_n \to 0 \text{ } \mu\text{-a.e. implies } \|u_n\|_E \to 0 \}.$$

• The symbol *E_a* denotes the subspace of all order continuous elements in *E*, that is

 $E_a = \{ x \in E : 0 \le u_n \le |x| \text{ and } u_n \to 0 \text{ } \mu\text{-a.e. implies } \|u_n\|_E \to 0 \}.$

• We say that an *quasi-normed ideal space* E is order continuous $(E \in (OC) \text{ for short})$ if $E = E_a$.

 Definition. Recall that an Orlicz function φ satisfies the condition Δ₂ for all u ∈ ℝ₊ (φ ∈ Δ₂(ℝ₊) for short) if there exists a constant K > 0 such that the inequality

$$\varphi(2u) \le K\varphi(u) \tag{9}$$

holds for any $u \in \mathbb{R}_+$ (then we have $a_{\varphi} = 0$ and $b_{\varphi} = \infty$). Analogously, we say that an Orlicz function φ satisfies the condition Δ_2 for large [for small] ($\varphi \in \Delta_2(\infty)$ [$\varphi \in \Delta_2(0)$] for short) if there exist constants $K, u_0 \in (0, \infty)$ such that $\varphi(u_0) < \infty$ [$\varphi(u_0) > 0$] and inequality (9) holds for any $u \ge u_0$ [$0 \le u \le u_0$], respectively.

 Definition. Recall that an Orlicz function φ satisfies the condition Δ₂ for all u ∈ ℝ₊ (φ ∈ Δ₂(ℝ₊) for short) if there exists a constant K > 0 such that the inequality

$$\varphi(2u) \le K\varphi(u) \tag{9}$$

holds for any $u \in \mathbb{R}_+$ (then we have $a_{\varphi} = 0$ and $b_{\varphi} = \infty$). Analogously, we say that an Orlicz function φ satisfies the condition Δ_2 for large [for small] ($\varphi \in \Delta_2(\infty)$ [$\varphi \in \Delta_2(0)$] for short) if there exist constants K, $u_0 \in (0, \infty)$ such that $\varphi(u_0) < \infty$ [$\varphi(u_0) > 0$] and inequality (9) holds for any $u \ge u_0$ [$0 \le u \le u_0$], respectively.

For any quasi-Banach ideal space E and any Orlicz function φ we say that φ satisfies the condition Δ^E₂ (φ ∈ Δ^E₂ for short) if:
(1) φ ∈ Δ₂(ℝ₊) whenever neither L_∞ ⊂ E nor E ⊂ L_∞,
(2) φ ∈ Δ₂(∞) whenever L_∞ ⊂ E,
(3) φ ∈ Δ₂(0) whenever E ⊂ L_∞.

• Here on this slide we consider only the case of nonatomic measure μ (in the article we discuss also the case of counting measure space $(\mathbb{N}, 2^{\mathbb{N}}, m)$).

- Here on this slide we consider only the case of nonatomic measure μ (in the article we discuss also the case of counting measure space $(\mathbb{N}, 2^{\mathbb{N}}, m)$).
- Theorem. (i) Let µ be nonatomic, L_∞ ⊂ E and E_a ≠ {0}. If φ ∉ Δ₂^E, then the space E_φ contains an order linearly isometric copy of I_∞.

(ii) Let μ be nonatomic. Assume that neither $L_{\infty} \subset E$ nor $E \subset L_{\infty}$ and $\operatorname{supp}(E_a) = T$. If $\varphi \notin \Delta_2^E$, then the space E_{φ} contains an order linearly isometric copy of I_{∞} .

- Here on this slide we consider only the case of nonatomic measure µ (in the article we discuss also the case of counting measure space (𝔅, 2^𝔅, m)).
- Theorem. (i) Let µ be nonatomic, L_∞ ⊂ E and E_a ≠ {0}. If φ ∉ Δ₂^E, then the space E_φ contains an order linearly isometric copy of I_∞.

(*ii*) Let μ be nonatomic. Assume that neither $L_{\infty} \subset E$ nor $E \subset L_{\infty}$ and $\operatorname{supp}(E_a) = T$. If $\varphi \notin \Delta_2^E$, then the space E_{φ} contains an order linearly isometric copy of I_{∞} .

• **Theorem.** Let μ be nonatomic. Then E_{φ} contains an order isomorphic copy of I_{∞} if and only if E contains an order isomorphic copy of I_{∞} or $\varphi \notin \Delta_2^E$.

 Denote by P the property of having the linear order isometric copy of I_∞. Already known: if φ ∉ Δ₂^E, then E_φ ∈ (P) (under some natural assumptions on E).

- Denote by P the property of having the linear order isometric copy of I_{∞} . Already known: if $\varphi \notin \Delta_2^E$, then $E_{\varphi} \in (P)$ (under some natural
 - assumptions on E).
- We ask about the following implications: (1) if $E \in (P)$, then $E_{\varphi} \in (P)$? (2) if $E_{\varphi} \in (P)$, then $E \in (P)$?

• Denote by *P* the property of having the linear order isometric copy of I_{∞} . Already known: if $a \notin \Lambda_{\Sigma}^{E}$ then $E_{\pi} \in (P)$ (under some natural

Already known: if $\varphi \notin \Delta_2^E$, then $E_{\varphi} \in (P)$ (under some natural assumptions on E).

- We ask about the following implications: (1) if $E \in (P)$, then $E_{\varphi} \in (P)$? (2) if $E_{\varphi} \in (P)$, then $E \in (P)$?
- To study these questions the following implications are crucial:
 (1) if ρ^E_φ(x) = 1 then ||x||_φ = 1 (automatically true if φ is convex).
 (2) if ||x||_φ = 1 then ρ^E_φ(x) = 1.

• Denote by *P* the property of having the linear order isometric copy of I_{∞} . Already known: if $a \notin \Lambda_{\Sigma}^{E}$ then $E \in (P)$ (under some natural

Already known: if $\varphi \notin \Delta_2^E$, then $E_{\varphi} \in (P)$ (under some natural assumptions on E).

- We ask about the following implications: (1) if $E \in (P)$, then $E_{\varphi} \in (P)$? (2) if $E_{\varphi} \in (P)$, then $E \in (P)$?
- To study these questions the following implications are crucial:
 (1) if ρ^E_φ(x) = 1 then ||x||_φ = 1 (automatically true if φ is convex).
 (2) if ||x||_φ = 1 then ρ^E_φ(x) = 1.

• (1) \rightarrow the condition Δ_{ε}^{E} .

• Denote by *P* the property of having the linear order isometric copy of I_{∞} . Already known: if $a \notin \Delta^{\underline{F}}$ then $E \in (P)$ (under some natural

Already known: if $\varphi \notin \Delta_2^E$, then $E_{\varphi} \in (P)$ (under some natural assumptions on E).

- We ask about the following implications: (1) if $E \in (P)$, then $E_{\varphi} \in (P)$? (2) if $E_{\varphi} \in (P)$, then $E \in (P)$?
- To study these questions the following implications are crucial:
 (1) if ρ^E_φ(x) = 1 then ||x||_φ = 1 (automatically true if φ is convex).
 (2) if ||x||_φ = 1 then ρ^E_φ(x) = 1.
- (1) \rightarrow the condition Δ_{ε}^{E} .
- (2) \rightarrow the condition Δ^{E}_{2-str} .

• Definition. We say that an Orlicz function φ satisfies the condition Δ_{ε} for all $u \in \mathbb{R}_+$ ($\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$ for short) if for any $\varepsilon \in (0, 1)$ there exists $\delta = \delta(\varepsilon) \in (0, 1)$ such that the inequality

$$\varphi(\varepsilon u) \le \delta \varphi(u) \tag{10}$$

holds for any $u \ge 0$. We say that φ satisfies the condition Δ_{ε} for large [for small] ($\varphi \in \Delta_{\varepsilon}(\infty)$ [$\varphi \in \Delta_{\varepsilon}(0)$] for short) if for any $\varepsilon \in (0, 1)$ there exist $\delta = \delta(\varepsilon) \in (0, 1)$ and $u_0 = u_0(\varepsilon) > 0$ such that inequality holds for any $u \ge u_0$ [$0 \le u \le u_0$], respectively ([CHKK, 2022]).

• Definition. We say that an Orlicz function φ satisfies the condition Δ_{ε} for all $u \in \mathbb{R}_+$ ($\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$ for short) if for any $\varepsilon \in (0, 1)$ there exists $\delta = \delta(\varepsilon) \in (0, 1)$ such that the inequality

$$\varphi(\varepsilon u) \le \delta \varphi(u) \tag{10}$$

holds for any $u \ge 0$. We say that φ satisfies the condition Δ_{ε} for large [for small] ($\varphi \in \Delta_{\varepsilon}(\infty)$ [$\varphi \in \Delta_{\varepsilon}(0)$] for short) if for any $\varepsilon \in (0, 1)$ there exist $\delta = \delta(\varepsilon) \in (0, 1)$ and $u_0 = u_0(\varepsilon) > 0$ such that inequality holds for any $u \ge u_0$ [$0 \le u \le u_0$], respectively ([CHKK, 2022]).

For any quasi-Banach ideal space E and any Orlicz function φ we say that φ satisfies the condition Δ^E_ε (φ ∈ Δ^E_ε for short) if:
(1) φ ∈ Δ_ε(ℝ₊) whenever neither L_∞ ⊂ E nor E ⊂ L_∞,
(2) φ ∈ Δ_ε(∞) whenever L_∞ ⊂ E,
(3) φ ∈ Δ_ε(0) whenever E ⊂ L_∞.

• If φ is convex then $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$.

- If φ is convex then $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$.
- If $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$ then φ is strictly increasing on $(a_{\varphi}, b_{\varphi})$.

- If φ is convex then $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$.
- If $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$ then φ is strictly increasing on $(a_{\varphi}, b_{\varphi})$.
- There are no connections between the conditions Δ₂(∞) and Δ_ε(∞) for a monotone Orlicz function φ.

- If φ is convex then $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$.
- If $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$ then φ is strictly increasing on $(a_{\varphi}, b_{\varphi})$.
- There are no connections between the conditions Δ₂(∞) and Δ_ε(∞) for a monotone Orlicz function φ.
- First

$$\varphi \in \Delta_2(\infty) \not\Rightarrow \varphi \in \Delta_{\varepsilon}(\infty)$$

Every monotone upper bounded Orlicz function φ satisfies the $\Delta_2(\infty)$ -condition but does not satisfy the $\Delta_{\varepsilon}(\infty)$ -condition ([1]).

- If φ is convex then $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$.
- If $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_+)$ then φ is strictly increasing on $(a_{\varphi}, b_{\varphi})$.
- There are no connections between the conditions Δ₂(∞) and Δ_ε(∞) for a monotone Orlicz function φ.

First

$$\varphi \in \Delta_2(\infty) \not\Rightarrow \varphi \in \Delta_{\varepsilon}(\infty)$$

Every monotone upper bounded Orlicz function φ satisfies the $\Delta_2(\infty)$ -condition but does not satisfy the $\Delta_{\varepsilon}(\infty)$ -condition ([1]).

Second

$$\varphi \in \Delta_{\varepsilon}(\infty) \not\Rightarrow \varphi \in \Delta_2(\infty)$$

Take $\varphi\left(u
ight)=e^{u^{2}}-1$.

• If $E \subset L_{\infty}$, the this inclusion is continuous, whence there exists a constant $D_E > 0$ such that

$$\|x\|_{L_{\infty}} \le D_E \|x\|_E \tag{11}$$

for each $x \in E$. We denote

$$a_{E} = \inf \{ \|\chi_{A}\|_{E} : \chi_{A} \in E, \mu(A) > 0 \}.$$
(12)

• If $E \subset L_{\infty}$, the this inclusion is continuous, whence there exists a constant $D_E > 0$ such that

$$\|x\|_{L_{\infty}} \le D_E \|x\|_E \tag{11}$$

for each $x \in E$. We denote

$$a_{E} = \inf \{ \|\chi_{A}\|_{E} : \chi_{A} \in E, \, \mu(A) > 0 \}.$$
(12)

• Lemma. Suppose one of the following three conditions holds: (i) $\varphi \in \Delta_{\varepsilon}^{E}$, whenever neither $L_{\infty} \subset E$ nor $E \subset L_{\infty}$, (ii) $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_{+})$ or $(\varphi \in \Delta_{\varepsilon}^{E}, \varphi \text{ is strictly increasing on the interval} (a_{\varphi}, b_{\varphi})$ and there exists a constant B > 0 such that $|x(t)| \geq B$ for μ -a.e. $t \in T$), whenever $L_{\infty} \subset E$, (iii) $\varphi \in \Delta_{\varepsilon}^{E}$ and φ is strictly increasing on the interval $(a_{\varphi}, \min(\varphi^{-1}(1/a_{E}), b_{\varphi}))$, where a_{E} is defined by formula (12), whenever $E \subset L_{\infty}$. Then, for $x \in E_{\varphi}$, if $\rho_{\varphi}^{E}(x) = 1$, then $||x||_{\varphi} = 1$. • **Theorem.** Suppose one of the following three conditions holds:

(i) $\varphi \in \Delta_{\varepsilon}^{E}$, whenever neither $L_{\infty} \subset E$ nor $E \subset L_{\infty}$, (ii) $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_{+})$ or $(\varphi \in \Delta_{\varepsilon}^{E}, \varphi$ is strictly increasing on the interval $(a_{\varphi}, b_{\varphi})$ and E is rearrangement invariant Banach space over T = (0, 1) or $T = (0, \infty)$ with μ being the Lebesgue measure such that supp $E_{a} = \text{supp } E$, whenever $L_{\infty} \subset E$, (iii) $\varphi \in \Delta_{\varepsilon}^{E}$ and φ is strictly increasing on the interval $(a_{\varphi}, \min(\varphi^{-1}(1/a_{E}), b_{\varphi}))$, where a_{E} is defined by formula (12), whenever $E \subset L_{\infty}$.

If *E* contains an order linearly isometric copy of I_{∞} , then E_{φ} contains also such a copy.

• **Theorem.** Suppose one of the following three conditions holds:

(i) $\varphi \in \Delta_{\varepsilon}^{E}$, whenever neither $L_{\infty} \subset E$ nor $E \subset L_{\infty}$, (ii) $\varphi \in \Delta_{\varepsilon}(\mathbb{R}_{+})$ or $(\varphi \in \Delta_{\varepsilon}^{E}, \varphi$ is strictly increasing on the interval $(a_{\varphi}, b_{\varphi})$ and E is rearrangement invariant Banach space over T = (0, 1) or $T = (0, \infty)$ with μ being the Lebesgue measure such that supp $E_{a} = \text{supp } E$, whenever $L_{\infty} \subset E$, (iii) $\varphi \in \Delta_{\varepsilon}^{E}$ and φ is strictly increasing on the interval $(a_{\varphi}, \min(\varphi^{-1}(1/a_{E}), b_{\varphi}))$, where a_{E} is defined by formula (12), whenever $E \subset L_{\infty}$. If E contains an order linearly isometric copy of I_{∞} , then E_{φ} contains also such a copy.

• Going to the second problem, that is, when the implication is true: (2) if $E_{\varphi} \in (P)$, then $E \in (P)$?

• We say that an Orlicz function φ satisfies the condition Δ_{2-str} for all $u \in \mathbb{R}_+(\varphi \in \Delta_{2-str}(\mathbb{R}_+)$ for short) if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that the inequality

$$\varphi((1+\delta)u) \le (1+\varepsilon)\varphi(u) \tag{13}$$

holds for any $u \in \mathbb{R}_+$. We say that φ satisfies the condition Δ_{2-str} for large [for small]($\varphi \in \Delta_{2-str}(\infty)$ [$\varphi \in \Delta_{2-str}(0)$] for short) if for any $\varepsilon > 0$ there exist $\delta = \delta(\varepsilon) > 0$ and $u_0 = u_0(\varepsilon) > 0$ such that $\varphi(u_0) < \infty$ [$\varphi(u_0) > 0$] and inequality (13) holds for any $u \ge u_0$ [$0 \le u \le u_0$], respectively ([CHKK, 2019]).

• We say that an Orlicz function φ satisfies the condition Δ_{2-str} for all $u \in \mathbb{R}_+(\varphi \in \Delta_{2-str}(\mathbb{R}_+)$ for short) if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that the inequality

$$\varphi((1+\delta)u) \le (1+\varepsilon)\varphi(u) \tag{13}$$

holds for any $u \in \mathbb{R}_+$. We say that φ satisfies the condition Δ_{2-str} for large [for small] ($\varphi \in \Delta_{2-str}(\infty)$ [$\varphi \in \Delta_{2-str}(0)$] for short) if for any $\varepsilon > 0$ there exist $\delta = \delta(\varepsilon) > 0$ and $u_0 = u_0(\varepsilon) > 0$ such that $\varphi(u_0) < \infty$ [$\varphi(u_0) > 0$] and inequality (13) holds for any $u \ge u_0$ [$0 \le u \le u_0$], respectively ([CHKK, 2019]).

For any quasi-Banach ideal space E and any Orlicz function φ we say that φ satisfies the condition Δ^E_{2-str} (φ ∈ Δ^E_{2-str} for short) if:
(1) φ ∈ Δ_{2-str}(ℝ₊) whenever neither L_∞ ⊂ E nor E ⊂ L_∞,
(2) φ ∈ Δ_{2-str}(∞) whenever L_∞ ⊂ E,
(3) φ ∈ Δ_{2-str}(0) whenever E ⊂ L_∞.

22 / 25

• If $\varphi \in \Delta_{2-str}^{E}$ then $\varphi \in \Delta_{2}^{E}$ and the opposite implication is not true for non-convex function φ .

- If $\varphi \in \Delta_{2-str}^{E}$ then $\varphi \in \Delta_{2}^{E}$ and the opposite implication is not true for non-convex function φ .
- If φ is convex then $\varphi \in \Delta_{2-str}^{E} \Leftrightarrow \varphi \in \Delta_{2}^{E}$.

- If $\varphi \in \Delta_{2-str}^{E}$ then $\varphi \in \Delta_{2}^{E}$ and the opposite implication is not true for non-convex function φ .
- If φ is convex then $\varphi \in \Delta_{2-str}^{E} \Leftrightarrow \varphi \in \Delta_{2}^{E}$.
- Lemma. Suppose one of the following three conditions holds:
 (i) φ ∈ Δ^E_{2-str}, whenever neither L_∞ ⊂ E nor E ⊂ L_∞,
 (ii) φ ∈ Δ_{2-str}(ℝ₊) or (E is a Banach ideal space, φ ∈ Δ^E_{2-str} and φ is strictly increasing on the interval (a_φ, ∞)), whenever L_∞ ⊂ E,
 (iii) φ ∈ Δ^E_{2-str}, 1/a_E ≤ φ(b_φ) and φ is strictly increasing on the interval (0, φ⁻¹(1/a_E)), where a_E is defined by formula (12), whenever E ⊂ L_∞.

Then for any $x \in E_{\varphi}$ such that $||x||_{\varphi} = 1$, we have $\rho_{\varphi}^{E}(x) = 1$.

Theorem. Suppose one of the following three conditions holds:
(i) φ ∈ Δ^E_{2-str}, whenever neither L_∞ ⊂ E nor E ⊂ L_∞,
(ii) φ ∈ Δ_{2-str}(ℝ₊) or (E is a Banach ideal space, φ ∈ Δ^E_{2-str} and φ is strictly increasing on the interval (a_φ, ∞)), whenever L_∞ ⊂ E,
(iii) φ ∈ Δ^E_{2-str}, 1/a_E ≤ φ(b_φ) and φ is strictly increasing on the interval (0, φ⁻¹(1/a_E)), where a_E is defined by formula (12), whenever E ⊂ L_∞.

If E_{φ} contains an order linearly isometric copy of I_{∞} , then E contains also such a copy.

Thank You very much for Your attention