Generalized Ergodic Domination in Ordered Banach Algebras

Sonja Mouton Dimby Rabearivony*

Mathematics Division, Stellenbosch University South-Africa

July 14th, 2023

(日) (圖) (문) (문) (문)

Outline

Preliminaries

- Inessential ideals
- Riesz points
- Ordered Banach algebras
- Domination problem

2 Generalized Domination in OBAs

- The Generalized Domination Problem
- Some definitions
- Some preliminary results

Generalized ergodic domination in OBAs

• Generalized Ergodic Domination Theorem

4 Banach lattice algebras

- Generalized weak monotonicity of the spectral radius
- Applications to regular operators

< ロ > < 同 > < 回 > < 回 >

Notations

• E: complex Banach lattice, i.e

$$E = E_{\mathbb{R}} + iE_{\mathbb{R}} = \{x + iy : x, y \in E_{\mathbb{R}}\}.$$

- $\mathcal{L}(E)$: bounded linear operators on E.
- $\mathcal{L}^+(E)$: the set of all positive operators on E.
- $\mathcal{L}^{r}(E)$: regular operators on E i.e. linear combinations of positive operators.
- $\mathcal{K}^{r}(E)$: closure in $\mathcal{L}^{r}(E)$ of the finite rank operators on E (the *r*-compact operators).

イロト 不得 トイヨト イヨト

Notations

• E: complex Banach lattice, i.e

$$E = E_{\mathbb{R}} + iE_{\mathbb{R}} = \{x + iy : x, y \in E_{\mathbb{R}}\}.$$

- $\mathcal{L}(E)$: bounded linear operators on E.
- $\mathcal{L}^+(E)$: the set of all positive operators on E.
- $\mathcal{L}^{r}(E)$: regular operators on E i.e. linear combinations of positive operators.
- $\mathcal{K}^{r}(E)$: closure in $\mathcal{L}^{r}(E)$ of the finite rank operators on E (the r-compact operators).
- A: complex unital Banach algebra.
- $\sigma(a)$ $(a \in A)$: the spectrum of a.
- r(a) $(a \in A)$: the spectral radius of a.
- $R_a: \mathbb{C} \setminus \sigma(a) \to A$, $R_a(\lambda) := (\lambda 1 a)^{-1}$ $(a \in A)$: the resolvent function of a.

Notations

• E: complex Banach lattice, i.e

$$E = E_{\mathbb{R}} + iE_{\mathbb{R}} = \{x + iy : x, y \in E_{\mathbb{R}}\}.$$

- $\mathcal{L}(E)$: bounded linear operators on E.
- $\mathcal{L}^+(E)$: the set of all positive operators on E.
- $\mathcal{L}^{r}(E)$: regular operators on E i.e. linear combinations of positive operators.
- $\mathcal{K}^{r}(E)$: closure in $\mathcal{L}^{r}(E)$ of the finite rank operators on E (the r-compact operators).
- A: complex unital Banach algebra.
- $\sigma(a)$ $(a \in A)$: the spectrum of a.
- r(a) $(a \in A)$: the spectral radius of a.
- $R_a: \mathbb{C} \setminus \sigma(a) \to A$, $R_a(\lambda) := (\lambda 1 a)^{-1}$ $(a \in A)$: the resolvent function of a.

Note: If E is Dedekind complete, then $\mathcal{L}^r(E)$ is a (Dedekind complete) Banach lattice.

Definition 1.1 (Inessential ideals).

An (algebraic) ideal I of A is *inessential* if for all $a \in I$, $\sigma(a)$ is either finite or a sequence converging to 0.

イロト イヨト イヨト イヨト

Definition 1.1 (Inessential ideals).

An (algebraic) ideal I of A is *inessential* if for all $a \in I$, $\sigma(a)$ is either finite or a sequence converging to 0.

Example 1.2.

- $\operatorname{Rad}(A)$ (the Jacobson radical of A),
- **2** $\mathcal{K}(E)$ (the compact operators) in $\mathcal{L}(E)$
- $\mathcal{F}(E)$ (the finite rank operators) in $\mathcal{L}(E)$
- $\mathcal{K}^{r}(E)$ in $\mathcal{L}^{r}(E)$ [Arendt, 1981, Theorem 2.6]^{*a*}.

イロト イヨト イヨト

^aArendt, W. (1981). On the o-spektrum of regular operators and the spectrum of measures. Mathematische Zeitschrift, 178(2):271–287

Definition 1.3 (Riesz points).

If $a \in A$, $\lambda \in \text{iso } \sigma(a)$ is a *Riesz point* of $\sigma(a)$ (relative to an ideal *I*) if $p(\lambda, a) \in I$ with

$$p(\lambda, a) := rac{1}{2\pi i} \int_{\Gamma} R_a(\alpha) \mathrm{d} lpha,$$

where Γ is a contour surrounding and isolating λ in $\sigma(a)$.

Definition 1.3 (Riesz points).

If $a \in A$, $\lambda \in \text{iso } \sigma(a)$ is a *Riesz point* of $\sigma(a)$ (relative to an ideal *I*) if $p(\lambda, a) \in I$ with

$$p(\lambda, \mathbf{a}) := \frac{1}{2\pi i} \int_{\Gamma} R_{\mathbf{a}}(\alpha) \mathrm{d}\alpha,$$

where Γ is a contour surrounding and isolating λ in $\sigma(a)$.

• If A is semisimple, then λ is a Riesz point of $\sigma(a)$ if and only if λ is a pole of R_a and $p(\lambda, a) \in I$ [Mouton, 2002]¹.

¹Mouton, S. (2002). Convergence properties of positive elements in Banach algebras. Mathematical proceedings of the Royal Irish Academy, 102A(2):149–162 \triangleleft $\mapsto \triangleleft \equiv \vdash \triangleleft \equiv \vdash \triangleleft \equiv \vdash \triangleleft \equiv \lor \triangleleft \equiv \lor \lor \equiv \lor \lor \equiv \lor \lor \equiv \lor \lor = :$

Definition 1.3 (Riesz points).

If $a \in A$, $\lambda \in \text{iso } \sigma(a)$ is a *Riesz point* of $\sigma(a)$ (relative to an ideal *I*) if $p(\lambda, a) \in I$ with

$$p(\lambda, \mathbf{a}) := \frac{1}{2\pi i} \int_{\Gamma} R_{\mathbf{a}}(\alpha) \mathrm{d}\alpha,$$

where Γ is a contour surrounding and isolating λ in $\sigma(a)$.

- If A is semisimple, then λ is a Riesz point of $\sigma(a)$ if and only if λ is a pole of R_a and $p(\lambda, a) \in I$ [Mouton, 2002]¹.
- $\mathcal{L}(E), \mathcal{L}^{r}(E)$ are semisimple (well known).

¹Mouton, S. (2002). Convergence properties of positive elements in Banach algebras. Mathematical proceedings of the Royal Irish Academy, 102A(2):149–162 · □ > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < <

Ordered Banach algebras

Definition 1.4 (Algebra cone – Ordered Banach algebra).

An algebra cone is a non-empty subset $C \subseteq A$ s.t.

• $1 \in C$,(contains the unit)• $C + C \subseteq C$,(closed under addition)• $\lambda C \subseteq C$ ($\lambda \in \mathbb{R}^+$),(closed under non-negative scalar multiplication)• $CC \subseteq C$.(closed under internal multiplication)

Sonja Mouton, Dimby Rabearivony* (SUN) Generalized Ergodic Domination in OBAs July 14th, 2023

イロト イヨト イヨト イヨト

э

Definition 1.4 (Algebra cone – Ordered Banach algebra).

An algebra cone is a non-empty subset $C \subseteq A$ s.t.

- $1 \in C$,(contains the unit)• $C + C \subseteq C$,(closed under addition)• $\lambda C \subseteq C$ ($\lambda \in \mathbb{R}^+$),(closed under non-negative scalar multiplication)• $CC \subseteq C$.(closed under internal multiplication)
- C induces (pre-)ordering on A by defining $a \leq b$ (or $b \geq a$) iff $b a \in C$.
- The pair (A, C) is called an ordered Banach algebra (OBA).

(日) (四) (日) (日) (日)

Ordered Banach algebras

Definition 1.4 (Algebra cone – Ordered Banach algebra).

An algebra cone is a non-empty subset $C \subseteq A$ s.t.

- I $\in C$,(contains the unit)C $+ C \subseteq C$,(closed under addition) $\lambda C \subseteq C$ ($\lambda \in \mathbb{R}^+$),(closed under non-negative scalar multiplication)CC $\subseteq C$.(closed under internal multiplication)
 - C induces (pre-)ordering on A by defining $a \le b$ (or $b \ge a$) iff $b a \in C$.
 - The pair (A, C) is called an ordered Banach algebra (OBA).

Example 1.5.

- $(\mathbb{C}, \mathbb{R}^+)$, $(\mathcal{M}_n(\mathbb{C}), \mathcal{M}_n(\mathbb{R}^+))$.
- $\textcircled{\ } (\mathcal{L}(E),\mathcal{L}^+(E)), \, (\mathcal{L}^r(E),\mathcal{L}^+(E)).$
- $(A/I, \pi C)$, where (A, C) is an OBA, I a closed ideal (e.g. $(\mathcal{L}^{r}(E)/\mathcal{K}^{r}(E), \pi \mathcal{L}^{+}(E)))$, where $\pi : A \to A/I$ is the canonical homomorphism.

3

6/16

イロト 不得 トイヨト イヨト

Let (A, C) be an OBA and I a closed ideal of A.

イロト イヨト イヨト イヨト

Let (A, C) be an OBA and I a closed ideal of A.

Definition 1.6 (Normality of C - (Weak) Monotonicity of r).

C is normal if ∃α > 0 (called a normality constant) such that
a, b ∈ A, 0 ≤ a ≤ b ⇒ ||a|| ≤ α ||b||.

イロト 不得 トイヨト イヨト

Let (A, C) be an OBA and I a closed ideal of A.

Definition 1.6 (Normality of C - (Weak) Monotonicity of r).

- *C* is **normal** if $\exists \alpha > 0$ (called *a normality constant*) such that $a, b \in A, \ 0 \le a \le b \implies ||a|| \le \alpha ||b||$.
- r is monotone in (A, C) if $0 \le a \le b \implies r(a) \le r(b)$.

イロト 不得 トイヨト イヨト

Let (A, C) be an OBA and I a closed ideal of A.

Definition 1.6 (Normality of C - (Weak) Monotonicity of r).

- *C* is **normal** if $\exists \alpha > 0$ (called *a normality constant*) such that $a, b \in A, \ 0 \le a \le b \implies ||a|| \le \alpha ||b||$.
- r is monotone in (A, C) if $0 \le a \le b \implies r(a) \le r(b)$.
- r is weakly monotone in A/I if $0 \le a \le b \implies r(a+I) \le r(b+I)$.

イロト イヨト イヨト --

Let (A, C) be an OBA and I a closed ideal of A.

Definition 1.6 (Normality of C - (Weak) Monotonicity of r).

- *C* is **normal** if $\exists \alpha > 0$ (called *a normality constant*) such that $a, b \in A, \ 0 \le a \le b \implies ||a|| \le \alpha ||b||$.
- r is monotone in (A, C) if $0 \le a \le b \implies r(a) \le r(b)$.
- r is weakly monotone in A/I if $0 \le a \le b \implies r(a+I) \le r(b+I)$.

Example 1.7.

• OBAs with normal algebra cone: $(\mathbb{C}, \mathbb{R}^+)$, $(\mathcal{M}_n(\mathbb{C}), \mathcal{M}_n(\mathbb{R}^+))$, $(\mathcal{L}(E), \mathcal{L}^+(E))$, $(\mathcal{L}^r(E), \mathcal{L}^+(E))$, ...

Let (A, C) be an OBA and I a closed ideal of A.

Definition 1.6 (Normality of C - (Weak) Monotonicity of r).

- *C* is **normal** if $\exists \alpha > 0$ (called *a normality constant*) such that $a, b \in A, \ 0 \le a \le b \implies ||a|| \le \alpha ||b||$.
- r is monotone in (A, C) if $0 \le a \le b \implies r(a) \le r(b)$.
- r is weakly monotone in A/I if $0 \le a \le b \implies r(a+I) \le r(b+I)$.

Example 1.7.

- OBAs with normal algebra cone: $(\mathbb{C}, \mathbb{R}^+)$, $(\mathcal{M}_n(\mathbb{C}), \mathcal{M}_n(\mathbb{R}^+))$, $(\mathcal{L}(E), \mathcal{L}^+(E))$, $(\mathcal{L}^r(E), \mathcal{L}^+(E))$, ...
- If C is normal, then r monotone in (A, C) [Raubenheimer and Rode, 1996]^a.

Let (A, C) be an OBA and I a closed ideal of A.

Definition 1.6 (Normality of C - (Weak) Monotonicity of r).

- *C* is **normal** if $\exists \alpha > 0$ (called *a normality constant*) such that $a, b \in A, \ 0 \le a \le b \implies ||a|| \le \alpha ||b||$.
- r is monotone in (A, C) if $0 \le a \le b \implies r(a) \le r(b)$.
- r is weakly monotone in A/I if $0 \le a \le b \implies r(a+I) \le r(b+I)$.

Example 1.7.

- OBAs with normal algebra cone: $(\mathbb{C}, \mathbb{R}^+)$, $(\mathcal{M}_n(\mathbb{C}), \mathcal{M}_n(\mathbb{R}^+))$, $(\mathcal{L}(E), \mathcal{L}^+(E))$, $(\mathcal{L}^r(E), \mathcal{L}^+(E))$, ...
- If C is normal, then r monotone in (A, C) [Raubenheimer and Rode, 1996]^a.
- r is weakly monotone in $\mathcal{L}^{r}(E)/\mathcal{K}^{r}(E)$ [Martínez and Mazón, 1991]^b.

^bMartínez, J. and Mazón, J. M. (1991). Quasi-compactness of dominated positive operators and Co-semigroups.

Mathematische Zeitschrift, 207(1):109–120

^aRaubenheimer, H. and Rode, S. (1996). Cones in Banach algebras. Indagationes Mathematicae (N.S.), 7(4):489–502

Problem 1.8 (Domination problem).

If (A, C) is an OBA and $a, b \in A$ such that $0 \le a \le b$, under which conditions are properties of b inherited by a?

イロト イヨト イヨト イヨト

Problem 1.8 (Domination problem).

If (A, C) is an OBA and $a, b \in A$ such that $0 \le a \le b$, under which conditions are properties of b inherited by a?

• A survey on the existing results: Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786.

イロト 不得 トイヨト イヨト

Problem 1.8 (Domination problem).

If (A, C) is an OBA and $a, b \in A$ such that $0 \le a \le b$, under which conditions are properties of b inherited by a?

- A survey on the existing results: Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786.
- In Operator Theory: Kusraev, A. G. (2016). Domination problem in Banach lattices. *Mathematical Notes*, 100(1):66–79.

イロト 不得 トイヨト イヨト

Problem 1.8 (Domination problem).

If (A, C) is an OBA and $a, b \in A$ such that $0 \le a \le b$, under which conditions are properties of b inherited by a?

- A survey on the existing results: Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786.
- In Operator Theory: Kusraev, A. G. (2016). Domination problem in Banach lattices. Mathematical Notes, 100(1):66–79.

Theorem 1.9 ([Räbiger and Wolff, 1997]).

Let $S, T \in \mathcal{L}(E)$ such that $\pm S \leq T$. If T is uniformly ergodic with finite rank projection, then so is S.

Note: $\pm S \leq T$ iff $T \pm S \geq 0$ iff $|Sx| \leq T |x|$ for all $x \in E$.

Definition 2.1 (Ergodic elements).

An element $a \in A$ is *ergodic* if the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}a^k\right)$ converges in A.

²Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786 $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Box \rangle \rightarrow \langle \Box \rangle \rightarrow \langle \Box \rangle$

Sonja Mouton, Dimby Rabearivony* (SUN)

Generalized Ergodic Domination in OBAs

July 14th, 2023

Definition 2.1 (Ergodic elements).

An element $a \in A$ is *ergodic* if the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}a^k\right)$ converges in A.

• Domination by ergodic elements in OBAs:

Theorem 2.2 (Ergodic Domination: [Mouton and Muzundu, 2014]).

Let (A, C) be a semisimple OBA with C closed and normal, and I a closed inessential ideal of A such that r is weakly monotone in A/I. Suppose that a, $b \in A$ such that $0 \le a \le b$ and r(b) is a Riesz point of $\sigma(b)$. If b is ergodic, then a is ergodic.

Sonja Mouton, Dimby Rabearivony* (SUN)

Generalized Ergodic Domination in OBAs

July 14th, 2023

Definition 2.1 (Ergodic elements).

An element $a \in A$ is *ergodic* if the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}a^k\right)$ converges in A.

• Domination by ergodic elements in OBAs:

Theorem 2.2 (Ergodic Domination: [Mouton and Muzundu, 2014]).

Let (A, C) be a semisimple OBA with C closed and normal, and I a closed inessential ideal of A such that r is weakly monotone in A/I. Suppose that $a, b \in A$ such that $0 \le a \le b$ and r(b) is a Riesz point of $\sigma(b)$. If b is ergodic, then a is ergodic.

 An open question in [Mouton and Raubenheimer, 2017]²: Can Theorem 2.2 be extended by replacing the condition "0 ≤ a ≤ b with the weaker condition "±a ≤ b" ?

²Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786

Definition 2.1 (Ergodic elements).

An element $a \in A$ is *ergodic* if the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}a^k\right)$ converges in A.

• Domination by ergodic elements in OBAs:

Theorem 2.2 (Ergodic Domination: [Mouton and Muzundu, 2014]).

Let (A, C) be a semisimple OBA with C closed and normal, and I a closed inessential ideal of A such that r is weakly monotone in A/I. Suppose that $a, b \in A$ such that $0 \le a \le b$ and r(b) is a Riesz point of $\sigma(b)$. If b is ergodic, then a is ergodic.

 An open question in [Mouton and Raubenheimer, 2017]²: Can Theorem 2.2 be extended by replacing the condition "0 ≤ a ≤ b with the weaker condition "±a ≤ b" ?

Problem 2.3 (Generalized domination problem).

If (A, C) is an OBA and $a, b \in A$ such that $\pm a \leq b$, under which conditions are properties of b inherited by a?

²Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786

Generalized normality - Generalized monotonicity

Let (A, C) be an OBA and I a closed ideal of A.

Definition 2.4.

• C is generalized normal if $\exists \alpha > 0$ such that

 $a, b \in A, \pm a \leq b \implies ||a|| \leq \alpha ||b||.$

- r is generalized monotone in (A, C) if $\pm a \leq b \implies r(a) \leq r(b)$.
- r is generalized weakly monotone in A/I if $\pm a \leq b \implies r(a+I) \leq r(b+I)$.

イロト 不得 トイヨト イヨト 二日

Generalized normality - Generalized monotonicity

Let (A, C) be an OBA and I a closed ideal of A.

Definition 2.4.

• C is generalized normal if $\exists \alpha > 0$ such that

 $a, b \in A, \pm a \leq b \implies ||a|| \leq \alpha ||b||.$

- r is generalized monotone in (A, C) if $\pm a \leq b \implies r(a) \leq r(b)$.
- r is generalized weakly monotone in A/I if $\pm a \leq b \implies r(a+I) \leq r(b+I)$.

Some obvious implications:

- ${\small \textcircled{\sc 0}} \ {\rm Generalized weak monotonicity} \implies {\rm weak monotonicity}.$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のの()

Generalized normality

With the same argument as in [Raubenheimer and Rode, 1996]³:

Proposition.

If C is generalized normal, then r is generalized monotone in (A, C).

³Raubenheimer, H. and Rode, S. (1996). Cones in Banach algebras. Indagationes Mathematicae (N.S.), 7(4):489–502

Sonja Mouton, Dimby Rabearivony* (SUN)

Generalized Ergodic Domination in OBAs

イロト 不得 トイヨト イヨト

э

Generalized normality

With the same argument as in [Raubenheimer and Rode, 1996]³:

Proposition.

If C is generalized normal, then r is generalized monotone in (A, C).

Theorem 2.5. If (A, C) is an OBA, then C is generalized normal if and only if C is normal.

³Raubenheimer, H. and Rode, S. (1996). Cones in Banach algebras. Indagationes Mathematicae (N.S.), 7(4):489–502

イロト 不得 トイヨト イヨト

э

Generalized normality

With the same argument as in [Raubenheimer and Rode, 1996]³:

Proposition.

If C is generalized normal, then r is generalized monotone in (A, C).

Theorem 2.5. If (A, C) is an OBA, then C is generalized normal if and only if C is normal.

Corollary 2.6.

If C is normal, then r is generalized monotone.

³Raubenheimer, H. and Rode, S. (1996). Cones in Banach algebras. Indagationes Mathematicae (N.S.), 7(4):489–502

< □ > < 同 > < 三 > < 三 >

э

Generalized domination of ergodic elements

An extension of [Mouton and Muzundu, 2014, Theorem 5.2]⁴:

Theorem 3.1.

Let (A, C) be an OBA with C normal and $a, b \in A$ such that $\pm a \leq b$. Suppose that either $r(a) \notin \sigma(a)$ or 1 is a pole of R_a . If b is ergodic, then a is ergodic.

Main tools for the proof.

- The fact that normality of C implies generalized monotonicity of r.
- The Ergodic Theorem [Mouton and Muzundu, 2014].

Generalized Ergodic Domination Theorem

An answer to the open question in [Mouton and Raubenheimer, 2017]⁵:

Theorem 3.2.

Let (A, C) be a semisimple OBA with C closed and normal, and I a closed inessential ideal of A such that the spectral radius is generalized weakly monotone in A/I. Suppose that $a, b \in A$ such that $\pm a \leq b$ and r(b) is a Riesz point of $\sigma(b)$. If b is ergodic, then a is ergodic.

⁵Mouton, S. and Raubenheimer, H. (2017). Spectral theory in ordered Banach algebras. *Positivity*, 21(2):755–786

Generalized weak monotonicity of r in BLAs

Definition 4.1 (Banach lattice algebra).

A Banach algebra A which is also a Banach lattice and satisfying:

 $|ab| \le |a| |b| \text{ for all } a, b \in A.$

Definition 4.2 (*m*-order ideal $(m \in \mathbb{N})$).

An (algebraic) ideal I of a Banach lattice algebra A such that:

- If $a \in I$, then $|a| \in I$.
- **2** If $a, b \in A$ such that $|a| \leq b$ and $b \in I$, then $a^m \in I$.

⁶Koumba, U. and Raubenheimer, H. (2015). Positive Riesz operators. Mathematical Proceedings of the Royal Irish Academy, 115(1):1–11 < □ > < ♂ > < ≥ > < ≥ > < ≥ > < ≥

Generalized weak monotonicity of r in BLAs

Definition 4.1 (Banach lattice algebra).

A Banach algebra A which is also a Banach lattice and satisfying:

 $|ab| \le |a| |b| \text{ for all } a, b \in A.$

Definition 4.2 (*m*-order ideal $(m \in \mathbb{N})$).

An (algebraic) ideal I of a Banach lattice algebra A such that:

- If $a \in I$, then $|a| \in I$.
- **2** If $a, b \in A$ such that $|a| \leq b$ and $b \in I$, then $a^m \in I$.

An extension of [Koumba and Raubenheimer, 2015, Theorem 3.8]⁶:

Theorem 4.3.

Let A be a Banach lattice algebra, and I a closed inessential m-order ideal of A. If $a, b \in A$ such that $\pm a \leq b$, then $r(a + I) \leq r(b + I)$.

⁶Koumba, U. and Raubenheimer, H. (2015). Positive Riesz operators. Mathematical Proceedings of the Royal Irish Academy, 115(1):1–11 ← □ ▷ ← ⓓ ▷ ← ≧ ▷ ← ≧ ▷ → ≧ → ⊃ < ?

Applications to regular operators

If E is Dedekind complete, then $\mathcal{L}^{r}(E)$ is a Banach lattice algebra and $\mathcal{K}^{r}(E)$ is a closed inessential 3-order ideal.

⁷Martínez, J. and Mazón, J. M. (1991). Quasi-compactness of dominated positive operators and C_0 -semigroups. *Mathematische Zeitschrift*, 207(1):109–120 $\leftarrow \square \succ \leftarrow \square \succ \leftarrow \square \succ \leftarrow \square \leftarrow \blacksquare \leftarrow \blacksquare \leftarrow \blacksquare$

Sonja Mouton, Dimby Rabearivony* (SUN)

Generalized Ergodic Domination in OBAs

July 14th, 2023

Applications to regular operators

If *E* is Dedekind complete, then $\mathcal{L}^{r}(E)$ is a Banach lattice algebra and $\mathcal{K}^{r}(E)$ is a closed inessential 3-order ideal.Hence, we have:

• A generalizaton of [Martínez and Mazón, 1991, Theorem 2.8]⁷:

Corollary 4.4.

If E is Dedekind complete, then r is generalized weakly monotone in $\mathcal{L}^{r}(E)/\mathcal{K}^{r}(E)$, i.e, for all S, $T \in \mathcal{L}^{r}(E)$, such that $\pm S \leq T$, we have that

 $r(S + \mathcal{K}^{r}(E)) \leq r(T + \mathcal{K}^{r}(E)).$

Sonja Mouton, Dimby Rabearivony* (SUN)

Applications to regular operators

If *E* is Dedekind complete, then $\mathcal{L}^{r}(E)$ is a Banach lattice algebra and $\mathcal{K}^{r}(E)$ is a closed inessential 3-order ideal.Hence, we have:

• A generalizaton of [Martínez and Mazón, 1991, Theorem 2.8]⁷:

Corollary 4.4.

If E is Dedekind complete, then r is generalized weakly monotone in $\mathcal{L}^{r}(E)/\mathcal{K}^{r}(E)$, i.e, for all S, $T \in \mathcal{L}^{r}(E)$, such that $\pm S \leq T$, we have that

$$r(S + \mathcal{K}^{r}(E)) \leq r(T + \mathcal{K}^{r}(E)).$$

• A special case of Räbiger and Wolff's result, proved free of operator theory:

Theorem 4.5.

Let E be a Dedekind complete Banach lattice and S, $T \in \mathcal{L}'(E)$ such that $\pm S \leq T$ and r(T) is a Riesz point of $\sigma(T, \mathcal{L}'(E))$. If T is r-ergodic, then S is r-ergodic (where r-ergodic means ergodic in $\mathcal{L}'(E)$).

Sonja Mouton, Dimby Rabearivony* (SUN)

⁷Martínez, J. and Mazón, J. M. (1991). Quasi-compactness of dominated positive operators and C_0 -semigroups. *Mathematische Zeitschrift*, 207(1):109–120

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thanks for your attention!

《曰》 《聞》 《臣》 《臣》