

Irreducibility of eventually positive semigroups

Positivity XI (CA18232 Session)

10th July 2023

Sahiba Arora (Joint work with Jochen Glück (Wuppertal))

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Definition

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Definition

(i)
$$e^{0A} = I$$
,

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Definition

- (i) $e^{0A} = I$,
- (ii) $e^{(t+s)A} = e^{tA}e^{sA}$ for all $t, s \ge 0$, and

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Definition

- (i) $e^{0A} = I$,
- (ii) $e^{(t+s)A}=e^{tA}e^{sA}$ for all $t,s\geq 0$, and
- (iii) $t \mapsto e^{tA} f$ is continuous for each f.

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Definition

A family of bounded operators $(e^{tA})_{t\geq 0}$ is called a C_0 -semigroup if

- (i) $e^{0A} = I$,
- (ii) $e^{(t+s)A} = e^{tA}e^{sA}$ for all $t, s \ge 0$, and
- (iii) $t \mapsto e^{tA} f$ is continuous for each f.

In this case, $Af:=\lim_{t\downarrow 0} \frac{e^{tA}f-f}{t}$ (whenever this limit exists).

Throughout, we consider the abstract Cauchy problem

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = f;$$

A generates a C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice.

Definition

A family of bounded operators $(e^{tA})_{t\geq 0}$ is called a C_0 -semigroup if

- (i) $e^{0A} = I$,
- (ii) $e^{(t+s)A} = e^{tA}e^{sA}$ for all $t, s \ge 0$, and
- (iii) $t \mapsto e^{tA} f$ is continuous for each f.

In this case, $Af:=\lim_{t\downarrow 0} \frac{e^{tA}f-f}{t}$ (whenever this limit exists).

Right-shift semigroup

On $L^2(0,1)$, let $(e^{tA}f)(s) := f(s-t)$ for s-t>0 and 0 otherwise.

Positive: $e^{tA} \ge 0$ for all $t \ge 0$ (Vast theory).

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

- - ightarrow Workaround: Consider different modes of convergence.

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

- BUT: convergence to a positive operator \neq positivity.
 - ightarrow Workaround: Consider different modes of convergence.
- By-product: theory only applicable if $e^{tA}\gg 0^1~\forall~t\geq t_0$.

 $^{^{1}}e^{tA}\gg 0:\Leftrightarrow e^{tA}f$ is quasi-interior $\forall f \geqslant 0$

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

- - ightarrow Workaround: Consider different modes of convergence.
- By-product: theory only applicable if $e^{tA}\gg 0^1~\forall~t\geq t_0$.

Irreducible: Nontrivial² closed ideals aren't invariant (Widely studied).

 $^{^{1}}e^{tA}\gg 0:\Leftrightarrow e^{tA}f$ is quasi-interior $\forall f\geq 0$

²Nontrivial :⇔ non-zero and proper

Positive: $e^{tA} \geq 0$ for all $t \geq 0$ (Vast theory). Eventually positive: $e^{tA} \geq 0$ for all $t \geq t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

- BUT: convergence to a positive operator \Rightarrow positivity.
 - ightarrow Workaround: Consider different modes of convergence.
- By-product: theory only applicable if $e^{tA}\gg 0^1~\forall~t\geq t_0$.

Irreducible: Nontrivial² closed ideals aren't invariant (Widely studied).

$$e^{tA}\gg 0$$
 for all $t>0\Rightarrow (e^{tA})_{t\geq 0}$ is irreducible.

 $^{^{1}}e^{tA}\gg 0:\Leftrightarrow e^{tA}f$ is quasi-interior $\forall f\geq 0$

²Nontrivial :⇔ non-zero and proper

Positive: $e^{tA} \ge 0$ for all $t \ge 0$ (Vast theory). Eventually positive: $e^{tA} \ge 0$ for all $t \ge t_0$ (Developing theory).

How to prove eventual positivity?

Optimistic idea: Show that $e^{tA} \stackrel{t \to \infty}{\longrightarrow} P \ge 0$ in operator norm.

- - ightarrow Workaround: Consider different modes of convergence.
- By-product: theory only applicable if $e^{tA}\gg 0^1~\forall~t\geq t_0$.

Irreducible: Nontrivial² closed ideals aren't invariant (Widely studied).

 $e^{tA}\gg 0$ for all $t>0\Rightarrow (e^{tA})_{t\geq 0}$ is irreducible.

Natural idea: Study irreducibility for eventually positive semigroups.

 $^{^{1}}e^{tA}\gg 0:\Leftrightarrow e^{tA}f$ is quasi-interior $\forall f\geq 0$

²Nontrivial :⇔ non-zero and proper

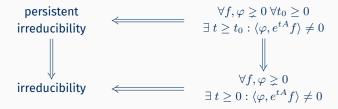
Irreducible: Nontrivial proper closed ideals aren't invariant.

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't eventually invariant.

Irreducible: Nontrivial proper closed ideals aren't invariant.

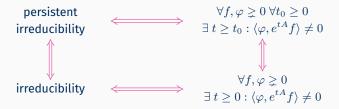
Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. In general,



Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't eventually invariant.

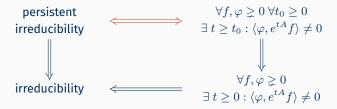
For positive semigroups,



Irreducible: Nontrivial proper closed ideals aren't invariant.

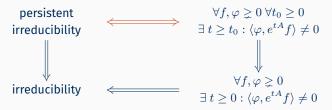
Persistently irreducible: Nontrivial closed ideals aren't eventually invariant.

For eventually positive semigroups,

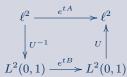


Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,

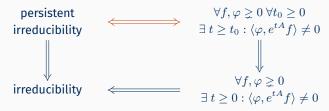


Let $(e^{tB})_{t\geq 0}$: right-shift and U: rademacher ONB \mapsto standard ONB:



Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,



Let $(e^{tB})_{t\geq 0}$: right-shift and U: rademacher ONB \mapsto standard ONB:

$$\ell^{2} \xrightarrow{e^{tA}} \ell^{2}$$

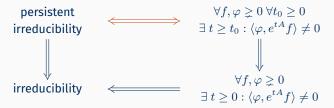
$$\downarrow^{U^{-1}} \qquad U$$

$$L^{2}(0,1) \xrightarrow{e^{tB}} L^{2}(0,1)$$

Then $(e^{tA})_{t\geq 0}$ is irreducible but not persistently irreducible.

Irreducible: Nontrivial proper closed ideals aren't invariant.

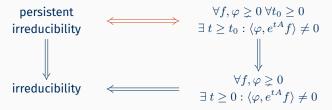
Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,



Connection with (eventual) strong positivity

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,



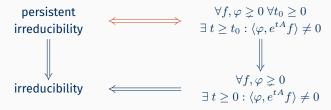
Connection with (eventual) strong positivity

 $e^{tA}\gg 0$ for all $t>0\Rightarrow$ irreducible.

 $^{^{1}}e^{tA}\gg 0:\Leftrightarrow e^{tA}f$ is quasi-interior $\forall f\geq 0$

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,



Connection with (eventual) strong positivity

 $e^{tA}\gg 0$ for all $t>0\Rightarrow$ irreducible.

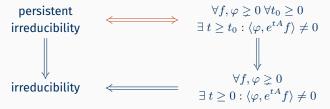
 $e^{tA}\gg 0$ for all $t>t_0\Rightarrow$ persistent irreducible.

 $^{^{1}}e^{tA}\gg 0:\Leftrightarrow e^{tA}f$ is quasi-interior $\forall f\geq 0$

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't eventually invariant.

For eventually positive semigroups,



Connection with (eventual) strong positivity

 $e^{tA}\gg 0$ for all $t>0\Rightarrow$ irreducible.

 $e^{tA} \gg 0$ for all $t > t_0 \Rightarrow$ persistent irreducible.

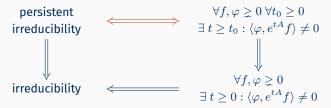
Converse

Positive + irreducible + analytic $\Rightarrow e^{tA} \gg 0$ for all t > 0.

Eventual positive + persistent irreducible + analytic $\Rightarrow e^{tA} \gg 0 \ \forall \ t > t_0$.

Irreducible: Nontrivial proper closed ideals aren't invariant.

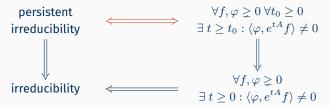
Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,



Positive + irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,

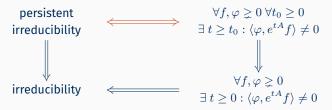


Positive + irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

Eventual positive + persistent irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant. For <u>eventually</u> positive semigroups,



Positive + irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

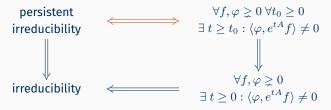
Eventual positive + persistent irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

Positive + irreducible + $e^{t_0 A}$ compact $\Rightarrow \sigma(A) \neq \emptyset$.

Irreducible: Nontrivial proper closed ideals aren't invariant.

Persistently irreducible: Nontrivial closed ideals aren't *eventually* invariant.

For eventually positive semigroups,



Positive + irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

Eventual positive + persistent irreducible on $C_0(L) \Rightarrow \sigma(A) \neq \emptyset$.

Positive + irreducible + $e^{t_0 A}$ compact $\Rightarrow \sigma(A) \neq \emptyset$.

Open question

Eventual positive + persistent irreducible + e^{t_0A} compact $\Rightarrow \sigma(A) \neq \emptyset$?