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Throughout, we consider the abstract Cauchy problem
u(t) = Au(t) (t=0),  u(0)=f;

A generates a Cyp-semigroup (e'4);>0 on a Banach lattice.

Definition

A family of bounded operators (e‘4);> is called a Cy-semigroup if
(i) 't =1,

(i) e®+9)4 = et4es4 forall t, s > 0, and

(iii) ¢ — e*f is continuous for each f.

In this case, Af —llmuo f £ (whenever this limit exists).

Right-shift semigroup
On L2(0,1), let (e f)(s) := f(s —t) for s — ¢ > 0 and 0 otherwise.
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Positive: ¢!4 > ( for all ¢ > 0 (vast theory).
Eventually positive: et4 > 0 for all t > ¢, (Developing theory).

How to prove eventual positivity?
Optimistic idea: Show that et4 ¥ p>0in operator norm.
« BUT: convergence to a positive operator # positivity.
— Workaround: Consider different modes of convergence.

« By-product: theory only applicable if e/4 > 0"V t > t,.

Irreducible: Nontrivial® closed ideals aren’t invariant (Widely studied).

ett > 0forallt > 0= (e);>¢ is irreducible.
Natural idea: Study irreducibility for eventually positive semigroups.
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Let (e‘B)tZO: right-shift and U : rademacher ONB > standard ONB:

Y2 Lﬁ

o

2 etB 2
L?(0,1) —— L*(0,1)

Then (e'*);>0 is irreducible but not persistently irreducible.
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For eventually positive semigroups,

persistent Vi, o > 0Vito >0
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Connection with (eventual) strong positivity

et > 0forallt > 0 = irreducible.
et > 0 forall ¢ > to = persistent irreducible.

Converse

Positive + irreducible + analytic = ¢! >> 0 for all ¢ > 0.
Eventual positive + persistent irreducible + analytic = e** > 0V ¢ > ¢.
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Positive + irreducible on Co(L) = o(A) # 0.

Eventual positive + persistent irreducible on Co(L) = o(A) # 0.

Positive + irreducible + efo4

compact = o (A) # 0.
Open question

tpA

Eventual positive + persistent irreducible + e*°“ compact = o(A) # 0?
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