Elliptic and parabolic operators with unbounded polynomial coefficients

Cristian Tacelli
(University of Salerno)

POSI+IVITY XI
Ljubljana, 10-14 July, 2023

Motivation

Consider the Stochastic Differential Equation

$$
\left\{\begin{array}{l}
d X(t)=F(X(t)) d t+\sigma(X(t)) d W(t) \tag{1}\\
X(0)=x
\end{array}\right.
$$

- Probabilistic model of the physical process of diffusion
- Model in mathematical finance
- Model in biology
$u(t, x):=\mathbb{E}(\varphi(X(t))$ satisfies Kolomogorov equation

$$
\left\{\begin{array}{l}
\partial_{t} u=\frac{1}{2} \operatorname{Tr}\left(\sigma^{T} D^{2} \sigma\right) u+F \cdot \nabla u:=L u \tag{2}\\
u(0)=\varphi
\end{array}\right.
$$

$F=M x$ where σ, M real matrix gives the Ornstein-Uhlembeck operator

Second order operators with polynomial coefficients

- Unbounded Diffusion: $A=\left(1+|x|^{\alpha}\right) \Delta$
[S. Fornaro, L. Lorenzi '07]:
$0<\alpha \leq 2$.
[G. Metafune, C. Spina,'10]
$\alpha>2, p>\frac{N}{N-2}$
- Unbounded Diffusion \& Drift: $A=\left(1+|x|^{\alpha}\right) \Delta+b|x|^{\alpha-2} x \cdot \nabla$
[S. Fornaro, L. Lorenzi '07]: $\quad 1<\alpha \leq 2$.
[G. Metafune, C. Spina, C. T.,'14] $\alpha>2, b>2-N \rightarrow p>\frac{N}{N-2+b}$
- Schrödinger-Type Operator: $A=\left(1+|x|^{\alpha}\right) \Delta-c|x|^{\beta}$
[L. Lorenzi, A. Rhandi,'15] $0 \leq \alpha \leq 2, \beta \geq 0$
[A. Canale, A. Rhandi, C.T.,'16] $\quad \alpha>2, \beta>\alpha-2,1<p<\infty$

Second order operators with polynomial coefficients

- Complete (degenerate) : $A=|x|^{\alpha} \Delta+b|x|^{\alpha-2} x \cdot \nabla_{x}-c|x|^{\alpha-2}$
[G. Metafune, N. Okazawa, M. Sobajima, C. Spina,'16] $N / p \in\left(s_{1}+\min \{0,2-\alpha\}, s_{2}+\max \{0,2-\alpha\}\right), c+s(N-2+b-s)=0$
- Complete $\alpha>2$: $\quad A=\left(1+|x|^{\alpha}\right) \Delta+b|x|^{\alpha-2} x \cdot \nabla-c|x|^{\beta}$
[S. Boutiah, F. Gregorio, A. Rhandi, C. T.,'18] $\quad \alpha>2, \beta>\alpha-2, p>1$
- Complete $\alpha<2$: $\quad A=\left(1+|x|^{\alpha}\right) \Delta+b|x|^{\alpha-2} x \cdot \nabla-c|x|^{\alpha-2}-|x|^{\beta}$
[S. Boutiah, L. Caso, F. Gregorio, C. T.,'21] $\alpha \in[0,2), \beta>0, p>1$

Preliminary considerations in $C_{b}\left(\mathbb{R}^{N}\right)$

We endow A with its maximal domain in C_{b}

$$
\begin{align*}
D_{\max }(A) & =\left\{u \in C_{b} \cap W_{l o c}^{2, p} \quad \text { for all } \quad p<\infty: A u \in C_{b}\right\} \\
& \begin{cases}u_{t}(t, x)=A u(t, x) & x \in \mathbb{R}^{N}, t>0 \\
u(0, x)=f(x) & x \in \mathbb{R}^{N}\end{cases} \tag{3}
\end{align*}
$$

$\exists\left(T_{\min }(t)\right)_{t \geq 0}$ in C_{b}, generated by $A_{\min }=(A, \hat{D})$, where $\hat{D} \subset D_{\max }$.

$$
\begin{cases}D_{t} u_{\rho}(t, x)=A u_{\rho}(t, x) & x \in B(\rho), t>0, \tag{4}\\ u_{\rho}(t, x)=0 & x \in \partial B(\rho), t>0 \\ u_{\rho}(0, x)=f(x) & x \in B(\rho)\end{cases}
$$

Schauder interior estimates + compactness argument $\Longrightarrow u_{\rho_{n}} \rightarrow u$

The operator

For $b, c \in \mathbb{R}, 0 \leq \alpha \leq 2, \beta>\alpha-2$ and $u \in \mathcal{D}_{0}=C_{c}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right)$

$$
\mathcal{A} u:=\left(1+|x|^{\alpha}\right) \Delta u+b|x|^{\alpha-2} x \cdot \nabla u-c|x|^{\alpha-2} u-|x|^{\beta} u
$$

Aims.

- $\left(A, D_{p}(A)\right)$ an extension $\left(\mathcal{A}, \mathcal{D}_{0}\right)$ generates analytic C_{0}-semigroup on $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$
- conditions on the coefficients under which this extension is precisely the closure of $\left(\mathcal{A}, \mathcal{D}_{0}\right)$ and give characterization of $D_{p}(A)$
Tools
- form method \Longrightarrow generation of a semigroup $T(t)$ on $L^{2}\left(\mathbb{R}^{N}\right)$
- sub-Markovian properties i.e. $T(t) \geq 0$ and $\|T(t)\|_{\infty} \leq 1 \Longrightarrow$ extrapolation to $L^{P}\left(\mathbb{R}^{N}\right)$
- Okazawa perturbation Theorem \Longrightarrow domain of the extension $A u$ is perturbation of $\left(1+|x|^{\alpha}\right) \Delta u-|x|^{\beta} u$

Form methods for semigroups

H Hilbert space, $\mathfrak{a}: D(\mathfrak{a}) \times D(\mathfrak{a}) \rightarrow \mathbb{C}$ sesquilinear form

- densely defined, i.e. $D(\mathfrak{a})$ is dense in H
- accretive i.e. $\operatorname{Rea}(u, u) \geq 0$
- continuos w.r. $\|u\|_{\mathfrak{a}}=\sqrt{\operatorname{Rea}(u, u)+\|u\|^{2}}$
- closed i.e. $\left(D(\mathfrak{a}),\|\cdot\|_{\mathfrak{a}}\right)$ is complete define $A: D(A) \rightarrow H$ such that

$$
\mathfrak{a}(u, v)=<A u, v>\text { for all } v \in D(\mathfrak{a})
$$

where $D(A)=\{u \in D(\mathfrak{a}), \exists f \in H$ s.t. $\mathfrak{a}(u, v)=<f, v>\forall v \in D(\mathfrak{a})\}$

Theorem (Generation Theorem via forms)

$-A$ generate an analytic contraction semigroup $e^{-t A}$

Construction of the Form

Since for $u, v \in \mathcal{D}_{0}=C_{c}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ the following holds

$$
\begin{aligned}
& -\int_{\mathbb{R}^{N}} A u \bar{v} d x=\int_{\mathbb{R}^{N}}\left(\left(1+|x|^{\alpha}\right) \Delta u+b|x|^{\alpha-2} x \cdot \nabla u-c|x|^{\alpha-2} u-|x|^{\beta} u\right) \bar{v} d \\
& = \\
& \quad \int_{\mathbb{R}^{N}}\left(\left(1+|x|^{\alpha}\right) \nabla u \cdot \nabla \bar{v}+(\alpha-b)|x|^{\alpha-2} x \cdot \nabla u \bar{v}\right. \\
& \left.\quad+c|x|^{\alpha-2} u \bar{v}+|x|^{\beta} u \bar{v}\right) d x
\end{aligned}
$$

we define the folloing bilinear form

$$
\begin{gathered}
\mathfrak{a}(u, v)=\int_{\mathbb{R}^{N}}\left(\left(1+|x|^{\alpha}\right) \nabla u \cdot \nabla \bar{v}+(\alpha-b)|x|^{\alpha-2} x \cdot \nabla u \bar{v}\right. \\
\left.+c|x|^{\alpha-2} u \bar{v}+|x|^{\beta} u \bar{v}+\lambda u \bar{v}\right) d x, \\
D(\mathfrak{a})=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right):\left(1+|x|^{\alpha}\right)^{\frac{1}{2}} \nabla u,\left(|x|^{\alpha-2}\right)^{\frac{1}{2}} u,\left(|x|^{\beta}\right)^{\frac{1}{2}} u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
\end{gathered}
$$

where λ is a suitable positive constant that will be chosen later.

Let us compute $\mathfrak{a}(u, u)$
$\operatorname{Re} \mathfrak{a}(u, u)$

$$
\begin{aligned}
= & \int_{\mathbb{R}^{N}}\left(\left(1+|x|^{\alpha}\right)|\nabla u|^{2}\right. \\
& \left.+\left[\left(c-\frac{\alpha-b}{2}(\alpha-2+N)\right)|x|^{\alpha-2}+|x|^{\beta}+\lambda\right]|u|^{2}\right) d x .
\end{aligned}
$$

Hardy inequality $c_{0} \int_{\mathbb{R}^{N}} \frac{u^{2}}{x^{2}} d x \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x$ gives

$$
\begin{aligned}
& \operatorname{Re} \mathfrak{a}(u, u) \geq \int_{\mathbb{R}^{N}}|x|^{\alpha}|\nabla u|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \\
& \quad+\int_{\mathbb{R}^{N}}\left[\frac{c_{0}}{2|x|^{2}}+\left(c-1-\frac{\alpha-b}{2}(\alpha-2+N)\right)|x|^{\alpha-2}+\lambda\right]|u|^{2} d x \\
& \quad+\int_{\mathbb{R}^{N}}|x|^{\alpha-2}|u|^{2} d x+\int_{\mathbb{R}^{N}}|x|^{\beta}|u|^{2} d x \geq 0
\end{aligned}
$$

For a suitable $\lambda>0$

For the form so defined we have the following

Theorem

The form \mathfrak{a} is densely defined, accretive, continuous and closed. Therefore, it is associated to a closed operator $\left(-A_{\lambda}, D\left(A_{\lambda}\right)\right)$ on $L^{2}\left(\mathbb{R}^{N}\right)$

$$
\begin{aligned}
D\left(A_{\lambda}\right) & :=\left\{u \in D(\mathfrak{a}): \exists v \in L^{2}\left(\mathbb{R}^{N}\right) \text { s.t. } \mathfrak{a}(u, h)=\langle v, h\rangle, \forall h \in D(\mathfrak{a})\right\} \\
-A_{\lambda} u: & =v .
\end{aligned}
$$

Moreover, $\left(A_{\lambda}, D\left(A_{\lambda}\right)\right)$ is the generator of a strongly continuous analytic contraction semigroup $e^{t A_{\lambda}}$ on $L^{2}\left(\mathbb{R}^{N}\right)$.

Now we need to prove that $\left(A_{\lambda}, D\left(A_{\lambda}\right)\right)$ is an extension of $\left(\mathcal{A}-\lambda, \mathcal{D}_{0}\right)$.

$$
-\int_{\mathbb{R}^{N}}(\mathcal{A} u-\lambda u) \bar{h} d x=\mathfrak{a}(u, h) \text { for all } u, h \in \mathcal{D}_{0}
$$

If \mathcal{D}_{0} is a core for \mathfrak{a} then $A_{\lambda} \equiv A-\lambda$ on \mathcal{D}_{0}

Proposition

\mathcal{D}_{0} is a core for \mathfrak{a}.
Proof. Take $u \in D(\mathfrak{a})$ and consider $u_{n}=u \varphi_{n}$, where $\varphi_{n} \in \mathcal{D}_{0}$

$$
\left\{\begin{array}{l}
\varphi_{n}=0 \text { in } B\left(\frac{1}{n}\right) \cup B^{c}(2 n), \\
\varphi_{n}=1 \text { in } B(n) \backslash B\left(\frac{2}{n}\right), \\
0 \leq \varphi_{n} \leq 1, \\
\left|\nabla \varphi_{n}(x)\right| \leq C \frac{1}{|x|} .
\end{array}\right.
$$

$$
\begin{aligned}
& \left(1+|x|^{\alpha}\right)^{\frac{1}{2}}\left|\nabla u_{n}-\nabla u\right| \leq\left(1+|x|^{\alpha}\right)^{\frac{1}{2}}\left(1-\varphi_{n}\right)|\nabla u|+\left(1+|x|^{\alpha}\right)^{\frac{1}{2}}|u|\left|\nabla \varphi_{n}\right| \\
& \leq\left(1+|x|^{\alpha}\right)^{\frac{1}{2}}\left(1-\varphi_{n}\right)|\nabla u|+\left(\frac{|u|}{|x|}+|x|^{\frac{\alpha}{2}-1}|u|\right) \chi_{k_{n}}
\end{aligned}
$$

where $k_{n}=B\left(\frac{2}{n}\right) \backslash B\left(\frac{1}{n}\right) \cup B(2 n) \backslash B(n)$.
Then $u_{n} \in H_{0}^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ and $\left\|u_{n}-u\right\|_{\mathfrak{a}} \rightarrow 0$ by dominated convergence.

Extrapolation to $L^{p}\left(\mathbb{R}^{N}\right)$

Extend the family $\left(e^{t A_{\lambda}}\right)_{t \geq 0}$ of bounded operators $L^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ to a family of bounded operators $L^{P}\left(\mathbb{R}^{N}\right) \rightarrow L^{P}\left(\mathbb{R}^{N}\right)$.
Case positive potential $c|x|^{\alpha-2}, c \geq 0$.

- $\left(e^{t A_{\lambda}}\right)_{t \geq 0}$ is sub-Markovian i.e. $e^{t A_{\lambda}} \geq 0$ and $\left\|e^{t A_{\lambda}}\right\|_{\infty} \leq 1$
- by Riesz-Thorin interpolation theorem $e^{t A_{\lambda}}$ can be extended to an operator $S_{p}(t)$ on L^{p} for every $2 \leq p \leq \infty$
- $S_{p}(t)$ defines a consistent family of C_{0}-semigroup of contractions in $L^{p}\left(\mathbb{R}^{N}\right)$ for $2 \leq p<\infty$
- by duality $e^{t A_{\lambda}}$ can be extended to an operator on $L^{p}\left(\mathbb{R}^{N}\right)$ for every $1<p \leq 2$
Tools
$u \in D(\mathfrak{a}) \cap L^{2}\left(\mathbb{R}^{N}\right) \Longrightarrow u^{+} \in D(\mathfrak{a})$ and $\mathfrak{a}\left(u^{+}, u^{-}\right) \leq 0$ give positivity $u \in D(\mathfrak{a}) \cap L^{2}\left(\mathbb{R}^{N}\right)^{+} \Longrightarrow 1 \wedge u \in D(\mathfrak{a}), \mathfrak{a}\left(1 \wedge u,(u-1)^{+}\right) \geq 0$ give L^{∞}-contractivity

Case negative potential $c|x|^{\alpha-2}, c \leq 0$. Let $A_{0}=\left(1+|x|^{\alpha}\right) \Delta u+b|x|^{\alpha-2} x \cdot \nabla-|x|^{\beta}$, consider

$$
A_{n}-\lambda=A_{0}-\lambda-W_{n}
$$

where $W_{n}=\max \left\{-n, c|x|^{\alpha-2}\right\}$
$A_{0}-\lambda$ generates a semigroup $e^{t\left(A_{0}-\lambda\right)}$ in L^{p} (by the previous point).
The sum $A_{0}-\lambda-W_{n}$ generate a $C_{0}-$ semigroup

$$
0 \leq e^{t\left(A_{0}-\lambda-W_{n}\right)} \leq e^{t\left(A_{0}-\lambda-W_{n+1}\right)} \rightarrow S(t)=e^{t A_{\lambda}}
$$

Theorem

Let $N \geq 3, \alpha \in(0,2), \beta>0, b, c \in \mathbb{R}$. There exists $\left(A, D_{p}(A)\right)$, an extension of $\left(\mathcal{A}, \mathcal{D}_{0}\right)$, that generates an analytic C_{0}-semigroup in $L^{p}\left(\mathbb{R}^{N}\right)$ for any $1<p<\infty$.

$$
e^{t A}:=e^{\lambda t} e^{t A_{\lambda}}
$$

Remark

if $p(\alpha-2)>-N$ that is $\mathcal{A} u \in L^{p}$ for $u \in \mathcal{D}=C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$, then $\left(A, D_{p}(A)\right)$

Domain Characterization

Condition s.t. $\left(A, D_{p}(A)\right)$ coincides with the closure of $\left(\mathcal{A}, \mathcal{D}_{0}\right)$.

$$
-A=-A_{0}+c W=-\left(1+|x|^{\alpha}\right) \Delta+|x|^{\beta}+c|x|^{\alpha-2}
$$

- L. Lorenzi, A. Rhandi, '15 generation results for $\left(A_{0}, D\left(A_{0}\right)\right)$
- Okazawa perturbation theorem $-A$ m-accretive on $D\left(A_{0}\right)$
- Let $\phi=\left(1+|x|^{\alpha}\right)^{b / \alpha}$, seting $u=\frac{v}{\sqrt{\phi}}$, give the drift term $\left(1+|x|^{\alpha}\right) \Delta u+b|x|^{\alpha-2} x \cdot \nabla u-c|x|^{\alpha-2} u-|x|^{\beta} u$

Theorem

Let $0 \leq \alpha<2$ and either $1<p<\frac{N-\alpha}{2-\alpha}$ or else $p=\frac{N-\alpha}{2-\alpha}$ and

$$
\begin{equation*}
\left(\frac{N}{p}-2+\alpha\right)\left(\frac{N}{p^{\prime}}-\alpha+b\right)+c>0 \tag{5}
\end{equation*}
$$

Then the closure of (A, \mathcal{D}) coincide with $\left(A, D_{p}(A)\right)$ and generates an analytic C_{0}-semigroup.

Theorem (Okazawa)

Let A and B be linear m-accretive operators in L^{p}. Let D be a core for A and let $B_{\varepsilon}=\frac{1}{\varepsilon} B\left(\frac{1}{\varepsilon}+B\right)^{-1}$ be the Yosida approximation of B.
(i) there are constants $a_{1}, a_{2} \geq 0$ and $k_{1}>0$ s. t. for all $u \in D$

$$
\operatorname{Re}\left\langle A u, F\left(B_{\varepsilon} u\right)\right\rangle \geq k_{1}\left\|B_{\varepsilon} u\right\|_{p}^{2}-a_{2}\|u\|_{p}^{2}-a_{1}\left\|B_{\varepsilon} u\right\|_{p}\|u\|_{p}
$$

Then B is A-bounded with A-bound k_{1}^{-1} :

$$
\|B u\|_{p} \leq k_{1}^{-1}\|A u\|_{p}+k_{0}\|u\|, \quad u \in D(A) \subset D(B) .
$$

Assume further that
(ii) $\operatorname{Re}\left\langle u, F\left(B_{\varepsilon} u\right)\right\rangle \geq 0$, for all $u \in L^{p}\left(\mathbb{R}^{N}\right)$ and $\varepsilon>0$;
(iii) there is $k_{2}>0$ such that $A-k_{2} B$ is accretive.

Set $k=\min \left\{k_{1}, k_{2}\right\}$. If $t>-k$ then $A+t B$ with domain $D(A+t B)=D(A)$ is m-accretive and any core of A is also a core for $A+t B$. Furthermore, $A-k B$ is essentially m-accretive on $D(A)$.

Higher order operators

- models of elasticity, non-linear elasticity
- condensation in graphene
- free boundary problems

$$
u_{t}(t, x)=-\Delta^{2} u(t, x)
$$

Interesting mathematical features:

- no maximum principles;
- no positivity preserving properties:
$p(t, x)=t^{-\frac{1}{4}} p\left(1, t^{-\frac{1}{4}} x\right)$ with

(Davies 1995)
- no classical Markov semigroup theory (Sobolev inequalities, L^{∞}-contractivity).

Eventual positivity of $e^{-t \Delta^{2}}$

Eventual positivity: Positivity for large enough time Local eventual positivity : Eventual positivity on compact set
围 Gazzola-Grunau, Discr. Cont. Dyn. Syst., 2008
Proved that $e^{-t \Delta^{2}}$ is Individually locally eventually positive: Let $0 \leq u_{0} \in C_{c}\left(\mathbb{R}^{N}\right)$

- for any compact $K \subset \mathbb{R}^{N}, \exists T_{K}>0$ that depends on u_{0} s.t. $e^{-t \Delta^{2}} u_{0}(x)>0$ for all $t \geq T_{K}, x \in K$;
- $\exists \tau>0$ that depends on u_{0} such that for any $t>\tau, \exists x_{t} \in \mathbb{R}^{N}$ s.t. $e^{-t \Delta^{2}} u_{0}\left(x_{t}\right)<0$.
General abstract theory
Daners, D., Glück, J., Kennedy, J.B., 2016

Bi-Kolmogorov operator

D. Addona, F. Gregorio, A. Rhandi, C. T., NoDEA, 2022

Consider the Kolmogorov operator

$$
L:=\Delta+\frac{\nabla \mu}{\mu} \cdot \nabla
$$

and $A=L^{2}$ in the $L^{2}\left(\mathbb{R}^{N}, d \mu\right)=L_{\mu}^{2}$ setting

- Weighted Rellich's inequality

$$
\left(C_{0}-1\right)^{2} \int_{\mathbb{R}^{N}} \frac{|u|^{2}}{|x|^{4}} d \mu \leq \int_{\mathbb{R}^{N}}|L u|^{2} d \mu+C\|u\|_{H_{\mu}^{1}}^{2}, \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)
$$

- Generation results in L_{μ}^{2} for $-A$ via form method

$$
a_{L}(u, v):=\int_{\mathbb{R}^{N}} L u \overline{L v} d \mu, \quad u, v \in D(L)
$$

- $d \mu$ is the unique invariant measure

$$
\int_{\mathbb{R}^{N}} e^{-t A} f d \mu=\int_{\mathbb{R}^{N}} f d \mu, \quad f \in L_{\mu}^{2}
$$

- Domain characterization $D(L)=H^{2}\left(\mathbb{R}^{N}, d \mu\right), D(A)=H^{4}\left(\mathbb{R}^{N}, d \mu\right)$
- Asymptotic properties and eventually positivity of $e^{-t A}$
- Heat kernel of bi-Ornstein-Ulhenbeck semigroup

$$
\mu(x)=(2 \pi)^{-\frac{N}{2}} e^{-\frac{|x|^{2}}{2}} \text { and } L u=\Delta u-x \cdot \nabla u
$$

Analysis of $\left(e^{-t A}\right)_{t \geq 0}$ and asymptotic behavior

Proposition

0 is an eigenvalue of A, and the corresponding eigenspace consists of constant functions.

Proposition

μ is ergodic with respect to the semigroup $\left(e^{-t A}\right)_{t \geq 0}$

$$
L^{2}-\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} e^{-s A} f d s=\int_{\mathbb{R}^{N}} f d \mu, \quad f \in L_{\mu}^{2}\left(\mathbb{R}^{N}\right)
$$

Proposition

For $f \in L_{\mu}^{2}$ one has

$$
L_{\mu}^{2}-\lim _{t \rightarrow \infty} e^{-t A} f=\int_{\mathbb{R}^{N}} f d \mu\left(=P_{\infty} f\right)
$$

Eventual positivity and Asymptotic behaviour of $e^{-t A}$

- Spectral properties \Longrightarrow Individual asymptotic positivity

$$
f \in L_{\mu}^{2}\left(\mathbb{R}^{N}\right)_{+} \Rightarrow \lim _{t \rightarrow+\infty} \operatorname{dist}\left(e^{-t A} f, L_{\mu}^{2}\left(\mathbb{R}^{N}\right)_{+}\right)=0
$$

- Asymptotic behaviour \Longrightarrow asymptotically irreducible

$$
\begin{array}{r}
f \in L_{\mu}^{2}\left(\mathbb{R}^{N}\right)_{>} \Rightarrow \lim _{t \rightarrow+\infty} \operatorname{dist}\left(e^{-t A} f, L_{\mu}^{2}\left(\mathbb{R}^{N}\right)_{>}\right)=0 \\
L_{\mu}^{2}\left(\mathbb{R}^{N}\right)_{>}:=\left\{f \in L_{\mu}^{2}\left(\mathbb{R}^{N}\right)_{+}: \exists A,|A|>0, f(x)>0 x \in A\right\}
\end{array}
$$

Eventual positivity and Asymptotic behaviour of $e^{-t A}$

- Locally uniformly eventually positivity.
$K \subset \mathbb{R}^{N}$ compact, $\exists t_{0}>0$ s.t. $\forall f \in L_{\mu}^{2}(K)>\exists c>0$

$$
e^{-t A}\left(\chi_{K} f\right)(x) \geq c, \quad t \geq t_{0}, \text { a.e. in } x \in K
$$

By recent results by Arora, 2022

Proposition

Assume that
i) there exists $n \in \mathbb{N}$ such that $D\left(A^{n}\right) \subset L_{\text {loc }}^{\infty}(\mathbb{R})$
ii) 0 is a simple pole for $\sigma(-A)$.
then the semigroup is locally uniformly eventually positive.

Sobolev embedding, more regularity assumption on $\mu \Longrightarrow i$) A has compact resolvent, 0 eigenvalue, 1 - dim eigenspace $\Longrightarrow i i$)

The bi-Ornstein-Uhlenbeck operator

$$
\begin{aligned}
& \mu(x)=(2 \pi)^{-N / 2} e^{-|x|^{2} / 2} \Longrightarrow \\
& \Longrightarrow \\
& A u= \Delta u-x \cdot \nabla u \\
& A u= \Delta^{2} u-2 x \cdot \nabla(\Delta u)+\operatorname{Tr}\left(x \otimes x D^{2} u\right) \\
& \quad-2 \Delta u+x \cdot \nabla u
\end{aligned}
$$

[Lunardi 1997] $\Longrightarrow D(L)=H_{\mu}^{2}\left(\mathbb{R}^{N}\right)$.
Characterization of domain $\Longrightarrow D(A)=H_{\mu}^{4}\left(\mathbb{R}^{N}\right)$.
Remark The bi-Ornstein-Uhlenbeck operator require $N \geq 5$

Heat kernel of bi-Ornstein-Uhlenbeck

$$
\begin{gathered}
e^{-t A} f(x)=\int_{\mathbb{R}^{N}} k(t, x, y) f(y) d y \\
=\sqrt{2}(8 \pi)^{-\frac{N+1}{2}} \int_{0}^{\infty} e^{-\frac{s^{2}}{4}}(\sin (s \sqrt{t}))^{-N / 2} e^{-\frac{\left|e^{-i s \sqrt{t}} x-y\right|^{2}}{8}} \\
\cos \left(\frac{N}{2}\left(s \sqrt{t}-\frac{\pi}{2}\right)+\frac{\left|e^{-i s \sqrt{t}} x-y\right|^{2}}{8 \tan (s \sqrt{t})}\right) d s
\end{gathered}
$$

If L generate an analytic semigroup $T(t)$ of angle ϑ then $e^{ \pm i \vartheta} L$ generate the C_{0}-semigroup $T\left(e^{ \pm i \vartheta} s\right)$ called "Boundary" semigroup. If the angle is $\frac{\pi}{2}$ then $\pm i L$ generate the semiroups $T(\pm i s)$ and then $i L$ generates a group T (is) for $s \in \mathbb{R}$.
Then $(i L)^{2}=-A$ generate a semigroup, and the kernel is given by

$$
e^{-t A}=\int_{\mathbb{R}} \frac{1}{(4 \pi t)^{1 / 2}} e^{-\frac{|s|^{2}}{4 t}} T(i s) d s
$$

Many thanks

