Notes on oscillating semigroups

András Bátkai

HOUSTON JOURNAL OF MATHEMATICS

Volume 21, No. 2, 1995

A CHARACTERIZATION OF WEAKLY OSCILLATING C_0 -SEMIGROUPS

UWE STROINSKI
Communicated by the editors.

Definition 1.1. A function $u \in C(\mathbb{R}_+, \mathbb{R})$ oscillates if u has arbitrarily large zeros, i. e., for all $t_1 > 0$ there exists $t_2 > t_1$ with $u(t_2) = 0$.

Definition 1.1. A function $u \in C(\mathbb{R}_+, \mathbb{R})$ oscillates if u has arbitrarily large zeros, i. e., for all $t_1 > 0$ there exists $t_2 > t_1$ with $u(t_2) = 0$.

Definition 1.2. (Weak oscillation of C_0 -semigroups). A strongly continuous semigroup T on a Banach space X oscillates with respect to a subset Φ of X' if $\langle \varphi, T(\cdot)x \rangle$ oscillates (in sense of Definition 1.1) for all $\varphi \in \Phi$ and all $x \in X$. We call T weakly oscillating if it oscillates with respect to X'.

Definition 1.1. A function $u \in C(\mathbb{R}_+, \mathbb{R})$ oscillates if u has arbitrarily large zeros, i. e., for all $t_1 > 0$ there exists $t_2 > t_1$ with $u(t_2) = 0$.

Definition 1.2. (Weak oscillation of C_0 -semigroups). A strongly continuous semigroup T on a Banach space X oscillates with respect to a subset Φ of X' if $\langle \varphi, T(\cdot)x \rangle$ oscillates (in sense of Definition 1.1) for all $\varphi \in \Phi$ and all $x \in X$. We call T weakly oscillating if it oscillates with respect to X'.

Proposition 2.1. (Necessary condition for weak oscillation). Let (A, D(A)) be the generator of a strongly continuous semigroup T on a Banach space X and let Φ be a subset of X' such that

(1) Φ separates the points of X.

If T weakly oscillates with respect to Φ , then $P\sigma(A) \cap \mathbb{R} = \emptyset$.

 $\mathcal{O}(\Phi,A) := \Big\{ (\varphi,x) : \varphi \in \Phi, x \in X, \liminf_{\lambda \downarrow -\infty} e^{\alpha \lambda} \langle \varphi, R(\lambda,A) x \rangle = \infty \text{ for all } \alpha \in \mathbb{R} \Big\}.$

(Theorem 2.2. Sufficient condition for weak oscillation). Let (A, D(A)) be the generator of a strongly continuous semigroup T on a Banach space X and let Φ be a subset of X'. If

(3)
$$\sigma(A) \cap \mathbb{R} = \emptyset$$
, and if

(4)
$$\langle \varphi, T(\cdot)x \rangle$$
 oscillates for each $(\varphi, x) \in \mathcal{O}(\Phi, A)$,

then T weakly oscillates with respect to Φ .

Journal of Differential Equations 180, 171–197 (2002) doi:10.1006/jdeq.2001.4051, available online at http://www.idealibrary.com on IDEAL®

Oscillation Theory of Linear Systems

Jacek Tabor

Institute of Mathematics, Jagiellonian University, Reymonta 4 st., 30-059 Kraków, Poland E-mail: tabor@im.uj.edu.pl

Received August 3, 2000

DEFINITION 1.1. We say that a function $f: \mathbb{T}_+ \to \mathbb{R}$ strongly oscillates if for every $t \in \mathbb{T}_+$ such that $f(t) \neq 0$ there exists $s \in \mathbb{T}_+$, s > t such that f(s) f(t) < 0.

DEFINITION 1.2. A function $f: \mathbb{T}_+ \to X$ strongly oscillates if for every $\xi \in X^*$ the function $\xi \circ f: \mathbb{T}_+ \to \mathbb{R}$ strongly oscillates.

DEFINITION 1.1. We say that a function $f: \mathbb{T}_+ \to \mathbb{R}$ strongly oscillates if for every $t \in \mathbb{T}_+$ such that $f(t) \neq 0$ there exists $s \in \mathbb{T}_+$, s > t such that f(s) f(t) < 0.

Definition 1.2. A function $f: \mathbb{T}_+ \to X$ strongly oscillates if for every $\xi \in X^*$ the function $\xi \circ f: \mathbb{T}_+ \to \mathbb{R}$ strongly oscillates.

wedge W in X a closed convex subset of X such that $\alpha W = W$

$$wedge(A) := cl \left\{ \sum \alpha_i a_i \mid \alpha_i \in \mathbb{R}_+, a_i \in A \right\}.$$

A wedge V is called a *cone* if $V \cap -V = \{0\}$.

DEFINITION 1.1. We say that a function $f: \mathbb{T}_+ \to \mathbb{R}$ strongly oscillates if for every $t \in \mathbb{T}_+$ such that $f(t) \neq 0$ there exists $s \in \mathbb{T}_+$, s > t such that f(s) f(t) < 0.

DEFINITION 1.2. A function $f: \mathbb{T}_+ \to X$ strongly oscillates if for every $\xi \in X^*$ the function $\xi \circ f: \mathbb{T}_+ \to \mathbb{R}$ strongly oscillates.

wedge W in X a closed convex subset of X such that $\alpha W = W$

$$wedge(A) := cl \left\{ \sum \alpha_i a_i \mid \alpha_i \in \mathbb{R}_+, a_i \in A \right\}.$$

A wedge V is called a *cone* if $V \cap -V = \{0\}$.

THEOREM 2.1. Let $T: \mathbb{T} \times X \to X$ be a linear semidynamical system. Let $x \in X$. Then $x \in X$ strongly oscillates if and only if

$$-x \in wedge(orb_T(x)). \tag{6}$$

THEOREM 3.1. Let $A \in \mathcal{L}(X)$ be such that

$$\sigma(A) \cap \mathbb{R}_+ = \emptyset$$
.

Then every point of X strongly oscillates in the discrete semidynamical system generated by A.

COROLLARY 3.1. Let T be a uniformly continuous semigroup and let $A \in \mathcal{L}(X)$ be its generator. If $\sigma(A) \cap \mathbb{R} = \emptyset$ then every point in X strongly oscillates.

THEOREM 4.1. Let T be a strongly continuous semigroup and let A denote its generator. We assume that $\sigma(A) \cap \mathbb{R} = \emptyset$. Then there exists a residual subset S of X such that every point of S strongly oscillates.

THEOREM 4.1. Let T be a strongly continuous semigroup and let A denote its generator. We assume that $\sigma(A) \cap \mathbb{R} = \emptyset$. Then there exists a residual subset S of X such that every point of S strongly oscillates.

THEOREM 4.2. Let T be a strongly continuous group and let the generator A of T satisfy $\sigma(A) \cap \mathbb{R} = \emptyset$. Then every point of X strongly oscillates.

DEFINITION 4.1. Let $f: \mathbb{R}_+ \to \mathbb{R}$. We say that f is *integrally small* if

$$\lim_{r \to \infty} \int_0^r f(t) e^{kt} dt \text{ exists for every } k \in \mathbb{R}.$$

Theorem 4.3. Let T be a strongly continuous semigroup and let A be the generator of T. We assume that

$$\sigma(A) \cap \mathbb{R} = \emptyset$$
.

Let $x \in X$ and $\xi \in X^*$ be such that $\xi(T(\cdot) x)$ is eventually nonnegative. Then x is ξ -integrally small.

 $\xi \circ f$ is integrally small.

Portugal. Math. (N.S.) Vol. 72, Fasc. 2-3, 2015, 193–206 DOI 10.4171/PM/1964

Portugaliae Mathematica

© European Mathematical Society

On the strong oscillatory behavior of all solutions to some second order evolution equations

Alain Haraux

(Communicated by Hugo Beirão da Veiga and José Francisco Rodrigues)

Definition 1.1. We say that a number M > 0 is a strong oscillation length for a numerical function $g \in L^1_{loc}(\mathbb{R})$ if the following alternative holds: either g(t) = 0 almost everywhere, or for any interval J with $|J| \ge M$, we have

 $\max\{t \in J, f(t) > 0\} > 0$ and $\max\{t \in J, f(t) < 0\} > 0$.

Definition 1.1. We say that a number M > 0 is a strong oscillation length for a numerical function $g \in L^1_{loc}(\mathbb{R})$ if the following alternative holds: either g(t) = 0 almost everywhere, or for any interval J with $|J| \ge M$, we have

$$\max\{t \in J, f(t) > 0\} > 0$$
 and $\max\{t \in J, f(t) < 0\} > 0$.

$$u'' + Au(t) = 0,$$

Proposition 1.2. Under the above conditions on H, V and A, for any solution $u \in C(\mathbb{R}, V) \cap C^1(\mathbb{R}, H)$ of (1.1) and for any $\zeta \in V'$, the function $g(t) := \langle \zeta, u(t) \rangle$ has some finite strong oscillation number $M = M(u, \zeta)$.

Proposition 2.1. Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be the sequence of eigenvalues of A repeated according to multiplicity and setting $\mu_n := \{\lambda_n\}^{1/2}$, assume that

$$T=2\pi\sum_{n}\frac{1}{\mu_{n}}<\infty$$

Then for any solution $u \in C(\mathbb{R}, V) \cap C^1(\mathbb{R}, H)$ of (1.1) and any $\zeta \in V'$, the function $g(t) := \langle \zeta, u(t) \rangle$ has a strong oscillation length equal to T.

Oscillation is robust under small perturbations

