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H Hilbert space, S(H) the set of all linear
bounded self-adjoint operators on H

The usual partial order on S(H):

A ≤ B ⇐⇒
〈Ax, x〉 ≤ 〈Bx, x〉 for every x ∈ H
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The finite-dimensional case:

Hn the set of all n×n hermitian matrices

A = U


t1 0 . . . 0
0 t2 . . . 0
... ... . . . ...
0 0 . . . tn

 U ∗

A ≥ 0 ⇐⇒
all eigenvalues of A are non-negative.

A ≤ B ⇐⇒ B − A ≥ 0
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Molnár’s theorem:

THEOREM φ : Hn → Hn a bijective map
such that

A ≤ B ⇐⇒ φ(A) ≤ φ(B).

Then there exist an invertible matrix T
and B ∈ Hn such that either

φ(A) = TAT ∗ + B

for every A ∈ Hn, or

φ(A) = TAtrT ∗ + B

for every A ∈ Hn.
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M = {(x, y, z, t) : x, y, z, t ∈ R}

(x1, y1, z1, t1), (x2, y2, z2, t2) ∈M coherent

m
(x1−x2)2+(y1−y2)2+(z1−z2)2 = c2(t1−t2)2

In mathematical foundations of relativity
we usually use the harmless normalization
c = 1.

Two space-time events are coherent (light-
like) ⇐⇒ a light signal can be sent from
one to the other

Alexandrov: description of bijective maps
on M preserving coherency in both direc-
tions

r = (x, y, z, t)↔
[
t + z x + iy
x− iy t− z

]
= A
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A ∈ H2

detA = t2 − z2 − x2 − y2

r1, r2 ∈M, rj ↔ Aj

r1, r2 coherent ⇐⇒ det(A2 − A1) = 0

m
A2 − A1 singular

m
A1 = A2 or A1 and A2 adjacent

A1, A2 adjacent ⇐⇒ rank (A1−A2) = 1

Thus, Alexandrov problem = study of ad-
jacency preservers on H2
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A,B ∈ Hn, A 6= B. TFAE:

� A,B adj.

� A,B comparable and if C,D belong
to operator interval between A and B,
then C and D comparable.

Proof. (⇓)
B = A + tP , say t > 0 ⇒ A ≤ B

[A,B] = {A + sP : 0 ≤ s ≤ t}

C,D ∈ [A,B]⇒ C = A+s1P,D = A+s2P.

(⇑) A,B not adjacent
If A,B not comparable, done.
If comparable, WLOG A ≤ B. rank (B−
A) ≥ 2 ⇒ “enough room” to find two
noncomparable in [A,B].
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Effect algebra En:

En = {A ∈ Hn : 0 ≤ A ≤ I}

Orthocomplementation on En:

A ∈ En : A⊥ = I − A

THEOREM (Ludwig, characterization of
ortho-order automorphisms of En).
φ : En → En a bijective map such that

A ≤ B ⇐⇒ φ(A) ≤ φ(B)

and
φ(A⊥) = φ(A)⊥.

Then there exists a unitary matrix U such
that either

φ(A) = UAU ∗

for every A ∈ En, or

φ(A) = UAtrU ∗

for every A ∈ En.
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Molnár: bijectivity + order preserving

Ludwig: bijectivity + order preserving +
orthocomplementation preserving

CONJECTURE. φ : En → En a bijective
map such that

A ≤ B ⇐⇒ φ(A) ≤ φ(B).

Then there exists a unitary matrix U such
that either

φ(A) = UAU ∗

for every A ∈ En, or

φ(A) = UAtrU ∗

for every A ∈ En.

Wrong!
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p a real number, p < 1.

fp : [0, 1]→ [0, 1]

fp(x) =
x

px + (1− p)
, x ∈ [0, 1].

THEOREM. n ≥ 2. φ : En → En bijec-
tive.

A ≤ B ⇐⇒ φ(A) ≤ φ(B)

⇓
∃p, q ∈ (−∞, 1), ∃ an invertible matrix
T with ‖T‖ ≤ 1 such that either

φ(A) =

= fq

(
(fp(TT

∗))−1/2 fp(TAT
∗) (fp(TT

∗))−1/2
)
,

or
φ(A) =

= fq

(
(fp(TT

∗))−1/2 fp(TA
trT ∗) (fp(TT

∗))−1/2
)
.
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Next problem?

A,B ∈ Hn, A < B.

[A,B] = {C ∈ Hn : A ≤ C ≤ B},

[A,B) = {C ∈ Hn : A ≤ C < B},

(A,B) = {C ∈ Hn : A < C < B}.

[A,∞) = {C ∈ Hn : C ≥ A},

(A,∞) = {C ∈ Hn : C > A},

(−∞,∞) = Hn

(A,B], (−∞, A], (−∞, A)
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Which of the above operator intervals are
order isomorphic?

The general form of all order isomorphisms
between operator intervals that are order
isomorphic?

Each operator interval J is isomorphic to
one of the following operator intervals:

[0, I ]
[0,∞)
(−∞, 0]
(0,∞)
(−∞,∞)

And any two of these operator intervals
are order non-isomorphic.
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The operator intervals [0,∞) and (−∞, 0]
are obviously order anti-isomorphic. Hence,
to understand the structure of all order
isomorphisms between any two order iso-
morphic operator intervals it is enough to
describe the general form of order auto-
morphisms of the following four operator
intervals:

[0, I ]
[0,∞)
(0,∞)
(−∞,∞)
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The group of order automorphisms of [0, I ]
and (−∞,∞): previous slides

THEOREM φ : [0,∞) → [0,∞) a bijec-
tive map such that

A ≤ B ⇐⇒ φ(A) ≤ φ(B).

Then there exists an invertible matrix T
such that either

φ(A) = TAT ∗

for every A ∈ [0,∞), or

φ(A) = TAtrT ∗

for every A ∈ [0,∞).
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THEOREM φ : (0,∞)→ (0,∞) a bijec-
tive map such that

A ≤ B ⇐⇒ φ(A) ≤ φ(B).

Then there exists an invertible matrix T
such that either

φ(A) = TAT ∗

for every A ∈ (0,∞), or

φ(A) = TAtrT ∗

for every A ∈ (0,∞).
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Groups of automorphisms:

� [0,∞), (0,∞): simple.

� (−∞,∞): simple.

� [0, I ] more complicated? NO.
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Questions:

0 ≤ A ≤ B ⇒ A2 ≤ B2 ?

0 ≤ A ≤ B ⇒ A1/2 ≤ B1/2 ?
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f : (a, b) → R operator monotone if for
all n

∀A,B ∈ Hn, σ(A), σ(B) ⊂ (a, b) :

A ≤ B ⇒ f (A) ≤ f (B)

TH (Loewner). f : (a, b)→ R operator
monotone ⇐⇒ f has an analytic con-
tinuation to the upper half-plane Π which
maps Π into itself.

B. Simon, Loewner’s theorem on mono-
tone matrix functions, Grundlehren Math.
Wissen. 354, Springer, 2019.

17



Thus,

0 ≤ A ≤ B 6⇒ A2 ≤ B2

0 ≤ A ≤ B ⇒ A1/2 ≤ B1/2
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THEOREM. Let U ⊂ S(H) be an opera-
tor domain. The following conditions are
equivalent for a map φ : U → S(H).

� The map φ is a local order isomorphism.

� The map φ has a unique continuous ex-
tension to U ∪ Π(H) that maps Π(H)
biholomorphically onto itself.

operator domain
local order isomorphism
Π(H)
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Uniqness principle

Maximal loc ord isomorphisms

Equivalence relation: φ = ξ1 ◦ ψ ◦ ξ2
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ÛA := {X ∈ S(H) : XA+I is invertible}

0 ∈ UA, the connected component of ÛA
in S(H).

ΦA : UA → S(H)

ΦA(X) = (XA + I)−1X.

ΦA bijection of UA onto U−A, max loc ord
isomorphism
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Each maximal loc ord isomorphism equiv-
alent to some ΦA.
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Finite-dimensional case:

U(m, p) = {X ∈ Hn : X11 ∈ Hm(p)}.
Clearly, U(m, p) is a matrix domain in
Hn. Define a map φm,p : U(m, p) →
U(m,m− p):
For

X =

[
X11 X12

X∗12 X22

]
∈ U(m, p)

φm,p(X) =[
−X−111 iX−111 X12

−iX∗12X−111 X22 −X∗12X−111 X12

]
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−

X11 X12 0
X∗12 X22 iI

0 −iI 0

−1

=

 −X−111 0 iX−111 X12

0 0 −iI
−iX∗12X−111 iI X22 −X∗12X−111 X12


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X → X

X → −X−1
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