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H Hilbert space, S(H) the set of all linear

bounded self-adjoint operators on H

The usual partial order on S(H):

A< B <—
(Ax,x) < (Bz,z) for every x € H



The finite-dimensional case:

H,, the set of all n x n hermitian matrices

t1 0 ... 0
10 0 ... ]
A>0) <

all eigenvalues of A are non-negative.

A<B < B—-A2>0



Molnar’s theorem:

THEOREM ¢ : H, — H, a bijective map
such that

A< B < ¢(A) < ¢(B).

Then there exist an invertible matrix 1
and B € H,, such that either

¢(A)=TAT" + B
for every A € H,, or

p(A)=TA"T* + B
for every A € H,,.



M ={(x,y,2,t) : z,y,2,t € R}

(1, Y1, 21, t1), (X2, Y2, 22, t2) € M coherent

0

($1—$2)2+<yl—y2>2+(21—22>2 — 02(751—?52)2

In mathematical foundations of relativity
we usually use the harmless normalization
c=1.

Two space-time events are coherent (light-
like) <= a light signal can be sent from
one to the other

Alexandrov: description of bijective maps
on M preserving coherency in both direc-
tions

t+ 2 :1:+7jy] _ 4

P (st o |00 A
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Ae H,

det A = t* — 2% — 2% — ¢*

ri,ro € M, 14 A

r1,T9 coherent <= det(As — A1) =0

0

Ay — A singular

0

Ay =Ay or A; and Ay adjacent

A1, As adjacent <= rank (A1 —Ay) =1

Thus, Alexandrov problem = study of ad-
jacency preservers on Ho



A,Be H, A+ B. TFAE:
e A B adj.
e A, B comparable and if C, D belong

to operator interval between A and B,
then C' and D comparable.

Proof. ({})
B=A4+tP sayt>0=A<B

A, B]={A+sP : 0<s<t}

C.D € [A,B]?C:A—FSlP,D:A—I-SQP.

(1) A, B not adjacent
If A, B not comparable, done.

If comparable, WLOG A < B. rank (B —
A) > 2 = “enough room” to find two
noncomparable in [A, B].



Effect algebra FE),:

E,={AceH, 0<ALI}

Orthocomplementation on F,,;:

A€eE,: At=1—-A

THEOREM (Ludwig, characterization of

ortho-order automorphisms of F,).
¢ . B, — E, a bijective map such that

A< B < ¢(A) < ¢(B)
and
A(AT) = o(A).
Then there exists a unitary matrix U such
that either

o(A) =UAU"
for every A € E,,, or

P(A) =UA"U*
for every A € E,,.



Molnar: bijectivity + order preserving

Ludwig: bijectivity + order preserving -+
orthocomplementation preserving

CONJECTURE. ¢ : E,, — E,, a bijective
map such that

A< B < ¢(A) < ¢(B).

Then there exists a unitary matrix U such
that either

o(A) =UAU"
for every A € E,,, or

p(A) = UA"U*
for every A € E,,.

Wrong!



p a real number, p < 1.

f»:10,1] — |0, 1]
fr(x) = T r € |0,1].

THEOREM. n > 2. ¢ : E, = E, bijec-

tive.
A< B <= ¢(A) < ¢(B)
Y

dp,q € (—o0,1), 3 an invertible matrix
T with ||T|| <1 such that either

o(A) =
— Jo (TN F (AT (f(TT7) 7).

or

6(A) =
— fo (T )™ f (AT (f(TT7) )
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Next problem?

A BcH, A<B.

[A,B]={CecH,  A<C<B},
AB)={C€H, : A<C< B},
(A,B)={C€H,: A<C < B}.
[A,0)={C € H, : C> A}
(A,00) = {C € H, : C> A},
(—00,00) = H,

(A, B], (—o00, A], (—00, A)
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Which of the above operator intervals are
order isomorphic?

The general form of all order isomorphisms
between operator intervals that are order
isomorphic?

Each operator interval J is isomorphic to
one of the following operator intervals:

And any two of these operator intervals
are order non-isomorphic.
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The operator intervals [0, co) and (—oo, 0]
are obviously order anti-isomorphic. Hence,
to understand the structure of all order
isomorphisms between any two order iso-
morphic operator intervals it is enough to
describe the general form of order auto-
morphisms of the following four operator
intervals:
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The group of order automorphisms of [0, ]
and (—o00,00): previous slides

THEOREM ¢ : [0,00) — [0, 00) a bijec-
tive map such that

A< B < ¢(A) < ¢(B).

Then there exists an invertible matrix 1T’
such that either

S(A) = TAT*

20), 0

for every A € [0,
P(A) = TA“”T*
[

for every A € |0, 00).
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THEOREM ¢ : (0,00) — (0,00) a bijec-
tive map such that

A< B < ¢(A) < ¢(B).

Then there exists an invertible matrix 1’
such that either

d(A) =TAT"

(0,00), 0
¢(A) AtrT*
for every A € (0, c0).

for every A €
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Groups of automorphismes:
e 0,00), (0,00): simple.
e (—00,00): simple.

e |0, I| more complicated? NO.
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Questions:

0<A<B= A*< B*?

0<A<B= A2 < BY2?
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f : (a,b) — R operator monotone if for
all n

VA,B € H,, o(A),0(B) C (a,b) :
A< B= f(A) < f(B)
TH (Loewner). f: (a,b) — R operator
monotone <= f has an analytic con-

tinuation to the upper half-plane II which
maps Il into itself.

B. Simon, Loewner’s theorem on mono-
tone matrix functions, Grundlehren Math.
Wissen. 354, Springer, 2019.
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Thus,
0<A<B# A*< B?

0< A< B= A2 < BY?
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THEOREM. Let U C S(H) be an opera-
tor domain. The following conditions are
equivalent for a map ¢ : U — S(H).

e The map ¢ is a local order isomorphism.

e The map ¢ has a unique continuous ex-
tension to U U II(H) that maps I1(H)
biholomorphically onto itself.

operator domain
local order isomorphism

[1(H)
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Unigness principle
Maximal loc ord isomorphisms

FEquivalence relation: ¢ = & o1 o0&y
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Uy :={X € S(H) : XA+I is invertible}

0 € Uy, the connected component of Uy
in S(H).

(I)A ) UA — S(H)
P X)=( XA+ X

® 4 bijection of U4 onto U_ 4, max loc ord
isomorphism
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Each maximal loc ord isomorphism equiv-
alent to some P 4.
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Finite-dimensional case:

U(m,p) = {X ec H, : Xq1 € Hm<[)>}

Clearly, U(m,p) is a matrix domain in
H,. Define a map ¢, : Um,p) —

U(m,m — p):
For
X117 Xq9
X = | . c U(m,
[ X XQJ (m, p)
¢m,p(X) —

[ - X! iX ' X ]
i X5HX 0 X — X5 X 7 X1
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- _x!
0

(X11 X192 0]

X7, Xop il
0 —il 0]
0 X' X
0 —l

—i XX i X — XX X
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X — X

X o5 —x!
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