Recent progress in Banach lattices

Pedro Tradacete

Instituto de Ciencias Matemáticas (ICMAT), Madrid

POSITIVITY XI
Ljubljana
10 July 2023

Based on recent collaborations with A. Avilés, D. de Hevia, G. Martínez-Cervantes, T. Oikhberg, J. Rodríguez, A. Rueda Zoca, M. A. Taylor, V. G. Troitsky...

$$
\text { Banach lattice }=\text { Banach space }+ \text { vector lattice }+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]
$$

Banach space properties

$$
\text { Banach lattice }=\text { Banach space }+ \text { vector lattice }+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]
$$

T lattice homomorphism: T linear $+|T x|=T|x|$

Banach lattice $=$ Banach space + vector lattice $+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]$
T lattice homomorphism: T linear $+|T x|=T|x|$

Banach space properties

Banach lattice properties

Reflexive

Weakly sequentially complete

Banach lattice $=$ Banach space + vector lattice $+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]$
T lattice homomorphism: T linear $+|T x|=T|x|$

Banach space properties

Reflexive

Banach lattice properties
No c_{0}, ℓ_{1} sublattices

Banach lattice $=$ Banach space + vector lattice $+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]$
T lattice homomorphism: T linear $+|T x|=T|x|$

Banach space properties

Reflexive

Weakly sequentially complete

Banach lattice properties

No c_{0}, ℓ_{1} sublattices
No c_{0} sublattices

Banach lattice $=$ Banach space + vector lattice $+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]$
T lattice homomorphism: T linear $+|T x|=T|x|$

Banach space properties

Reflexive

Weakly sequentially complete
Type / cotype

Banach lattice properties
No c_{0}, ℓ_{1} sublattices
No c_{0} sublattices
Convexity / concavity

Lattice vs. linear embeddings

Theorem (Meyer-Nieberg 1973)

c_{0} has a linear embedding in a Banach lattice $\Leftrightarrow c_{0}$ embeds as a sublattice.

Lattice vs. linear embeddings

Theorem (Meyer-Nieberg 1973)

c_{0} has a linear embedding in a Banach lattice $\Leftrightarrow c_{0}$ embeds as a sublattice.

> Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)
> $C[0,1]$ has a linear embedding in a Banach lattice $\Leftrightarrow C[0,1]$ embeds as a sublattice.

Lattice vs. linear embeddings

Theorem (Meyer-Nieberg 1973)

c_{0} has a linear embedding in a Banach lattice $\Leftrightarrow c_{0}$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)
$C[0,1]$ has a linear embedding in a Banach lattice $\Leftrightarrow C[0,1]$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)
X separable Banach lattice. TFAE:
(1) X has a lattice embedding in a Banach lattice whenever there is a linear embedding.
(2) X is a sublattice of $C[0,1]$.

Lattice vs. linear embeddings

Theorem (Meyer-Nieberg 1973)

c_{0} has a linear embedding in a Banach lattice $\Leftrightarrow c_{0}$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)
$C[0,1]$ has a linear embedding in a Banach lattice $\Leftrightarrow C[0,1]$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)
X separable Banach lattice. TFAE:
(1) X has a lattice embedding in a Banach lattice whenever there is a linear embedding.
(2) X is a sublattice of $C[0,1]$.

Question: non-separable case?

Complemented subspaces

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_{1} or $C(K)$?

Complemented subspaces

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_{1} or $C(K)$? space isomorphic to a Banach lattice must be a sublattice of some $C(K)$ space.

Complemented subspaces

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_{1} or $C(K)$?
Theorem (Abramovich-Wojtaszyk 1975)
\mathcal{L}_{1} space isomorphic to a Banach lattice must be an $L_{1}(\mu)$ space.

Complemented subspaces

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_{1} or $C(K)$?
Theorem (Abramovich-Wojtaszyk 1975)
\mathcal{L}_{1} space isomorphic to a Banach lattice must be an $L_{1}(\mu)$ space.
\mathcal{L}_{∞} space isomorphic to a Banach lattice must be a sublattice of some $C(K)$ space.

Complemented subspaces

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_{1} or $C(K)$?
Theorem (Abramovich-Wojtaszyk 1975)
\mathcal{L}_{1} space isomorphic to a Banach lattice must be an $L_{1}(\mu)$ space.
\mathcal{L}_{∞} space isomorphic to a Banach lattice must be a sublattice of some $C(K)$ space.

Theorem (Benyamini 1973)
Every separable sublattice of $C(K)$ is isomorphic to some $C(L)$.

Complemented subspaces

Theorem (Plebanek-Salguero 2022)
There exist a (non-separable) space $P S_{2}$ which is 1-complemented in certain $C(K)$ but not isomorphic to any $C(L)$.

Complemented subspaces

Theorem (Plebanek-Salguero 2022)
There exist a (non-separable) space $P S_{2}$ which is 1-complemented in certain $C(K)$ but not isomorphic to any $C(L)$.

Theorem (de Hevia-MartínezCervantes-Salguero-T)
$P S_{2}$ is not isomorphic to any Banach lattice.

Complemented subspaces

Theorem (Plebanek-Salguero 2022)
There exist a (non-separable) space $P S_{2}$ which is 1-complemented in certain $C(K)$ but not isomorphic to any $C(L)$.

Theorem (de Hevia-MartínezCervantes-Salguero-T)
$P S_{2}$ is not isomorphic to any Banach lattice.

More details in David's talk after the coffee break...

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry,
The free Banach lattice generated by a Banach space

 Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry, $\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}FBL[E]

moreover, $\|\hat{T}\|=\|T\|$.

- $F B L[E]$ for every Banach space E. [Avilés-Rodríguez-T, 2018]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry, $\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}
moreover, $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry, $\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}
moreover, $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- $F B L[E]$ for every Banach space E. [Avilés-Rodríguez-T, 2018]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry, $\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}
moreover, $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL $\langle L\rangle$ for every lattice L. [Avilés-RodríguezAbellán, 2019]

The free Banach lattice generated by a Banach space Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry, $\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}

moreover, $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- $F B L[E]$ for every Banach space E. [Avilés-Rodríguez-T, 2018]
- $F B L\langle L\rangle$ for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

The free Banach lattice generated by a Banach space Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry,
$\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}

moreover, $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- $F B L[E]$ for every Banach space E. [Avilés-Rodríguez-T, 2018]
- $F B L\langle L\rangle$ for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]

The free Banach lattice generated by a Banach space Let E be a Banach space. $\quad F B L[E]$ is a Banach lattice with $\delta: E \rightarrow F B L[E]$ linear isometry,
$\forall X$ Banach lattice and $T: E \rightarrow X \exists$! lattice homomorphism \hat{T}

moreover, $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- $F B L[E]$ for every Banach space E. [Avilés-Rodríguez-T, 2018]
- $F B L\langle L\rangle$ for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Every linear operator $T: E \rightarrow F$ between Banach spaces extends uniquely to a lattice homomorphism \bar{T} as follows

Theorem (OTTT)
Suppose $\iota: E \hookrightarrow F$. $\bar{\iota}(F B L[E])$ is a sublattice of $F B L[F] \Leftrightarrow$ every operator $S: E \rightarrow \ell_{1}^{n}$ admits a norm-preserving extension $\tilde{S}: F \rightarrow \ell_{1}^{n}$.

Every linear operator $T: E \rightarrow F$ between Banach spaces extends uniquely to a lattice homomorphism \bar{T} as follows

$$
\begin{aligned}
& F B L[E]--_{-}^{\bar{T}_{-}} \rightarrow F B L[F] \\
& \underset{T}{\delta_{E} \uparrow}{ }_{T}{ }^{\delta_{F} \uparrow} \uparrow
\end{aligned}
$$

Theorem (Oikhberg-Taylor-T-Troitsky)

(1) T is injective iff \bar{T} is injective.
(2) T is surjective iff \bar{T} is surjective.

Theorem (OTTT)

Suppose $\iota: E \hookrightarrow F$. $\bar{\iota}(F B L[E])$ is a sublattice of $F B L[F] \Leftrightarrow$ every operator $S: E \rightarrow \ell_{1}^{n}$ admits a norm-preserving extension $\tilde{S}: F \rightarrow \ell_{1}^{n}$.

Every linear operator $T: E \rightarrow F$ between Banach spaces extends uniquely to a lattice homomorphism \bar{T} as follows

$$
\begin{aligned}
& F B L[E]--_{-}^{\bar{T}_{-}} \rightarrow F B L[F] \\
& \underset{T}{\delta_{E} \uparrow}{ }_{T}{ }^{\delta_{F} \uparrow} \uparrow
\end{aligned}
$$

Theorem (Oikhberg-Taylor-T-Troitsky)

(1) T is injective iff \bar{T} is injective.
(2) T is surjective iff \bar{T} is surjective.

Theorem (OTTT)

Suppose $\iota: E \hookrightarrow F$. $\bar{\iota}(F B L[E])$ is a sublattice of $F B L[F] \Leftrightarrow$ every operator $S: E \rightarrow \ell_{1}^{n}$ admits a norm-preserving extension $\tilde{S}: F \rightarrow \ell_{1}^{n}$.

Dreaming a metatheorem

E has Banach space property (P) if and only if $F B L[E]$ has Banach lattice property (P^{\prime})

Dreaming a metatheorem
 E has Banach space property (P) if and only if $F B L[E]$ has Banach lattice property (P^{\prime})

```
Theorem
\(E\) is finite dimensional iff \(F B L[E]\) has a strong unit.
```


Dreaming a metatheorem

E has Banach space property (P) if and only if $F B L[E]$ has Banach lattice property (P^{\prime})

```
Theorem
\(E\) is finite dimensional iff \(F B L[E]\) has a strong unit.
```


Theorem
 E is separable iff $F B L[E]$ has a quasi-interior point.

\square

Dreaming a metatheorem

E has Banach space property (P) if and only if $F B L[E]$ has Banach lattice property (P^{\prime})

Theorem
 E is finite dimensional iff $F B L[E]$ has a strong unit.

Theorem
 E is separable iff $F B L[E]$ has a quasi-interior point.

```
Theorem
If \(E\) is WCG, then \(F B L[E]\) is \(L W C G\).
```


Theorem (OTTT)

For a Banach space E, TFAE:
(1) E contains a complemented subspace isomorphic to ℓ_{1}.
(2) FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_{1}.
(3) FBL $[E]$ contains a lattice complemented sublattice isomorphic to
(4) $F B L[E]$ contains a sublattice isomorphic to ℓ_{1}

Note: $C[0,1]$ contains a subspace isomorphic to ℓ_{1} but $\operatorname{FBL}[C[0,1]]$ does not contain any sublattice isomorphic to ℓ_{1}

Theorem (OTTT)

For a Banach space E, TFAE:
(1) E contains a complemented subspace isomorphic to ℓ_{1}.
(2) FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_{1}.
(3) $F B L[E]$ contains a lattice complemented sublattice isomorphic to $F B L\left[\ell_{1}\right]$.

- FBL[E] contains a sublattice isomorphic to ℓ_{1}
- $F B L[E]$ has a lattice quotient isomorphic to ℓ_{1}

Note: $C[0,1]$ contains a subspace isomorphic to ℓ_{1} but $\operatorname{FBL}[C[0,1]]$
does not contain any sublattice isomorphic to ℓ_{1}

Theorem (OTTT)

For a Banach space E, TFAE:
(1) E contains a complemented subspace isomorphic to ℓ_{1}.
(2) $F B L[E]$ contains a lattice complemented sublattice isomorphic to ℓ_{1}.
(3) $F B L[E]$ contains a lattice complemented sublattice isomorphic to $F B L\left[\ell_{1}\right]$.
(4) $F B L[E]$ contains a sublattice isomorphic to ℓ_{1}.

Note: $C[0,1]$ contains a subspace isomorphic to ℓ_{1} but $\operatorname{FBL}[C[0,1]]$ does not contain any sublattice isomorphic to ℓ_{1}.

Theorem (OTTT)

For a Banach space E, TFAE:
(1) E contains a complemented subspace isomorphic to ℓ_{1}.
(2) $F B L[E]$ contains a lattice complemented sublattice isomorphic to ℓ_{1}.
(3) $F B L[E]$ contains a lattice complemented sublattice isomorphic to $F B L\left[\ell_{1}\right]$.
(4) FBL[E] contains a sublattice isomorphic to ℓ_{1}.
(5) FBL[E] has a lattice quotient isomorphic to ℓ_{1}.

Note: $C[0,1]$ contains a subspace isomorphic to ℓ_{1} but $\operatorname{FBL}[C[0,1]]$
does not contain any sublattice isomorphic to ℓ_{1}.

Theorem (OTTT)

For a Banach space E, TFAE:
(1) E contains a complemented subspace isomorphic to ℓ_{1}.
(2) $F B L[E]$ contains a lattice complemented sublattice isomorphic to ℓ_{1}.
(3) $F B L[E]$ contains a lattice complemented sublattice isomorphic to $F B L\left[\ell_{1}\right]$.
(4) FBL[E] contains a sublattice isomorphic to ℓ_{1}.
(5) FBL[E] has a lattice quotient isomorphic to ℓ_{1}.

Note: $C[0,1]$ contains a subspace isomorphic to ℓ_{1} but $F B L[C[0,1]]$ does not contain any sublattice isomorphic to ℓ_{1}.

Recall: a Banach lattice satisfies upper p-estimates when for pairwise disjoint vectors $\left(x_{k}\right)$

$$
\left\|\sum_{k} x_{k}\right\| \leq C\left(\sum_{k}\left\|x_{k}\right\|^{p}\right)^{\frac{1}{p}}
$$

Recall: a Banach lattice satisfies upper p-estimates when for pairwise disjoint vectors $\left(x_{k}\right)$

$$
\left\|\sum_{k} x_{k}\right\| \leq C\left(\sum_{k}\left\|x_{k}\right\|^{p}\right)^{\frac{1}{p}}
$$

Recall: An operator between Banach spaces $T: E \rightarrow F$ is ($q, 1$)-summing if

$$
\left(\sum_{k}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq \pi_{(q, 1)}(T) \sup _{\varepsilon_{k}= \pm 1}\left\|\sum_{k} \varepsilon_{k} x_{k}\right\|
$$

Recall: a Banach lattice satisfies upper p-estimates when for pairwise disjoint vectors $\left(x_{k}\right)$

$$
\left\|\sum_{k} x_{k}\right\| \leq C\left(\sum_{k}\left\|x_{k}\right\|^{p}\right)^{\frac{1}{p}} .
$$

Recall: An operator between Banach spaces $T: E \rightarrow F$ is ($q, 1$)-summing if

$$
\left(\sum_{k}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq \pi_{(q, 1)}(T) \sup _{\varepsilon_{k}= \pm 1}\left\|\sum_{k} \varepsilon_{k} x_{k}\right\|
$$

Theorem (OTTT)

Let E be a Banach space and $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. TFAE:
(1) $i d_{E^{*}}$ is $(q, 1)$-summing
(2) $F B L[E]$ satisfies an upper p-estimate
(3) $\operatorname{id}_{F B L[E]^{*}}$ is $(q, 1)$-summing

Thank you for your attention!

Research funded by Grants CEX2019-000904-S and PID2020-116398GB-I00 funded by: MCIN/AEI/ 10.13039/501100011033. Partially supported by a 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.

