Recent progress in Banach lattices

Pedro Tradacete

Instituto de Ciencias Matemáticas (ICMAT), Madrid

POSITIVITY XI Ljubljana 10 July 2023

Based on recent collaborations with A. Avilés, D. de Hevia, G. Martínez-Cervantes, T. Oikhberg, J. Rodríguez, A. Rueda Zoca, M. A. Taylor, V. G. Troitsky...

	P. Trac	acete	(ICMAT)
--	---------	-------	---------

1/11

イロト イポト イラト イラト

Banach space propertiesBanach lattice propertiesReflexiveNo c_0 , ℓ_1 sublatticesWeakly sequentially completeNo c_0 sublatticesType / cotypeConvexity / concavity

Banach space propertiesBanach lattice propertiesReflexiveNo c_0 , ℓ_1 sublatticesWeakly sequentially completeNo c_0 sublatticesType / cotypeConvexity / concavity

Banach space propertiesBanach lattice propertiesReflexiveNo c_0 , ℓ_1 sublatticesWeakly sequentially completeNo c_0 sublatticesType / cotypeConvexity / concavity

2/11

Banach space propertiesBanach lattice propertiesReflexiveNo c_0 , ℓ_1 sublatticesWeakly sequentially completeNo c_0 sublatticesType / cotypeConvexity / concavity

э

2/11

Banach space propertiesBanach lattice propertiesReflexiveNo c_0 , ℓ_1 sublatticesWeakly sequentially completeNo c_0 sublatticesType / cotypeConvexity / concavity

3

2/11

< 日 > < 同 > < 回 > < 回 > < 回 > <

Banach space propertiesBanach lattice propertiesReflexiveNo c_0 , ℓ_1 sublatticesWeakly sequentially completeNo c_0 sublatticesType / cotypeConvexity / concavity

Theorem (Meyer-Nieberg 1973)

 c_0 has a linear embedding in a Banach lattice $\Leftrightarrow c_0$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

C[0, 1] has a linear embedding in a Banach lattice $\Leftrightarrow C[0, 1]$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

X separable Banach lattice. TFAE:

- X has a lattice embedding in a Banach lattice whenever there is a linear embedding.
- 2 X is a sublattice of C[0, 1]

Question: non-separable case?

Theorem (Meyer-Nieberg 1973)

 c_0 has a linear embedding in a Banach lattice $\Leftrightarrow c_0$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

C[0,1] has a linear embedding in a Banach lattice $\Leftrightarrow C[0,1]$ embeds as a sublattice.

Theorem (Meyer-Nieberg 1973)

 c_0 has a linear embedding in a Banach lattice $\Leftrightarrow c_0$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

C[0, 1] has a linear embedding in a Banach lattice $\Leftrightarrow C[0, 1]$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

X separable Banach lattice. TFAE:

- X has a lattice embedding in a Banach lattice whenever there is a linear embedding.
- 2 X is a sublattice of C[0, 1].

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (Meyer-Nieberg 1973)

 c_0 has a linear embedding in a Banach lattice $\Leftrightarrow c_0$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

C[0, 1] has a linear embedding in a Banach lattice $\Leftrightarrow C[0, 1]$ embeds as a sublattice.

Theorem (Avilés-MartínezCervantes-RuedaZoca-T 2022)

X separable Banach lattice. TFAE:

- X has a lattice embedding in a Banach lattice whenever there is a linear embedding.
- X is a sublattice of C[0, 1].

Question: non-separable case?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_1 or C(K)?

Theorem (Abramovich-Wojtaszyk 1975)

 \mathcal{L}_1 space isomorphic to a Banach lattice must be an $L_1(\mu)$ space. \mathcal{L}_{∞} space isomorphic to a Banach lattice must be a sublattice of some C(K) space.

Theorem (Benyamini 1973)

Every separable sublattice of C(K) is isomorphic to some C(L)

P. Tradacete	
1. Пачасете	

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_1 or C(K)?

Theorem (Abramovich-Wojtaszyk 1975)

 \mathcal{L}_1 space isomorphic to a Banach lattice must be an $L_1(\mu)$ space. \mathcal{L}_{∞} space isomorphic to a Banach lattice must be a sublattice of some C(K) space.

Theorem (Benyamini 1973)

Every separable sublattice of C(K) is isomorphic to some C(L)

P. Tradacete	(ICMAT)
r. nauacete	

< ロ > < 同 > < 回 > < 回 >

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_1 or C(K)?

Theorem (Abramovich-Wojtaszyk 1975)

 \mathcal{L}_1 space isomorphic to a Banach lattice must be an $L_1(\mu)$ space. \mathcal{L}_{∞} space isomorphic to a Banach lattice must be a sublattice of some $\mathcal{C}(K)$ space.

Theorem (Benyamini 1973)

Every separable sublattice of C(K) is isomorphic to some C(L)

	(TALAO)
P. Tradacete (ICMAI)

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_1 or C(K)?

Theorem (Abramovich-Wojtaszyk 1975)

 \mathcal{L}_1 space isomorphic to a Banach lattice must be an $L_1(\mu)$ space. \mathcal{L}_∞ space isomorphic to a Banach lattice must be a sublattice of some C(K) space.

Theorem (Benyamini 1973)

Every separable sublattice of C(K) is isomorphic to some C(L)

P. Tradacete (I	CMAT)
-----------------	-------

Question: Suppose E is a complemented subspace of a Banach lattice. Is E isomorphic to some Banach lattice?

Related questions: complemented subspaces of L_1 or C(K)?

Theorem (Abramovich-Wojtaszyk 1975)

 \mathcal{L}_1 space isomorphic to a Banach lattice must be an $L_1(\mu)$ space. \mathcal{L}_∞ space isomorphic to a Banach lattice must be a sublattice of some C(K) space.

Theorem (Benyamini 1973)

Every separable sublattice of C(K) is isomorphic to some C(L).

P. Tradacete	(ICMAT)

Theorem (Plebanek-Salguero 2022)

There exist a (non-separable) space PS_2 which is 1-complemented in certain C(K) but not isomorphic to any C(L).

Theorem (de Hevia-MartínezCervantes-Salguero-T)

PS₂ is not isomorphic to any Banach lattice.

More details in David's talk after the coffee break...

P. Trad	acete i	(ICMAT)

< 6 b

Theorem (Plebanek-Salguero 2022)

There exist a (non-separable) space PS_2 which is 1-complemented in certain C(K) but not isomorphic to any C(L).

Theorem (de Hevia-MartínezCervantes-Salguero-T)

PS₂ is not isomorphic to any Banach lattice.

More details in David's talk after the coffee break...

Theorem (Plebanek-Salguero 2022)

There exist a (non-separable) space PS_2 which is 1-complemented in certain C(K) but not isomorphic to any C(L).

Theorem (de Hevia-MartínezCervantes-Salguero-T)

PS₂ is not isomorphic to any Banach lattice.

More details in David's talk after the coffee break...

The free Banach lattice generated by a Banach space Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X$ Banach lattice and $T : E \rightarrow X \exists !$ lattice homomorphism \hat{T}

- FBL[l₁(A)] for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

moreover, $\|\hat{T}\| = \|T\|$.

FBL[l₁(A)] for any set A. [de Pagter-Wickstead, 2015]

FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]

• FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]

Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Free complex Banach lattice [de Hevia-T, 2022]

Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

moreover, $\|\hat{T}\| = \|T\|$.

• FBL[$\ell_1(A)$] for any set A. [de Pagter-Wickstead, 2015]

- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

- FBL[$\ell_1(A)$] for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

- *FBL*[$\ell_1(A)$] for any set *A*. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

moreover, $\|\hat{T}\| = \|T\|$.

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]

Free dual Banach lattices [GarcíaSánchez-T, 2023]

Let *E* be a Banach space. *FBL*[*E*] is a Banach lattice with

 $\delta: E \rightarrow FBL[E]$ linear isometry,

 $\forall X \text{ Banach lattice and } T : E \rightarrow X \exists ! \text{ lattice homomorphism } \hat{T}$

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]
- Free complex Banach lattice [de Hevia-T, 2022]
- Free dual Banach lattices [GarcíaSánchez-T, 2023]

Every linear operator $T : E \to F$ between Banach spaces extends uniquely to a lattice homomorphism \overline{T} as follows

Theorem (Oikhberg-Taylor-T-Troitsky)

① T is injective iff \overline{T} is injective.

I is surjective iff T is surjective.

Theorem (OTTT)

Suppose $\iota : E \hookrightarrow F$. $\bar{\iota}(FBL[E])$ is a sublattice of $FBL[F] \Leftrightarrow$ every operator $S : E \to \ell_1^n$ admits a norm-preserving extension $\tilde{S} : F \to \ell_1^n$.

э

Every linear operator $T : E \to F$ between Banach spaces extends uniquely to a lattice homomorphism \overline{T} as follows

$$FBL[E] - - \stackrel{\overline{T}}{-} - \rightarrow FBL[F]$$

$$\stackrel{\delta_E}{\longrightarrow} \stackrel{\delta_F}{\longrightarrow} F$$

Theorem (Oikhberg-Taylor-T-Troitsky)

Theorem (OTTT)

Suppose $\iota : E \hookrightarrow F$. $\bar{\iota}(FBL[E])$ is a sublattice of $FBL[F] \Leftrightarrow$ every operator $S : E \to \ell_1^n$ admits a norm-preserving extension $\tilde{S} : F \to \ell_1^n$.

(日)

э

Every linear operator $T : E \to F$ between Banach spaces extends uniquely to a lattice homomorphism \overline{T} as follows

$$FBL[E] - - \stackrel{\overline{T}}{-} - \rightarrow FBL[F]$$

$$\stackrel{\delta_E}{\longrightarrow} \stackrel{\delta_F}{\longrightarrow} F$$

Theorem (Oikhberg-Taylor-T-Troitsky)

Theorem (OTTT)

Suppose $\iota : E \hookrightarrow F$. $\bar{\iota}(FBL[E])$ is a sublattice of $FBL[F] \Leftrightarrow$ every operator $S : E \to \ell_1^n$ admits a norm-preserving extension $\tilde{S} : F \to \ell_1^n$.

(日)

э

E has Banach space property (P) if and only if *FBL*[*E*] has Banach lattice property (P')

Theorem

E is finite dimensional iff FBL[E] has a strong unit.

Theorem

E is separable iff FBL[E] has a quasi-interior point.

Theorem

If E is WCG, then FBL[E] is LWCG.

P. Tradacete	(ICMAT)
--------------	---------

8/11

E has Banach space property (P) if and only if *FBL*[*E*] has Banach lattice property (P')

Theorem

E is finite dimensional iff FBL[*E*] has a strong unit.

Theorem

E is separable iff FBL[E] has a quasi-interior point.

Theorem If E is WCG, then FBL[E] is LWCG

8/11

E has Banach space property (P) if and only if *FBL*[*E*] has Banach lattice property (P')

Theorem

E is finite dimensional iff FBL[E] has a strong unit.

Theorem

E is separable iff FBL[E] has a quasi-interior point.

Theorem If E is WCG, then FBL[E] is LWCG.

イロト イポト イヨト イヨト

E has Banach space property (P) if and only if *FBL*[*E*] has Banach lattice property (P')

Theorem

E is finite dimensional iff FBL[*E*] has a strong unit.

Theorem

E is separable iff FBL[E] has a quasi-interior point.

Theorem

If E is WCG, then FBL[E] is LWCG.

For a Banach space E, TFAE:

- E contains a complemented subspace isomorphic to ℓ_1 .
- **2** FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_1 .
- FBL[E] contains a lattice complemented sublattice isomorphic to FBL[l₁].
- FBL[E] contains a sublattice isomorphic to l₁.
- **Solution** FBL[E] has a lattice quotient isomorphic to ℓ_1 .

Note: C[0, 1] contains a subspace isomorphic to ℓ_1 but FBL[C[0, 1]] does not contain **any** sublattice isomorphic to ℓ_1 .

P. Tradacete (ICMAT)	P. Tra	dacete	(ICMAT)
----------------------	--------	--------	---------

9/11

For a Banach space E, TFAE:

- E contains a complemented subspace isomorphic to ℓ_1 .
- **2** FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_1 .
- FBL[E] contains a lattice complemented sublattice isomorphic to FBL[l₁].
- FBL[E] contains a sublattice isomorphic to l₁.
- **5** FBL[E] has a lattice quotient isomorphic to ℓ_1 .

Note: C[0, 1] contains a subspace isomorphic to ℓ_1 but FBL[C[0, 1]] does not contain **any** sublattice isomorphic to ℓ_1 .

P. Tradacete	(ICMAT)
--------------	---------

9/11

For a Banach space E, TFAE:

- E contains a complemented subspace isomorphic to ℓ_1 .
- **2** FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_1 .
- FBL[E] contains a lattice complemented sublattice isomorphic to FBL[l₁].
- FBL[E] contains a sublattice isomorphic to ℓ_1 .

5 FBL[E] has a lattice quotient isomorphic to ℓ_1 .

Note: C[0, 1] contains a subspace isomorphic to ℓ_1 but FBL[C[0, 1]] does not contain **any** sublattice isomorphic to ℓ_1 .

F. Hauacele (ICIVIAI)	P. Tradacete ((ICMAT)
-----------------------	----------------	---------

9/11

イロト イポト イヨト イヨト

For a Banach space E, TFAE:

- E contains a complemented subspace isomorphic to ℓ_1 .
- **2** FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_1 .
- FBL[E] contains a lattice complemented sublattice isomorphic to FBL[l₁].
- FBL[E] contains a sublattice isomorphic to ℓ_1 .
- Solution FBL[E] has a lattice quotient isomorphic to ℓ_1 .

Note: C[0, 1] contains a subspace isomorphic to ℓ_1 but FBL[C[0, 1]] does not contain **any** sublattice isomorphic to ℓ_1 .

F. Hauacele (ICIVIAI)	P. Tradacete ((ICMAT)
-----------------------	----------------	---------

9/11

< □ > < 同 > < 回 > < 回 > .

For a Banach space E, TFAE:

- E contains a complemented subspace isomorphic to ℓ_1 .
- **2** FBL[E] contains a lattice complemented sublattice isomorphic to ℓ_1 .
- FBL[E] contains a lattice complemented sublattice isomorphic to FBL[l₁].
- FBL[E] contains a sublattice isomorphic to ℓ_1 .
- Solution FBL[E] has a lattice quotient isomorphic to ℓ_1 .

Note: C[0, 1] contains a subspace isomorphic to ℓ_1 but FBL[C[0, 1]] does not contain **any** sublattice isomorphic to ℓ_1 .

Recall: a Banach lattice satisfies upper *p*-estimates when for pairwise disjoint vectors (x_k)

$$\left\|\sum_{k} x_{k}\right\| \leq C\Big(\sum_{k} \|x_{k}\|^{p}\Big)^{\frac{1}{p}}.$$

Recall: An operator between Banach spaces $T : E \rightarrow F$ is (q, 1)-summing if

$$\left(\sum_{k} \|x_{k}\|^{q}\right)^{\frac{1}{q}} \leq \pi_{(q,1)}(T) \sup_{\varepsilon_{k}=\pm 1} \left\|\sum_{k} \varepsilon_{k} x_{k}\right\|.$$

Theorem (OTTT)

Let E be a Banach space and $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. TFAE:

- id_{E^*} is (q, 1)-summing
- IFBL[E] satisfies an upper p-estimate
- id_{FBL[E]*} is (q, 1)-summing

Recall: a Banach lattice satisfies upper *p*-estimates when for pairwise disjoint vectors (x_k)

$$\left\|\sum_{k} x_{k}\right\| \leq C\Big(\sum_{k} \|x_{k}\|^{p}\Big)^{\frac{1}{p}}.$$

Recall: An operator between Banach spaces $T : E \to F$ is (q, 1)-summing if

$$\left(\sum_{k} \|x_{k}\|^{q}\right)^{\frac{1}{q}} \leq \pi_{(q,1)}(T) \sup_{\varepsilon_{k}=\pm 1} \left\|\sum_{k} \varepsilon_{k} x_{k}\right\|.$$

Theorem (OTTT)

Let E be a Banach space and $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. TFAE:

- id_{E^*} is (q, 1)-summing
- PBL[E] satisfies an upper p-estimate
- id_{FBL[E]*} is (q, 1)-summing

Recall: a Banach lattice satisfies upper *p*-estimates when for pairwise disjoint vectors (x_k)

$$\left\|\sum_{k} x_{k}\right\| \leq C\Big(\sum_{k} \|x_{k}\|^{p}\Big)^{\frac{1}{p}}.$$

Recall: An operator between Banach spaces $T : E \to F$ is (q, 1)-summing if

$$\left(\sum_{k} \|x_{k}\|^{q}\right)^{\frac{1}{q}} \leq \pi_{(q,1)}(T) \sup_{\varepsilon_{k}=\pm 1} \left\|\sum_{k} \varepsilon_{k} x_{k}\right\|.$$

Theorem (OTTT)

Let *E* be a Banach space and $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. TFAE:

- id_{E^*} is (q, 1)-summing
- FBL[E] satisfies an upper p-estimate
- 3 $id_{FBL[E]^*}$ is (q, 1)-summing

Thank you for your attention!

Research funded by Grants CEX2019-000904-S and PID2020-116398GB-I00 funded by: MCIN/AEI/

10.13039/501100011033. Partially supported by a 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA

Foundation.

P. Tradacete (ICMAT)

э