The order center and the algebraic center of JB-algebras

joint work with Anke Kalauch and Mark Roelands Posi+ivity XI Ljubljana July 13, 2023

Onno van Gaans

Universiteit Leiden The Netherlands

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 の

Let V be a vector space over \mathbb{R} . $C \subseteq V$ is a cone if $C + C \subseteq C$, $\lambda C \subseteq C$ for all $\lambda \in [0, \infty)$, and $C \cap -C = \{0\}$. Partial order \leq on V given by $x \leq y \iff y - x \in C$. (V, C) is a partially ordered vector space.

A partially ordered vector space (V, C) is a Riesz space or vector lattice if for all $x, y \in V$ the set $\{x, y\}$ has a supremum.

Why partially ordered vector spaces instead of Riesz spaces?

subspaces of Riesz spaces

• spaces of operators between Riesz spaces are partially ordered vector spaces but not always Riesz spaces

A partially ordered vector space (V, C) is

- directed if C C = V and
- Archimedean if $nx \leq y$ for all $n \in \mathbb{N}$ implies $x \leq 0$.

Idea: View partially ordered vector spaces as subspaces of Riesz spaces and use theory of Riesz spaces.

W. Luxemburg (1986): for every partially ordered vector space V there exists a Riesz space Y and a bipositive linear map $i: V \to Y$. bipositive: $i(x) \ge 0 \iff x \ge 0$

Let V partially ordered vector space, Y Riesz space, $V \subseteq Y$ linear subspace, $x, y \in V$. Say x, y are disjoint in V if they are disjoint in Y. Problem: does depend on Y.

 $V \text{ is order dense in } Y \text{ if for every } y \in Y$ $y = \inf\{v: v \in V, v \ge y\} \text{ Buskes and van Rooij, 1993}$

If $x, y \in V$, V order dense in Y_1 and order dense in Y_2 , then x and y disjoint in Y_1 if and only if disjoint in Y_2 .

Approach:

• Write definition in terms of upper and lower bounds. In a Riesz space:

$$x, y$$
 are disjoint $\iff |x - y| = |x + y| \iff$
 $\{x - y, -x + y\}^{u} = \{x + y, -x - y\}^{u}$

• Show compatibility with order dense embedding. If V order dense in Y, then x, y disjoint in V if and only if x, y disjoint in Y.

• Use theory of Riesz spaces.

For $A \subseteq V$, $A^d := \{v \in V : v \text{ and } a \text{ disjoint for all } a \in A\}$ is a linear subspace of V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

Which partially ordered vector spaces can be embedded order densely in Riesz spaces?

A partially ordered vector space (V, C) is a pre-Riesz space if for all $x, y, z \in V \{x + z, y + z\}^u \subseteq \{x, y\}^u$ implies $z \ge 0$.

Theorem (van Haandel, 1993)

Let (V, C) be a partially ordered vector space. Then V is pre-Riesz if and only if there exists a vector lattice Y and a bipositive map $i: V \to Y$ such that i[V] is order dense in Y.

(Y, i) is then called a vector lattice cover of V. There is a unique smallest vector lattice cover, called the Riesz completion of V.

Van Haandel (1993): (V, C) directed and Archimedean $\implies (V, C)$ is pre-Riesz $\implies (V, C)$ is directed. order dense: $x = \inf\{d \in D : d \ge x\}$. bipositive: $x \ge 0$ in $V \iff i(x) \ge 0$ in W.

(V, C, e) order unit space:

- $\exists e \in V$ which is an order unit if $\forall x \in V \ \exists \lambda \in \mathbb{R}$ such that $-\lambda e \leq x \leq \lambda e$.
- (V, C) is Archimedean; $\|x\|_e = \inf\{\lambda \in \mathbb{R}: -\lambda e \le x \le \lambda e\}$ order unit norm.

Note that an order unit space is directed.

Hence order unit spaces are pre-Riesz spaces.

Let (V, C, e) be an order unit space. Vector lattice cover of V?

Functional representation of V:

$$\begin{split} \Sigma &= \{ \varphi \colon V \to \mathbb{R} \colon \varphi \text{ positive linear, } \varphi(e) = 1 \} \\ \Lambda &= \text{extreme points of } \Sigma \\ \overline{\Lambda} &= \text{weak* closure of } \Lambda \text{ in } \Sigma \\ \Phi(x)(\varphi) &= \varphi(x), \ \varphi \in \overline{\Lambda}, \ x \in V \end{split}$$

Kalauch–Lemmens–vG (2014): $(C(\overline{\Lambda}), \Phi)$ is a vector lattice cover of V, i.e., $\Phi: V \to C(\overline{\Lambda})$ is bipositive and $\Phi[V]$ is order dense in $C(\overline{\Lambda})$

More talks on pre-Riesz spaces: Anke Kalauch, Florian Boisen, Janko Stennder

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

See Alfsen–Shultz, *Geometry of state spaces of operator algebras*, 2003.

Let Ω be a compact Hausdorff space,

 $C(\Omega) = \{x \colon \Omega \to \mathbb{R} \colon x \text{ is continuous}\}.$ This is a vector space over \mathbb{R}

- with a product: $(xy)(\omega) = x(\omega)y(\omega), s \in \Omega$
- and a partial order: $x \leq y \iff \forall \omega \in \Omega \colon x(s) \leq y(s)$.

• The constant function 1 is an order unit and an identity for the product.

• Note that $x \ge 0$ if and only if $\exists y$ such that $x = y^2$ (namely, $y = \sqrt{x}$), so $C(\Omega)^+ = \{x^2 \colon x \in C(\Omega)\}$. $C(\Omega)$ is a commutative C^* -algebra.

Let *H* be a Hilbert space over \mathbb{C} ,

 $B(H) = \{x \colon H \to H \colon x \text{ is bounded linear}\}$. This is a vector space over \mathbb{R}

- with a product: composition
- and a partial order: x is positive if $\sigma(x) \subseteq [0, \infty)$,

 $x \leq y \iff y - x \geq 0.$

• The identity operator is an identity for the product, but not an order unit. Actually, $B(H)^+$ does not even span B(H) (over \mathbb{R}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の

Rather consider $B(H)_{sa} = \{x \in B(H) : x \text{ is self adjoint}\}$. But $B(H)_{sa}$ is not closed under composition: $(xy)^* = y^*x^* = yx \neq xy$. Consider the Jordan product $x \circ y = \frac{1}{2}(xy + yx)$. Note: $x \circ x = xx$, so we can unambiguously write x^2 .

The Jordan product on $B(H)_{sa}$ distributes over sums: • $(x + y) \circ z = x \circ z + y \circ z$ and $x \circ (y + z) = x \circ y + x \circ z$ • is commutative: $x \circ y = y \circ x$ but not associative: $(x \circ y) \circ z = \frac{1}{2} ((x \circ y)z + z(x \circ y)) = \frac{1}{2} (\frac{1}{2}(xy + yx)z + \frac{1}{2}z(xy + yx))$ and $x \circ (y \circ z) = \frac{1}{2} (x(y \circ z) + (y \circ z)x) = \frac{1}{2} (\frac{1}{2}x(yz + zy) + \frac{1}{2}(yz + zy)x),$ • so $(x \circ y) \circ z \neq x \circ (y \circ z).$

A very weak form of associativity still holds true: • $x \circ (y \circ x^2) = (x \circ y) \circ x^2$ Jordan identity.

$$\begin{split} B(H)_{\mathrm{sa}} &= \{x \in B(H): \ x \text{ is self adjoint} \},\\ \text{Jordan product } x \circ y &= \frac{1}{2}(xy + yx)\\ \text{distributes over sums, is commutative, not associative, and}\\ & x \circ (y \circ x^2) = (x \circ y) \circ x^2 \qquad \text{Jordan identity.} \end{split}$$

The identity operator I is an identity for the Jordan product and I is an order unit:

$$\forall x \in B(H)_{sa} \exists \lambda \in \mathbb{R} \text{ such that } -\lambda I \leq x \leq \lambda I.$$

Note that $B(H)_{sa}^+ = \{x^2 \colon x \in B(H)_{sa}\}.$

Compatibility between the norm and the Jordan product: $||x \circ y|| \le ||x|| ||y||, ||x^2|| = ||x||^2, ||x^2|| \le ||x^2 + y^2||.$

Two more notes on the Jordan product.

Recall the Jordan identity: $x \circ (y \circ x^2) = (x \circ y) \circ x^2$:

• powers of x: $x^2 = x \circ x = xx$, $x^3 = x \circ (x \circ x) = x \circ x^2 = x^2 \circ x$. How about x^4 ? By Jordan identity, $x \circ x^3 = x \circ (x \circ x^2) = (x \circ x) \circ x^2 = x^2 \circ x^2 = x^3 \circ x$, so x^4 is unambiguously defined. Similar for x^n .

• Consider the left multiplication by $a \in A$, $T_a x = a \circ x$ for all $x \in A$. $T_a T_b = T_b T_a$ if and only if $\forall x \in A$: $a \circ (b \circ x) = b \circ (a \circ x)$, or, equivalently, $(a \circ x) \circ b = a \circ (x \circ b)$. *a* and *b* are then said to operator commute.

Definition

A Jordan algebra (A, \circ) is a commutative, not necessarily associative algebra such that

$$x \circ (y \circ x^2) = (x \circ y) \circ x^2$$
 for all $x, y \in A$.

A JB-algebra (A, \circ) is a Jordan algebra over \mathbb{R} with a norm $\|\cdot\|$ such that it is norm complete and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の

 $\|x \circ y\| \le \|x\| \|y\|, \quad \|x^2\| = \|x\|^2, \quad \|x^2\| \le \|x^2 + y^2\|$ for all $x, y \in A$.

JB-algebras as order unit spaces

Recall

Definition

A JB-algebra (A, \circ) is a commutative, not necessarily associative algebra over \mathbb{R} such that

$$x \circ (y \circ x^2) = (x \circ y) \circ x^2$$
 for all $x, y \in A$.

endowed with a norm which makes it complete and

 $\|x \circ y\| \le \|x\| \|y\|, \quad \|x^2\| = \|x\|^2, \quad \|x^2\| \le \|x^2 + y^2\|$ for all $x, y \in A$.

We assume A has an algebraic identity e.

It is known that

- $C = \{x^2 : x \in A\}$ is a closed cone in A,
- e is an order unit in A,
- the norm of A equals the order unit norm.

So, with $x \leq y \iff y - x \in C$, A is an order unit space.

JB-algebras as order unit spaces

Example

• $C(\Omega)$, $x \circ y$ pointwise product, constant 1 function is the identity, maximum-norm, pointwise order. This is an associative JB-algebra.

• $B(H)_{sa}$, Jordan product $x \circ y = \frac{1}{2}(xy + yx)$, identity operator is the identity, operator norm, ordered by the cone of 'being positive definite'.

Spin factor: H× ℝ, where (H, ⟨·, ·, ⟩) is a real Hilbert space, product (x, α) ∘ (y, β) = (βx + αy, ⟨x, y⟩ + αβ),
(0, 1) is the identity, norm ||(x, α)|| = √⟨x, x⟩ + |α|, ordered by the Lorentz cone {(x, α): √⟨x, x⟩ ≤ α}.

The following is known:

Theorem

Each associative unital JB-algebra is as JB-algebra isomorphic to $C(\Omega)$ for some compact Hausdorff space Ω .

JB-algebras as order unit spaces

Let (A, \circ) be a JB-algebra with identity e.

Question: How are the order structure and algebra structure related?

Algebraic center of A:

 $Z(A) = \{ z \in A : \forall a \in A : T_z T_a = T_a T_z \},$ where $T_a x = a \circ x$ (left multiplication by a).

Order center of A:

 $E(A) = \{T : A \to A \text{ linear} : \exists \alpha \in \mathbb{R} \text{ such that } -\alpha I \leq T \leq \alpha I\},\$ where I is the identity operator on A.

Theorem: Z(A) and E(A) are isomorphic as JB-algebras.

Order center

Let (V, C) be an Archimedean directed partially ordered vector space.

Order center of V: $E(A) = \{T : A \to A \text{ linear}: \exists \alpha \in \mathbb{R} \text{ s.t. } -\alpha I \leq T \leq \alpha I\} \subseteq L^r(V).$ is a partially ordered vector space with order unit *I*.

• Well-known: If $V = C(\Omega)$ then $T \in E(V)$ if and only if $\exists v \in V$ such that $T = M_v$, where

 $(M_v x)(\omega) = v(\omega)x(\omega), \ \omega \in \Omega, \ x \in V.$ multiplication operator

• R.C. Buck (1961): V is isomorphic to a subspace of some $C(\Omega)$ and elements of E(V) correspond to multiplication operators.

• If (V, C, e) is an order unit space and $\Phi: V \to C(\overline{\Lambda})$ its functional representation, then for every $T \in E(V)$ the multiplication operator $M_{\Phi(Te)}$ maps $\Phi[V]$ into $\Phi[V]$ and $T = \Phi^{-1} \circ M_{\Phi(Te)} \circ \Phi$.

Order center

Let (V, C, e) be an order unit space. $E(A) = \{T : A \to A \text{ linear: } \exists \alpha \in \mathbb{R} \text{ s.t. } -\alpha I \leq T \leq \alpha I\}$ $T \in E(V) \implies T = \Phi^{-1} \circ M_{\Phi(Te)} \circ \Phi.$

Proposition

•
$$\forall S, T \in E(V)$$
: $ST \in E(V)$

•
$$\forall S, T \in E(V)$$
: $ST = \Phi^{-1} \circ M_{\Phi(Se)\Phi(Te)} \circ \Phi = TS$.

• $T \in E(V) \Longrightarrow T$ is continuous.

• On E(V) the operator norm and the norm induced by the order unit I are equal.

• E(V) is a closed subspace of the bounded linear operators on V. • $\forall S, T \in E(V)$: $||ST|| \le ||S|| ||T||$, $||T^2|| = ||T||^2$, and $||T^2|| \le ||S^2 + T^2||$.

Order center

Corollary

- E(V) with composition is a commutative associative algebra.
- If (V, C, e) is norm complete, then E(V) is an associative unital JB-algebra, hence isomorphic to $C(\Omega)$ as JB-algebras.

Corollary

If (V, C, e) is norm complete, then E(V) is a vector lattice.

Example

 $V = C^1[0, 1]$, pointwise order, e = 1. Order unit norm is $\|\cdot\|_{\infty}$, not complete. We have $E(V) = \{M_f : f \in V\}$, which is not a vector lattice.

Let (A, \circ) be a JB-algebra with identity e.

Algebraic center of A:

 $Z(A) = \{z \in A : \forall a \in A : T_z T_a = T_a T_z\},$ where $T_a x = a \circ x$ (left multiplication by a).

Z(A) is a JB-subalgebra of A and it is associative, hence JB-algebra isomorphic to a $C(\Omega)$.

Theorem: Let (A, \circ) be a JB-algebra with identity *e*.

- The algebraic center Z(A) and the order center E(A) are isomorphic as JB-algebras.
- $f(z) = T_z$ is a JB-algebra isomorphism from Z(A) onto E(A). $T_z x = z \circ x$ $B(A) = \{T : A \to A : T \text{ linear and bounded}\}$ with the operator norm.

It is routine to show:

Lemma

 $f: Z(A) \to B(A)$ is linear, multiplicative, injective, and f(e) = I (with I the identity operator on A). Moreover, $||T_z|| = ||z||$ for all $z \in Z(A)$. Remains to show: f maps into and onto E(A).

Goal: show that $f: z \mapsto T_z$ maps Z(A) onto E(A).

Strategy: show that f is a bijection from $[0, e] \cap Z(A)$ onto [0, I] by means of extreme points.

We need enough extreme points. Therefore, consider JBW-algebras first.

Definition: A JBW-algebra M is a JB-algebra which is the dual space of some Banach space M_* .

Let M be a JBW-algebra with identity e.

 $p \in M$ is central projection if $p^2 = p$ and $p \in Z(M)$.

Lemma

• The extreme points of [0, e] are precisely the central projections in *M*.

• The extreme points of [0, I] are of the form T_p for some central projection p in M with $p \in Z(M)$.

Hence $z \mapsto T_z$ maps extreme points of $[0, e] \cap Z(M)$ onto extreme points of [0, I].

• $[0, e] \cap Z(M)$ is convex and σ -weakly compact.

• [0, I] is convex and compact for the σ -weak operator topology. (Choi and Kim, 2008)

• $z \mapsto T_z \colon M \to B(M)$ is continuous with respect to the σ -weak topology on $[0, e] \cap Z(M)$ and the σ -weak operator topology on B(M).

Theorem

Let M be a JBW-algebra with identity e. Then

• $f: z \mapsto T_z: Z(M) \to E(M)$ is a linear, multiplicative, isometric bijection.

• the map f is also a homeomorphism for the σ -weak topology of M on Z(M) and the σ -weak operator topology of B(M) on E(M).

The bidual A^{**} of a JB-algebra A is a JBW-algebra. Thus:

Theorem

Let A be a JB-algebra with identity e. Then

• $f: z \mapsto T_z: Z(A) \to E(A)$ is an isometric isomorphism of JB-algebras.

• on E(A) the operator norm and the order unit norm induced by I are equal

• The map f is also a homeomorphism for the weak topology of A on Z(A) and the weak operator topology of B(A) on E(A).

Summary

Let A be a JB-algebra, i.e., a Banach space with a product \circ such that it is a commutative, not necessarily associative algebra over \mathbb{R} with $x \circ (y \circ x^2) = (x \circ y) \circ x^2$ for all $x, y \in A$ and

$$||x \circ y|| \le ||x|| ||y||, \quad ||x^2|| = ||x||^2, \quad ||x^2|| \le ||x^2 + y^2||.$$

Algebraic center of A: $Z(A) = \{z \in A : \forall a \in A : T_z T_a = T_a T_z\}$, where $T_a x = a \circ x$ (left multiplication by a).

Order center: $E(A) = \{T : A \to A : \exists \alpha \in \mathbb{R} \text{ s.t. } -\alpha I \leq T \leq \alpha I\}.$

Theorem

If (V, C, e) is a norm complete order unit space, then E(V) is a JB-algebra.

Theorem

The map $a \mapsto T_a \colon Z(A) \to E(A)$ is an isomorphism of JB-algebras,

Summary

Let A be a JB-algebra, i.e., a Banach space with a product \circ such that it is a commutative, not necessarily associative algebra over \mathbb{R} with $x \circ (y \circ x^2) = (x \circ y) \circ x^2$ for all $x, y \in A$ and $||x \circ y|| \le ||x|| ||y||$, $||x^2|| = ||x||^2$, $||x^2|| \le ||x^2 + y^2||$.

Algebraic center of A: $Z(A) = \{z \in A : \forall a \in A : T_z T_a = T_a T_z\}$, where $T_a x = a \circ x$ (left multiplication by a).

Order center: $E(A) = \{T : A \to A : \exists \alpha \in \mathbb{R} \text{ s.t. } -\alpha I \leq T \leq \alpha I\}.$

Theorem

If (V, C, e) is a norm complete order unit space, then E(V) is a JB-algebra.

Theorem

The map $a \mapsto T_a \colon Z(A) \to E(A)$ is an isomorphism of JB-algebras, THANK YOU!

(日)

(日)

Goal: show that $f: z \mapsto T_z$ maps Z(A) onto E(A).

Strategy: show that f is a bijection from $[0, e] \cap Z(A)$ onto [0, I] by means of extreme points.

Lemma

The extreme points of [0, e] are precisely the projections in A. $p \in A$ is a projection if $p^2 = p$.

We need enough extreme points. Therefore, consider JBW-algebras first.

Definition: A JBW-algebra M is a JB-algebra which is the dual space of some Banach space M_* .

A JBW-algebra M is a JB-algebra which is the dual space of some Banach space M_* .

Let M be a JBW-algebra with identity e.

 $\varphi \in M^*$ is a normal state if it is a state (i.e., φ is positive and $\varphi(e) = 1$) and for every bounded increasing net $(x_i)_i$ with supremum x we have $\varphi(x_i) \rightarrow \varphi(x)$.

For $(x_i)_i$ and x in M we say that $x_i \to x \sigma$ -weakly if $\varphi(x_i) \to \varphi(x)$ for every normal state φ on M.

For bounded linear $(T_i)_i$ and T on M we say that $T_i \to T$ in the σ -weak operator topology if $\varphi(T_ix) \to \varphi(Tx)$ for all $x \in M$ and all normal states φ on M.

Let M be a JBW-algebra with identity e.

Lemma

- The convex set $[0, e] \cap Z(M)$ in M is σ -weakly compact.
- The convex set [0, I] in B(M) is compact for the σ -weak operator topology. (Choi and Kim, 2008)

Lemma

The map $z \mapsto T_z \colon M \to B(M)$ is continuous with respect to the σ -weak topology on $[0, e] \cap Z(M)$ and the σ -weak operator topology on B(M).

Lemma

- The extreme points of [0, e] are precisely the projections in M.
- The extreme points of [0, I] are of the form T_p for some projection p in M with $p \in Z(M)$.

Claim: $f: z \mapsto T_z$ maps $[0, e] \cap Z(M)$ into [0, I]: Indeed, let $z \in Z(M)$. Then

- z extreme point of $[0, e] \cap Z(M)$
- \implies z is projection in M and $z \in Z(M)$
- $\implies T_z \in [0, I]$
- z convex combination of extreme points of $[0, e] \cap Z(M)$ $\implies T_z \in [0, I]$
- As $[0, e] \cap Z(M)$ is compact and convex, by Krein-Milman, $\forall z \in [0, e] \cap Z(M)$ we have $T_z \in [0, I]$.

Claim: $f: z \mapsto T_z$ maps $[0, e] \cap Z(M)$ onto [0, I]: Indeed, let $T \in [0, I]$. Then

- *T* extreme point of [0, I] $\implies \exists$ projection $p \in M$ with $p \in Z(M)$ such that $T_p = T$
- $\implies T \in f[[0, e] \cap Z(M)].$
- T convex combination of extreme points of [0, I] $\longrightarrow T \in f[[0, e] \cap Z(M)].$
- As [0, I] is compact and convex, by Krein-Milman, $\forall T \in [0, I]$ we have $T \in f[[0, e] \cap Z(M)]$.

Theorem

Let M be a JBW-algebra with identity e. Then

• $f: z \mapsto T_z: Z(M) \to E(M)$ is a linear, multiplicative, isometric bijection.

• the map f is also a homeomorphism for the σ -weak topology of M on Z(M) and the σ -weak operator topology of B(M) on E(M).

The bidual A^{**} of a JB-algebra A is a JBW-algebra. Thus:

Theorem

Let A be a JB-algebra with identity e. Then

• $f: z \mapsto T_z: Z(A) \to E(A)$ is an isometric isomorphism of JB-algebras.

• on E(A) the operator norm and the order unit norm induced by I are equal

• The map f is also a homeomorphism for the weak topology of A on Z(A) and the weak operator topology of B(A) on E(A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●