The order center and the algebraic center of JB-algebras

joint work with Anke Kalauch and Mark Roelands

> Posi+ivity XI Ljubljana July 13, 2023

Onno van Gaans

Universiteit
Leiden
The Netherlands

Introduction to pre-Riesz spaces

Let V be a vector space over $\mathbb{R} . C \subseteq V$ is a cone if $C+C \subseteq C$, $\lambda C \subseteq C$ for all $\lambda \in[0, \infty)$, and $C \cap-C=\{0\}$. Partial order \leq on V given by $x \leq y \Longleftrightarrow y-x \in C$. (V, C) is a partially ordered vector space.
A partially ordered vector space (V, C) is a Riesz space or vector lattice if for all $x, y \in V$ the set $\{x, y\}$ has a supremum.

Why partially ordered vector spaces instead of Riesz spaces?

- subspaces of Riesz spaces
- spaces of operators between Riesz spaces are partially ordered vector spaces but not always Riesz spaces

A partially ordered vector space (V, C) is

- directed if $C-C=V$ and
- Archimedean if $n x \leq y$ for all $n \in \mathbb{N}$ implies $x \leq 0$.

Introduction to pre-Riesz spaces

Idea: View partially ordered vector spaces as subspaces of Riesz spaces and use theory of Riesz spaces.
W. Luxemburg (1986): for every partially ordered vector space V there exists a Riesz space Y and a bipositive linear map $i: V \rightarrow Y$. bipositive: $i(x) \geq 0 \Longleftrightarrow x \geq 0$
Let V partially ordered vector space, Y Riesz space, $V \subseteq Y$ linear subspace, $x, y \in V$.
Say x, y are disjoint in V if they are disjoint in Y.
Problem: does depend on Y.
V is order dense in Y if for every $y \in Y$

$$
y=\inf \{v: v \in V, v \geq y\} \quad \text { Buskes and van Rooij, } 1993
$$

If $x, y \in V, V$ order dense in Y_{1} and order dense in Y_{2}, then x and y disjoint in Y_{1} if and only if disjoint in Y_{2}.

Introduction to pre-Riesz spaces

Approach:

- Write definition in terms of upper and lower bounds.

In a Riesz space:
x, y are disjoint $\Longleftrightarrow|x-y|=|x+y| \Longleftrightarrow$
$\{x-y,-x+y\}^{u}=\{x+y,-x-y\}^{u}$

- Show compatibility with order dense embedding. If V order dense in Y, then x, y disjoint in V if and only if x, y disjoint in Y.
- Use theory of Riesz spaces.

For $A \subseteq V, A^{\mathrm{d}}:=\{v \in V: v$ and a disjoint for all $a \in A\}$ is a linear subspace of V.

Introduction to pre-Riesz spaces

Which partially ordered vector spaces can be embedded order densely in Riesz spaces?

A partially ordered vector space (V, C) is a pre-Riesz space if for all $x, y, z \in V\{x+z, y+z\}^{u} \subseteq\{x, y\}^{u}$ implies $z \geq 0$.
Theorem (van Haandel, 1993)
Let (V, C) be a partially ordered vector space. Then V is pre-Riesz if and only if there exists a vector lattice Y and a bipositive map $i: V \rightarrow Y$ such that $i[V]$ is order dense in Y.
(Y, i) is then called a vector lattice cover of V. There is a unique smallest vector lattice cover, called the Riesz completion of V.

Van Haandel (1993): (V, C) directed and Archimedean $\Longrightarrow(V, C)$ is pre-Riesz $\Longrightarrow(V, C)$ is directed.
order dense: $x=\inf \{d \in D: d \geq x\}$. bipositive: $x \geq 0$ in $V \Longleftrightarrow i(x) \geq 0$ in W.

Introduction to pre-Riesz spaces

(V, C, e) order unit space:

- $\exists e \in V$ which is an order unit if $\forall x \in V \exists \lambda \in \mathbb{R}$ such that
$-\lambda e \leq x \leq \lambda e$.
- (V, C) is Archimedean;
$\|x\|_{e}=\inf \{\lambda \in \mathbb{R}:-\lambda e \leq x \leq \lambda e\}$ order unit norm.
Note that an order unit space is directed.
Hence order unit spaces are pre-Riesz spaces.

Introduction to pre-Riesz spaces

Let (V, C, e) be an order unit space. Vector lattice cover of V ?
Functional representation of V :
$\Sigma=\{\varphi: V \rightarrow \mathbb{R}: \varphi$ positive linear, $\varphi(e)=1\}$
$\Lambda=$ extreme points of Σ
$\bar{\Lambda}=$ weak * closure of Λ in Σ
$\Phi(x)(\varphi)=\varphi(x), \varphi \in \bar{\Lambda}, x \in V$
Kalauch-Lemmens-vG (2014):
$(C(\bar{\Lambda}), \Phi)$ is a vector lattice cover of V, i.e., $\Phi: V \rightarrow C(\bar{\Lambda})$ is bipositive and $\Phi[V]$ is order dense in $C(\bar{\Lambda})$

More talks on pre-Riesz spaces: Anke Kalauch, Florian Boisen, Janko Stennder

Introduction to JB-algebras

See Alfsen-Shultz, Geometry of state spaces of operator algebras, 2003.

Let Ω be a compact Hausdorff space, $C(\Omega)=\{x: \Omega \rightarrow \mathbb{R}: x$ is continuous $\}$. This is a vector space over \mathbb{R}

- with a product: $(x y)(\omega)=x(\omega) y(\omega), s \in \Omega$
- and a partial order: $x \leq y \Longleftrightarrow \forall \omega \in \Omega: x(s) \leq y(s)$.
- The constant function 1 is an order unit and an identity for the product.
- Note that $x \geq 0$ if and only if $\exists y$ such that $x=y^{2}$ (namely, $y=\sqrt{x})$, so $C(\Omega)^{+}=\left\{x^{2}: x \in C(\Omega)\right\}$.
$C(\Omega)$ is a commutative C^{*}-algebra.

Introduction to JB-algebras

Let H be a Hilbert space over \mathbb{C}, $B(H)=\{x: H \rightarrow H: x$ is bounded linear $\}$. This is a vector space over \mathbb{R}

- with a product: composition
- and a partial order: x is positive if $\sigma(x) \subseteq[0, \infty)$, $x \leq y \Longleftrightarrow y-x \geq 0$.
- The identity operator is an identity for the product, but not an order unit. Actually, $B(H)^{+}$does not even span $B(H)$ (over \mathbb{R}).

Introduction to JB-algebras

Rather consider $B(H)_{\text {sa }}=\{x \in B(H): x$ is self adjoint $\}$.
But $B(H)_{\text {sa }}$ is not closed under composition:
$(x y)^{*}=y^{*} x^{*}=y x \neq x y$.
Consider the Jordan product $x \circ y=\frac{1}{2}(x y+y x)$.
Note: $x \circ x=x x$, so we can unambiguously write x^{2}.
The Jordan product on $B(H)_{\text {sa }}$ distributes over sums:

- $(x+y) \circ z=x \circ z+y \circ z$ and $x \circ(y+z)=x \circ y+x \circ z$
- is commutative: $x \circ y=y \circ x$
but not associative:
$(x \circ y) \circ z=\frac{1}{2}((x \circ y) z+z(x \circ y))=\frac{1}{2}\left(\frac{1}{2}(x y+y x) z+\frac{1}{2} z(x y+y x)\right)$ and $x \circ(y \circ z)=\frac{1}{2}(x(y \circ z)+(y \circ z) x)=\frac{1}{2}\left(\frac{1}{2} x(y z+z y)+\frac{1}{2}(y z+z y) x\right)$,
- so $(x \circ y) \circ z \neq x \circ(y \circ z)$.

A very weak form of associativity still holds true:

- $x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2} \quad$ Jordan identity.

Introduction to JB-algebras

$B(H)_{\mathrm{sa}}=\{x \in B(H): x$ is self adjoint $\}$, Jordan product $x \circ y=\frac{1}{2}(x y+y x)$ distributes over sums, is commutative, not associative, and

$$
x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2} \quad \text { Jordan identity. }
$$

The identity operator I is an identity for the Jordan product and I is an order unit:
$\forall x \in B(H)_{\text {sa }} \exists \lambda \in \mathbb{R}$ such that $-\lambda I \leq x \leq \lambda I$.
Note that $B(H)_{\mathrm{sa}}^{+}=\left\{x^{2}: x \in B(H)_{\mathrm{sa}}\right\}$.
Compatibility between the norm and the Jordan product: $\|x \circ y\| \leq\|x\|\|y\|,\left\|x^{2}\right\|=\|x\|^{2},\left\|x^{2}\right\| \leq\left\|x^{2}+y^{2}\right\|$.

Introduction to JB-algebras

Two more notes on the Jordan product.
Recall the Jordan identity: $x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2}$:

- powers of $x: x^{2}=x \circ x=x x, x^{3}=x \circ(x \circ x)=x \circ x^{2}=x^{2} \circ x$. How about x^{4} ? By Jordan identity, $x \circ x^{3}=x \circ\left(x \circ x^{2}\right)=(x \circ x) \circ x^{2}=x^{2} \circ x^{2}=x^{3} \circ x$, so x^{4} is unambiguously defined. Similar for x^{n}.
- Consider the left multiplication by $a \in A, T_{a} x=a \circ x$ for all $x \in A$. $T_{a} T_{b}=T_{b} T_{a}$ if and only if $\forall x \in A: a \circ(b \circ x)=b \circ(a \circ x)$, or, equivalently, $(a \circ x) \circ b=a \circ(x \circ b)$. a and b are then said to operator commute.

Introduction to JB-algebras

Definition

A Jordan algebra (A, \circ) is a commutative, not necessarily associative algebra such that

$$
x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2} \text { for all } x, y \in A .
$$

A JB-algebra (A, \circ) is a Jordan algebra over \mathbb{R} with a norm $\|\cdot\|$ such that it is norm complete and

$$
\|x \circ y\| \leq\|x\|\|y\|, \quad\left\|x^{2}\right\|=\|x\|^{2}, \quad\left\|x^{2}\right\| \leq\left\|x^{2}+y^{2}\right\|
$$

for all $x, y \in A$.

JB-algebras as order unit spaces

Recall

Definition

A JB-algebra (A, \circ) is a commutative, not necessarily associative algebra over \mathbb{R} such that

$$
x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2} \text { for all } x, y \in A .
$$

endowed with a norm which makes it complete and

$$
\|x \circ y\| \leq\|x\|\|y\|, \quad\left\|x^{2}\right\|=\|x\|^{2}, \quad\left\|x^{2}\right\| \leq\left\|x^{2}+y^{2}\right\|
$$

for all $x, y \in A$.
We assume A has an algebraic identity e.
It is known that

- $C=\left\{x^{2}: x \in A\right\}$ is a closed cone in A,
- e is an order unit in A,
- the norm of A equals the order unit norm.

So, with $x \leq y \Longleftrightarrow y-x \in C, A$ is an order unit space.

JB-algebras as order unit spaces

Example

- $C(\Omega), x \circ y$ pointwise product, constant 1 function is the identity, maximum-norm, pointwise order. This is an associative JB-algebra.
- $B(H)_{\text {sa }}$, Jordan product $x \circ y=\frac{1}{2}(x y+y x)$, identity operator is the identity, operator norm, ordered by the cone of 'being positive definite'.
- Spin factor: $H \times \mathbb{R}$, where $(H,\langle\cdot, \cdot\rangle$,$) is a real Hilbert space, product$ $(x, \alpha) \circ(y, \beta)=(\beta x+\alpha y,\langle x, y\rangle+\alpha \beta)$,
$(0,1)$ is the identity, norm $\|(x, \alpha)\|=\sqrt{\langle x, x\rangle}+|\alpha|$, ordered by the Lorentz cone $\{(x, \alpha): \sqrt{\langle x, x\rangle} \leq \alpha\}$.
The following is known:
Theorem
Each associative unital JB-algebra is as JB-algebra isomorphic to $C(\Omega)$ for some compact Hausdorff space Ω.

JB-algebras as order unit spaces

Let (A, \circ) be a JB-algebra with identity e.
Question: How are the order structure and algebra structure related?
Algebraic center of A :

$$
Z(A)=\left\{z \in A: \forall a \in A: T_{z} T_{a}=T_{a} T_{z}\right\},
$$

where $T_{a} x=a \circ x$ (left multiplication by a).
Order center of A :
$E(A)=\{T: A \rightarrow A$ linear: $\exists \alpha \in \mathbb{R}$ such that $-\alpha I \leq T \leq \alpha /\}$, where I is the identity operator on A.

Theorem: $Z(A)$ and $E(A)$ are isomorphic as JB-algebras.

Order center

Let (V, C) be an Archimedean directed partially ordered vector space.

Order center of V :
$E(A)=\{T: A \rightarrow A$ linear: $\exists \alpha \in \mathbb{R}$ s.t. $-\alpha I \leq T \leq \alpha I\} \subseteq L^{r}(V)$. is a partially ordered vector space with order unit I.

- Well-known: If $V=C(\Omega)$ then $T \in E(V)$ if and only if $\exists v \in V$ such that $T=M_{v}$, where

$$
\left(M_{v} x\right)(\omega)=v(\omega) x(\omega), \omega \in \Omega, x \in V . \text { multiplication operator }
$$

- R.C. Buck (1961): V is isomorphic to a subspace of some $C(\Omega)$ and elements of $E(V)$ correspond to multiplication operators.
- If (V, C, e) is an order unit space and $\Phi: V \rightarrow \mathrm{C}(\bar{\Lambda})$ its functional representation, then for every $T \in E(V)$ the multiplication operator $M_{\Phi(T e)}$ maps $\Phi[V]$ into $\Phi[V]$ and $T=\Phi^{-1} \circ M_{\Phi(T e)} \circ \Phi$.

Order center

Let (V, C, e) be an order unit space.
$E(A)=\{T: A \rightarrow A$ linear: $\exists \alpha \in \mathbb{R}$ s.t. $-\alpha I \leq T \leq \alpha I\}$
$T \in E(V) \Longrightarrow T=\Phi^{-1} \circ M_{\Phi(T e)} \circ \Phi$.
Proposition

- $\forall S, T \in E(V): S T \in E(V)$
$-\forall S, T \in E(V): S T=\Phi^{-1} \circ M_{\Phi(S e) \Phi(T e)} \circ \Phi=T S$.
- $T \in E(V) \Longrightarrow T$ is continuous.
- On $E(V)$ the operator norm and the norm induced by the order unit I are equal.
- $E(V)$ is a closed subspace of the bounded linear operators on V.
- $\forall S, T \in E(V):\|S T\| \leq\|S\|\|T\|, \quad\left\|T^{2}\right\|=\|T\|^{2}$, and
$\left\|T^{2}\right\| \leq\left\|S^{2}+T^{2}\right\|$.

Order center

Corollary

- $E(V)$ with composition is a commutative associative algebra.
- If (V, C, e) is norm complete, then $E(V)$ is an associative unital $J B$-algebra, hence isomorphic to $C(\Omega)$ as JB-algebras.

Corollary
If (V, C, e) is norm complete, then $E(V)$ is a vector lattice.
Example
$V=C^{1}[0,1]$, pointwise order, $e=1$. Order unit norm is $\|\cdot\|_{\infty}$, not complete. We have $E(V)=\left\{M_{f}: f \in V\right\}$, which is not a vector lattice.

Algebraic center and order center

Let (A, \circ) be a JB-algebra with identity e.
Algebraic center of A :
$Z(A)=\left\{z \in A: \forall a \in A: T_{z} T_{a}=T_{a} T_{z}\right\}$,
where $T_{a} x=a \circ x($ left multiplication by $a)$.
$Z(A)$ is a JB-subalgebra of A and it is associative, hence JB-algebra isomorphic to a $C(\Omega)$.

Algebraic center and order center

Theorem: Let (A, \circ) be a JB-algebra with identity e.

- The algebraic center $Z(A)$ and the order center $E(A)$ are isomorphic as JB-algebras.
- $f(z)=T_{z}$ is a JB-algebra isomorphism from $Z(A)$ onto $E(A)$.
$T_{z} x=z \circ x$
$B(A)=\{T: A \rightarrow A: T$ linear and bounded $\}$ with the operator norm.

It is routine to show:
Lemma
$f: Z(A) \rightarrow B(A)$ is linear, multiplicative, injective, and $f(e)=I$ (with I the identity operator on A). Moreover, $\left\|T_{z}\right\|=\|z\|$ for all $z \in Z(A)$. Remains to show: f maps into and onto $E(A)$.

Algebraic center and order center

Goal: show that $f: z \mapsto T_{z}$ maps $Z(A)$ onto $E(A)$.
Strategy: show that f is a bijection from $[0, e] \cap Z(A)$ onto $[0, I]$ by means of extreme points.

We need enough extreme points. Therefore, consider JBW-algebras first.

Definition: A JBW-algebra M is a JB-algebra which is the dual space of some Banach space M_{*}.

Algebraic center and order center

Let M be a JBW-algebra with identity e. $p \in M$ is central projection if $p^{2}=p$ and $p \in Z(M)$.

Lemma

- The extreme points of $[0, e]$ are precisely the central projections in M.
- The extreme points of $[0, I]$ are of the form T_{p} for some central projection p in M with $p \in Z(M)$.
Hence $z \mapsto T_{z}$ maps extreme points of $[0, e] \cap Z(M)$ onto extreme points of $[0, I]$.
- $[0, e] \cap Z(M)$ is convex and σ-weakly compact.
- $[0, I]$ is convex and compact for the σ-weak operator topology.
(Choi and Kim, 2008)
- $z \mapsto T_{z}: M \rightarrow B(M)$ is continuous with respect to the σ-weak topology on $[0, e] \cap Z(M)$ and the σ-weak operator topology on $B(M)$.

Algebraic center and order center

Theorem

Let M be a JBW-algebra with identity e. Then

- $f: z \mapsto T_{z}: Z(M) \rightarrow E(M)$ is a linear, multiplicative, isometric bijection.
- the map f is also a homeomorphism for the σ-weak topology of M on $Z(M)$ and the σ-weak operator topology of $B(M)$ on $E(M)$.

The bidual $A^{* *}$ of a JB-algebra A is a JBW-algebra. Thus:

Theorem

Let A be a JB-algebra with identity e. Then

- $f: z \mapsto T_{z}: Z(A) \rightarrow E(A)$ is an isometric isomorphism of $J B$-algebras.
- on $E(A)$ the operator norm and the order unit norm induced by I are equal
- The map f is also a homeomorphism for the weak topology of A on $Z(A)$ and the weak operator topology of $B(A)$ on $E(A)$.

Summary

Let A be a JB-algebra, i.e., a Banach space with a product o such that it is a commutative, not necessarily associative algebra over \mathbb{R} with

$$
\begin{aligned}
& x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2} \text { for all } x, y \in A \text { and } \\
& \|x \circ y\| \leq\|x\|\|y\|, \quad\left\|x^{2}\right\|=\|x\|^{2}, \quad\left\|x^{2}\right\| \leq\left\|x^{2}+y^{2}\right\| .
\end{aligned}
$$

Algebraic center of $A: Z(A)=\left\{z \in A: \forall a \in A: T_{z} T_{a}=T_{a} T_{z}\right\}$, where $T_{a} x=a \circ x($ left multiplication by $a)$.

Order center: $E(A)=\{T: A \rightarrow A: \exists \alpha \in \mathbb{R}$ s.t. $-\alpha I \leq T \leq \alpha I\}$.
Theorem
If (V, C, e) is a norm complete order unit space, then $E(V)$ is a $J B$-algebra.

Theorem
The map $a \mapsto T_{a}: Z(A) \rightarrow E(A)$ is an isomorphism of JB-algebras,

Summary

Let A be a JB-algebra, i.e., a Banach space with a product o such that it is a commutative, not necessarily associative algebra over \mathbb{R} with

$$
\begin{aligned}
& x \circ\left(y \circ x^{2}\right)=(x \circ y) \circ x^{2} \text { for all } x, y \in A \text { and } \\
& \|x \circ y\| \leq\|x\|\|y\|, \quad\left\|x^{2}\right\|=\|x\|^{2}, \quad\left\|x^{2}\right\| \leq\left\|x^{2}+y^{2}\right\| .
\end{aligned}
$$

Algebraic center of $A: Z(A)=\left\{z \in A: \forall a \in A: T_{z} T_{a}=T_{a} T_{z}\right\}$, where $T_{a} x=a \circ x($ left multiplication by $a)$.

Order center: $E(A)=\{T: A \rightarrow A: \exists \alpha \in \mathbb{R}$ s.t. $-\alpha I \leq T \leq \alpha I\}$.

Theorem

If (V, C, e) is a norm complete order unit space, then $E(V)$ is a $J B$-algebra.

Theorem
The map $a \mapsto T_{a}: Z(A) \rightarrow E(A)$ is an isomorphism of JB-algebras, THANK YOU!

Algebraic center and order center

Goal: show that $f: z \mapsto T_{z}$ maps $Z(A)$ onto $E(A)$.
Strategy: show that f is a bijection from $[0, e] \cap Z(A)$ onto $[0, I]$ by means of extreme points.

Lemma
The extreme points of $[0, e]$ are precisely the projections in A. $p \in A$ is a projection if $p^{2}=p$.
We need enough extreme points. Therefore, consider JBW-algebras first.

Definition: A JBW-algebra M is a JB-algebra which is the dual space of some Banach space M_{*}.

Algebraic center and order center

A JBW-algebra M is a JB-algebra which is the dual space of some Banach space M_{*}. Let M be a JBW-algebra with identity e.
$\varphi \in M^{*}$ is a normal state if it is a state (i.e., φ is positive and $\varphi(e)=1$) and for every bounded increasing net $\left(x_{i}\right)_{i}$ with supremum x we have $\varphi\left(x_{i}\right) \rightarrow \varphi(x)$.
For $\left(x_{i}\right)_{i}$ and x in M we say that $x_{i} \rightarrow x \sigma$-weakly if $\varphi\left(x_{i}\right) \rightarrow \varphi(x)$ for every normal state φ on M.

For bounded linear $\left(T_{i}\right)_{i}$ and T on M we say that $T_{i} \rightarrow T$ in the σ-weak operator topology if $\varphi\left(T_{i} x\right) \rightarrow \varphi\left(T_{x}\right)$ for all $x \in M$ and all normal states φ on M.

Algebraic center and order center

Let M be a JBW-algebra with identity e.
Lemma

- The convex set $[0, e] \cap Z(M)$ in M is σ-weakly compact.
- The convex set $[0, I]$ in $B(M)$ is compact for the σ-weak operator topology. (Choi and Kim, 2008)

Lemma

The map $z \mapsto T_{z}: M \rightarrow B(M)$ is continuous with respect to the σ-weak topology on $[0, e] \cap Z(M)$ and the σ-weak operator topology on $B(M)$.

Lemma

- The extreme points of $[0, e]$ are precisely the projections in M.
- The extreme points of $[0, I]$ are of the form T_{p} for some projection p in M with $p \in Z(M)$.

Algebraic center and order center

Claim: $f: z \mapsto T_{z}$ maps $[0, e] \cap Z(M)$ into $[0, I]$: Indeed, let $z \in Z(M)$. Then

- z extreme point of $[0, e] \cap Z(M)$
$\Longrightarrow z$ is projection in M and $z \in Z(M)$
$\Longrightarrow T_{z} \in[0, I]$
- z convex combination of extreme points of $[0, e] \cap Z(M)$ $\Longrightarrow T_{z} \in[0, I]$
- As $[0, e] \cap Z(M)$ is compact and convex, by Krein-Milman, $\forall z \in[0, e] \cap Z(M)$ we have $T_{z} \in[0, I]$.

Algebraic center and order center

Claim: $f: z \mapsto T_{z}$ maps $[0, e] \cap Z(M)$ onto $[0, I]$: Indeed, let $T \in[0, I]$. Then

- T extreme point of $[0, I]$
$\Longrightarrow \exists$ projection $p \in M$ with $p \in Z(M)$ such that $T_{p}=T$
$\Longrightarrow T \in f[[0, e] \cap Z(M)]$.
- T convex combination of extreme points of $[0, I]$
$\longrightarrow T \in f[[0, e] \cap Z(M)]$.
- As $[0, I]$ is compact and convex, by Krein-Milman, $\forall T \in[0, I]$ we have $T \in f[[0, e] \cap Z(M)]$.

Algebraic center and order center

Theorem

Let M be a JBW-algebra with identity e. Then

- $f: z \mapsto T_{z}: Z(M) \rightarrow E(M)$ is a linear, multiplicative, isometric bijection.
- the map f is also a homeomorphism for the σ-weak topology of M on $Z(M)$ and the σ-weak operator topology of $B(M)$ on $E(M)$.

The bidual $A^{* *}$ of a JB-algebra A is a JBW-algebra. Thus:

Theorem

Let A be a JB-algebra with identity e. Then

- $f: z \mapsto T_{z}: Z(A) \rightarrow E(A)$ is an isometric isomorphism of $J B$-algebras.
- on $E(A)$ the operator norm and the order unit norm induced by I are equal
- The map f is also a homeomorphism for the weak topology of A on $Z(A)$ and the weak operator topology of $B(A)$ on $E(A)$.

