TRUNCATED VECTOR LATTICES: SOMETHING OLD AND SOMETHING NEW

Karim Boulabiar University of Tunis El Manar

Positivity XI - Ljubljana 2023

Positivity XI - Ljubljana 2023 1 / 29

Some history

Some history

DEFINITION

A vector sublattice L of \mathbb{R}^X is said to satisfy the **Stone condition** if $1 \wedge f \in L$ for all $f \in L$.

POSITIVITY XI - LJUBLJANA 202

Some history

DEFINITION

A vector sublattice L of \mathbb{R}^X is said to satisfy the **Stone condition** if $1 \wedge f \in L$ for all $f \in L$.

Positivity XI - Liubliana 202

THEOREM (STONE, 1948)

If the vector sublattice L of \mathbb{R}^X satisfies the Stone condition, then for any σ -order continuous linear functional ψ on L, there exists a measure λ on X such that

$$\psi f = \int_X f d\lambda$$
 for all $f \in L$.

DEFINITION (FREMLIN, 1974)

Any vector sublattice of \mathbb{R}^{X} satisying the Stone condition is said to be truncated.

POSITIVITY XI - LJUBLJANA 2023

DEFINITION (FREMLIN, 1974)

Any vector sublattice of \mathbb{R}^X satisying the Stone condition is said to be **truncated**.

THEOREM (FREMLIN, 1974)

Let L be a vector lattice with a Fatou M-norm such that the supremum

 $\sup\left\{ \left[0,f\right] \cap\overline{B}\left(0,\alpha\right) \right\}$

exists in L for all $f \in L^+$ and $\alpha \in (0, \infty)$. Then L is (lattice isomorphic to) a truncated vector sublattice of $\ell^{\infty}(X)$ for some X.

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

THEOREM (HUIJSMANS-DE PAGTER, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

XI - LIUBLIANA 2

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

THEOREM (HUIJSMANS-DE PAGTER, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

XI - LIUBLIANA 2

L is a subalgebra of A.

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

THEOREM (HUIJSMANS-DE PAGTER, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

- L is a subalgebra of A.
- 2 L is vector sublattice of A.

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

THEOREM (HUIJSMANS-DE PAGTER, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

- L is a subalgebra of A.
- 2 L is vector sublattice of A.
- I satisfies the Stone condition.

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

THEOREM (HUIJSMANS-DE PAGTER, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

- L is a subalgebra of A.
- 2 L is vector sublattice of A.
- I satisfies the Stone condition.

Let A be an f-algebra with unit e. A subset S of A is said to have the **Stone condition** if $e \wedge f \in S$ for all $f \in S$.

THEOREM (HUIJSMANS-DE PAGTER, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

- L is a subalgebra of A.
- 2 L is vector sublattice of A.
- I satisfies the Stone condition.

Then, $(i) \land (j) \Rightarrow (k)$ whenever i, j, k are pairwise different in $\{1, 2, 3\}$.

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

• $f \wedge g^* \leq f^* \leq f$, and

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

•
$$f \wedge g^* \leq f^* \leq f$$
, and
• if $(nf)^* = nf$ for all $n \in \{1, 2, ...\}$ then $f = 0$

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

•
$$f \wedge g^* \leq f^* \leq f$$
, and
• if $(nf)^* = nf$ for all $n \in \{1, 2, ...\}$ then $f = 0$

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

• $f \wedge g^* \le f^* \le f$, and • if $(nf)^* = nf$ for all $n \in \{1, 2, ...\}$ then f = 0.

A vector lattice along with a truncation is called a **truncated vector lattice**.

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

• $f \wedge g^* \le f^* \le f$, and • if $(nf)^* = nf$ for all $n \in \{1, 2, ...\}$ then f = 0.

A vector lattice along with a truncation is called a **truncated vector lattice**.

LEMMA

A vector lattice L is truncated if and only if there exists a unary operation \ast on L such that

0
$$0^* = 0$$
 and $f^* \wedge g = f \wedge g^*$ for all $f, g \in L$, and

29 /

DEFINITION (BALL, 2014)

A unary operation * on the positive cone L^+ of a vector lattice L is called a **truncation** if, for every $f, g \in L^+$,

• $f \wedge g^* \le f^* \le f$, and • if $(nf)^* = nf$ for all $n \in \{1, 2, ...\}$ then f = 0.

A vector lattice along with a truncation is called a **truncated vector lattice**.

LEMMA

A vector lattice L is truncated if and only if there exists a unary operation \ast on L such that

0
$$0^* = 0$$
 and $f^* \wedge g = f \wedge g^*$ for all $f, g \in L$, and

By a **unitization** of a truncated vector lattice L is meant any vector lattice E such that

L is a vector sublattice of E, and

By a **unitization** of a truncated vector lattice L is meant any vector lattice E such that

- L is a vector sublattice of E, and
- 2 E contains a positive element e such that $f^* = e \wedge f$ for all $f \in L$.

By a **unitization** of a truncated vector lattice L is meant any vector lattice E such that

- L is a vector sublattice of E, and
- 2 E contains a positive element e such that $f^* = e \wedge f$ for all $f \in L$.

By a **unitization** of a truncated vector lattice L is meant any vector lattice E such that

- L is a vector sublattice of E, and
- 2 *E* contains a positive element *e* such that $f^* = e \wedge f$ for all $f \in L$.

If $e \in L$, then L is said to be **unital** with e as **unit**.

By a **unitization** of a truncated vector lattice L is meant any vector lattice E such that

- L is a vector sublattice of E, and
- **2** *E* contains a positive element *e* such that $f^* = e \wedge f$ for all $f \in L$.

If $e \in L$, then L is said to be **unital** with e as **unit**.

EXAMPLE

If X is a locally compact Hausdorff space, then $C_0(X)$ is a truncated vector lattice with respect to its **canonical** truncation defined by $f^* = 1 \wedge f$ for all $f \in C_0(X)$. Moreover, $C_0(X)$ is unital if and only if X is compact.

The truncated vector lattice L is said to be weakly truncated if $f \in L^+$ and $f^* = 0$ imply f = 0.

The truncated vector lattice L is said to be weakly truncated if $f \in L^+$ and $f^* = 0$ imply f = 0.

THEOREM (BALL, 2014)

For any weakly truncated Archimedean vector lattice L, there exists a locally compact Hausdorff space X such that L is (lattice isomorphic with) a vector lattice of functions in $C^{\infty}(X)$ and $f^* = 1 \wedge f$ for all $f \in L^+$.

The truncated vector lattice L is said to be weakly truncated if $f \in L^+$ and $f^* = 0$ imply f = 0.

THEOREM (BALL, 2014)

For any weakly truncated Archimedean vector lattice L, there exists a locally compact Hausdorff space X such that L is (lattice isomorphic with) a vector lattice of functions in $C^{\infty}(X)$ and $f^* = 1 \wedge f$ for all $f \in L^+$.

Problem

Ball proved that any weakly truncated Archimedean vector lattice has a unitization in ZFC-set theory. The starting point was the question of whether or not the result holds in ZF-set theory (Zaanen Program).

ALEXANDROFF UNITIZATION

DEFINITION

Let L, M be two truncated vector lattices. A linear map $T: L \to M$ is called a **truncation homomorphism** if

$$T(f^*) = (Tf)^*$$
 for all $f \in L$.

Positivity XI - Ljubljana 2023

ALEXANDROFF UNITIZATION

DEFINITION

Let L, M be two truncated vector lattices. A linear map $T: L \to M$ is called a **truncation homomorphism** if

$$T(f^*) = (Tf)^*$$
 for all $f \in L$.

A bijective truncation homomorphism $T: L \rightarrow M$ is called a **truncation** isomorphism.

Positivity XI - Ljubljana 2023

Any truncated homomorphism is a lattice homomorphism.

POSITIVITY XI - LJUBLJANA 2023

⁹/29/

Any truncated homomorphism is a lattice homomorphism.

DEFINITION

Let L, M be two unital truncated vector lattices with truncation units u, v respectively. A linear operator $T : L \to M$ is said to be **unital** or **identity preserving** if Tu = v.

POSITIVITY XI - LJUBLJANA 2023

Any truncated homomorphism is a lattice homomorphism.

DEFINITION

Let L, M be two unital truncated vector lattices with truncation units u, v respectively. A linear operator $T : L \to M$ is said to be **unital** or **identity preserving** if Tu = v.

XI - LJUBLJANA 20

Lemma

A unital lattice homomorphism between two unital truncated vector lattices is a truncation homomorphism.

Let L be a truncated vector lattice. There exists a unique (up to a unital lattice isomorphism that leaves L pointwise fixed) unitization α L of L such that, for every unital truncated vector lattice U, any truncation homomorphism $T : L \rightarrow U$ extends uniquely to a unital lattice homomorphism $T^{\alpha} : \alpha L \rightarrow U$:

POSITIVITY XI - LJUBLJANA 2023

Let L be a truncated vector lattice. There exists a unique (up to a unital lattice isomorphism that leaves L pointwise fixed) unitization α L of L such that, for every unital truncated vector lattice U, any truncation homomorphism $T : L \rightarrow U$ extends uniquely to a unital lattice homomorphism $T^{\alpha} : \alpha L \rightarrow U$:

COROLLARY

If the truncated vector lattice L is not unital then αL is the unique (up to a unital lattice isomorphism that leaves L pointwise fixed) unitization L^{*} of L such that, for every unital truncated vector lattice U, any one-to-one truncation homomorphism T : L \rightarrow U extends uniquely to a one-to-one unital lattice homomorphism T^{*} : L^{*} \rightarrow U.

10 /

If *L* is a truncated vector lattice, the unital truncation vector lattice αL is called the **Alexandroff unitization** of *L*.

If L is a truncated vector lattice, the unital truncation vector lattice αL is called the **Alexandroff unitization** of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

If L is a truncated vector lattice, the unital truncation vector lattice αL is called the **Alexandroff unitization** of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

THEOREM

Let L be a truncated vector lattice.

If L is a truncated vector lattice, the unital truncation vector lattice αL is called the **Alexandroff unitization** of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

THEOREM

Let L be a truncated vector lattice.

 ${\ensuremath{\bullet}}$ The direct sum $L\oplus {\ensuremath{\mathbb R}}$ is a vector lattice whose positive cone is the union

$$[L \oplus \mathbb{R}]^+ = L^+ \cup \left\{ f + r : r > 0 \text{ and } \left(\frac{1}{r}f^-\right)^* = \frac{1}{r}f^- \right\}$$

If L is a truncated vector lattice, the unital truncation vector lattice αL is called the **Alexandroff unitization** of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

THEOREM

Let L be a truncated vector lattice.

 ${\ensuremath{\bullet}}$ The direct sum $L\oplus {\ensuremath{\mathbb R}}$ is a vector lattice whose positive cone is the union

$$[L \oplus \mathbb{R}]^+ = L^+ \cup \left\{ f + r : r > 0 \text{ and } \left(\frac{1}{r}f^-\right)^* = \frac{1}{r}f^- \right\}$$

2 $L \oplus \mathbb{R}$ is an Alexandroff unitization of L.

LATTICE NORMS ON THE ALEXANDROFF UNITIZATION

PROBLEM

Let L be a truncated vector lattice with a lattice norm . We want to know whether or not $\|.\|$ extends to a lattice norm $\|.\|_{\mu}$ on $\alpha L = L \oplus \mathbb{R}$?

Positivity XI - Ljubljana 202

LATTICE NORMS ON THE ALEXANDROFF UNITIZATION

PROBLEM

Let L be a truncated vector lattice with a lattice norm . We want to know whether or not $\|.\|$ extends to a lattice norm $\|.\|_{\mu}$ on $\alpha L = L \oplus \mathbb{R}$?

POSITIVITY XI - LJUBLJANA 202

Fact

If so, the set of positive fixed points of the truncation must be norm-bounded.

By a **normed truncated vector lattice** is meant a truncated vector lattice *L* with a lattice norm $\|.\|$ such that

$$\sup \left\{ \|f^*\| : f \in L^+ \right\} = 1.$$

Positivity XI - Ljubljana 2023

By a **normed truncated vector lattice** is meant a truncated vector lattice *L* with a lattice norm $\|.\|$ such that

$$\sup \left\{ \|f^*\| : f \in L^+
ight\} = 1.$$

DEFINITION

Let *L* be a normed truncated vector lattice whose norm is denoted by $\|.\|$. A lattice norm $\|.\|_u$ on $L \oplus \mathbb{R}$ is called a **unitization norm** if $\|1\|_u = 1$ and $\|f\|_u = \|f\|$ for all $f \in L$.

Positivity

Let L be a normed truncated vector lattice. The formula

$$\|f+r\|_{u,1} = \left\| (|f+r|-|r|)^+ \right\| + |r| \quad \text{for all } f \in L \text{ and } r \in \mathbb{R}$$

defines the largest unitization norm on $L \oplus \mathbb{R}$.

KARIM BOULABIAR UNIVERSITY OF TUNIS E

Let L be a normed truncated vector lattice. The formula

$$\|f+r\|_{u,1} = \left\| (|f+r|-|r|)^+ \right\| + |r| \quad \text{for all } f \in L \text{ and } r \in \mathbb{R}$$

defines the largest unitization norm on $L \oplus \mathbb{R}$.

THEOREM

Let L be a normed truncated vector lattice. If L has no unit, the gauge function

$$\left\|f+r
ight\|_{u,0}=\sup\left\{\left\|g
ight\|:\left|g
ight|\leq\left|f+r
ight|
ight\}$$
 for all $f\in L$ and $r\in\mathbb{R}$

is the smallest unitization norm on $L \oplus \mathbb{R}$.

Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{\mu}$. Then the following hold.

Positivity XI - Ljubljana 2023

Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.

Positivity XI - Ljubljana 2023

• If L is closed in $L \oplus \mathbb{R}$ then $\|.\|_u$ and $\|.\|_{u,1}$ are equivalent.

Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.

- If L is closed in $L \oplus \mathbb{R}$ then $\|.\|_u$ and $\|.\|_{u,1}$ are equivalent.
- **2** If L is dense in $L \oplus \mathbb{R}$ then L is not unital and $\|.\|_u = \|.\|_{u,0}$.

Positivity XI - Ljubljana 2023

Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.

- If L is closed in $L \oplus \mathbb{R}$ then $\|.\|_u$ and $\|.\|_{u,1}$ are equivalent.
- **2** If L is dense in $L \oplus \mathbb{R}$ then L is not unital and $\|.\|_u = \|.\|_{u,0}$.
- ${f 0}$ L is a Banach lattice if and only if L $\oplus {f R}$ is a Banach lattice.

REPRESENTATIONS BY CONTINUOUS FUNCTIONS

THEOREM

Let L be a truncated Archimedean vector lattice . Then there exists an extremally disconnected locally compact Hausdorff space X such that

XI - LIUBLIANA 202

REPRESENTATIONS BY CONTINUOUS FUNCTIONS

THEOREM

Let L be a truncated Archimedean vector lattice . Then there exists an extremally disconnected locally compact Hausdorff space X such that

• L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$, and

I - LIUBLIANA 20

REPRESENTATIONS BY CONTINUOUS FUNCTIONS

THEOREM

Let L be a truncated Archimedean vector lattice . Then there exists an extremally disconnected locally compact Hausdorff space X such that

• L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$, and

2 There exists a clopen set Y of X such that $f^* = 1_Y \wedge f$ for all $f \in L$.

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

KARIM BOULABIAR UNIVERSITY OF TUNIS E

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

• L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$,

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

• L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$,

2
$$f^* = 1 \land f$$
 for all $f \in L$, and

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

- L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$,
- 2) $f^* = 1 \land f$ for all $f \in L$, and
- **(a)** any $f \in L$ vanishes at infinity.

The truncated vector lattice *L* is said to be **strongly truncated** if for every $f \in L^+$ the equality $(\lambda f)^* = \lambda f$ holds for some $\lambda \in (0, \infty)$.

The truncated vector lattice *L* is said to be **strongly truncated** if for every $f \in L^+$ the equality $(\lambda f)^* = \lambda f$ holds for some $\lambda \in (0, \infty)$.

COROLLARY

Let L be a strongly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

The truncated vector lattice L is said to be **strongly truncated** if for every $f \in L^+$ the equality $(\lambda f)^* = \lambda f$ holds for some $\lambda \in (0, \infty)$.

COROLLARY

Let L be a strongly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

L is (lattice isomorphic with) an order dense vector sublattice of C₀ (X), and

The truncated vector lattice *L* is said to be **strongly truncated** if for every $f \in L^+$ the equality $(\lambda f)^* = \lambda f$ holds for some $\lambda \in (0, \infty)$.

COROLLARY

Let L be a strongly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

L is (lattice isomorphic with) an order dense vector sublattice of C₀ (X), and

2)
$$f^* = 1 \wedge f$$
 for all $f \in L$.

If L is an Archimedean vector lattice, we denote by L^{u} the universal completion of L.

Positivity XI - Ljubljana 2023

19 / 29

If L is an Archimedean vector lattice, we denote by L^u the universal completion of L.

THEOREM

Let L be an Archimedean truncated vector lattice L. Hence, there exists a component e of some positive weak unit w in L^u such that

 $f^* = e \wedge f$ for all $f \in L$.

POSITIVITY XI - LJUBLJANA 2

If L is an Archimedean vector lattice, we denote by L^u the universal completion of L.

THEOREM

Let L be an Archimedean truncated vector lattice L. Hence, there exists a component e of some positive weak unit w in L^u such that

 $f^* = e \wedge f$ for all $f \in L$.

COROLLARY

Let L be an Archimedean weakly truncated vector lattice L. Hence, there exists a positive weak unit w of L^u such that

 $f^* = w \wedge f$ for all $f \in L$.

TRUNCATED VECTOR LATTICES OF FUNCTIONS

Positivity XI - Ljubljana 2023

20

Let *L* be a truncated vector sublattice of \mathbb{R}^{X} .

TRUNCATED VECTOR LATTICES OF FUNCTIONS

Let *L* be a truncated vector sublattice of \mathbb{R}^{X} .

DEFINITION

Define a truncation form on L to mean a linear functional ϕ on L such that

$$\phi\left(1\wedge f
ight)=\min\left\{1,\phi\left(f
ight)
ight\}$$
 for all $f\in L.$

TRUNCATED VECTOR LATTICES OF FUNCTIONS

Let *L* be a truncated vector sublattice of \mathbb{R}^{X} .

DEFINITION

Define a truncation form on L to mean a linear functional ϕ on L such that

$$\phi(1 \wedge f) = \min\{1, \phi(f)\} \text{ for all } f \in L.$$

Lemma

If $1 \in L$ then a nonzero linear functional ϕ on L is a truncation form if and only if

$$\phi\left(1
ight)=1 \hspace{0.2cm} ext{and} \hspace{0.2cm} \phi\left(\left|f
ight|
ight)=\left|\phi\left(f
ight)
ight| \hspace{0.2cm} ext{for all } f\in L.$$

THEOREM (SHIROTA, 1952)

If X is a compact Hausdorff space, a linear functional ϕ on C (X) is a truncation form if and only if $\phi = \delta_x$ for some $x \in X$, i.e., $\phi(f) = f(x)$ for all $f \in C(X)$.

THEOREM (SHIROTA, 1952)

If X is a compact Hausdorff space, a linear functional ϕ on C (X) is a truncation form if and only if $\phi = \delta_x$ for some $x \in X$, i.e., $\phi(f) = f(x)$ for all $f \in C(X)$.

THEOREM (GARRIDO-JARAMILLO, 2004)

Let X be a Tychonoff space and ϕ be a linear functional on a vector sublattice of C (X) such that $1 \in L$. Then ϕ is a truncated form on L if and only if there exists $u \in \beta X$ such that

$$\phi\left(f
ight)=f^{eta}\left(u
ight)$$
 for all $f\in L$,

where f^{β} is the unique extension of f to a continuous function from βX to $\omega \mathbb{R}$.

Let L be a truncated vector sublattice of \mathbb{R}^X and ϕ be a linear functional on L. Then ϕ is a truncation form on L if and only if there exists a net (x_λ) of elements of X such that

 $\phi(f) = \lim f(x_{\lambda})$ in \mathbb{R} for all $f \in L$.

XI - LJUBLJANA 202

Let L be a truncated vector sublattice of \mathbb{R}^X and ϕ be a linear functional on L. Then ϕ is a truncation form on L if and only if there exists a net (x_{λ}) of elements of X such that

 $\phi(f) = \lim f(x_{\lambda})$ in \mathbb{R} for all $f \in L$.

COROLLARY

Let L be a truncated vector sublattice of C(X) with X a Tychonoff space. Then a linear functional ϕ on L is a truncation form if and only if there exists $u \in \beta X$ such that

$$\phi(f) = f^{\beta}(u)$$
 for all $f \in L$.

EXTREME POSITIVE OPERATORS AND TRUNCATIONS

DEFINITION

Let A, B be two semiprime f-algebras. An operator $T : A \rightarrow B$ is said to be **contractive** if

 $0 \leq Tf \leq I_B$ for all $f \in A$ with $0 \leq f \leq I_A$.

KARIM BOULABIAR UNIVERSITY OF TUNIS E
EXTREME POSITIVE OPERATORS AND TRUNCATIONS

DEFINITION

Let A, B be two semiprime f-algebras. An operator $T : A \rightarrow B$ is said to be **contractive** if

$$0 \leq Tf \leq I_B$$
 for all $f \in A$ with $0 \leq f \leq I_A$.

XI - LIUBLIANA 2

Fact

The set $\mathcal{K}(A, B)$ of all positive contractive operators from A to B is convex.

EXTREME POSITIVE OPERATORS AND TRUNCATIONS

DEFINITION

Let A, B be two semiprime f-algebras. An operator $T : A \rightarrow B$ is said to be **contractive** if

 $0 \leq Tf \leq I_B$ for all $f \in A$ with $0 \leq f \leq I_A$.

Y XI - LJUBLJANA 2023

Fact

The set $\mathcal{K}(A, B)$ of all positive contractive operators from A to B is convex.

PROBLEM

We want to characterize the extreme points of $\mathcal{K}(A, B)$.

Fact

If A is a semiprime f-algebra A then the unary operation * given by

$$f^* = I_A \wedge f$$
 for all $f \in A$

is a truncation on A.

KARIM BOULABIAR UNIVERSITY OF TUNIS E

Fact

If A is a semiprime f-algebra A then the unary operation * given by

$$f^* = I_A \wedge f$$
 for all $f \in A$

is a truncation on A.

THEOREM

A linear operator $T : A \to B$ is an extreme point in $\mathcal{K}(A, B)$ if and only if T is a truncation homomorphism.

(I - LIUBLIANA

Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_0(X)$ into $C_0(Y)$.

KARIM BOULABIAR UNIVERSITY OF TUNIS E

Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_0(X)$ into $C_0(Y)$.

POSITIVITY XI - LJUBLJANA 202

1 *T* is an extreme positive contraction.

Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_0(X)$ into $C_0(Y)$.

POSITIVITY XI - LJUBLJANA 202

T is an extreme positive contraction.

2
$$T(1 \wedge f) = 1 \wedge Tf$$
 for all $f \in C_0(X)$.

Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_0(X)$ into $C_0(Y)$.

T is an extreme positive contraction.

2
$$T(1 \wedge f) = 1 \wedge Tf$$
 for all $f \in C_0(X)$.

(3) There exists a continuous function $\omega Y \xrightarrow{\tau} \omega X$ such that

 $au\left(\omega
ight)=\omega$ and $Tf=f\circ au$ for all $f\in\mathcal{C}_{0}\left(X
ight)$.

POSITIVITY XI - LJUBLJANA 2023

A complete normed truncated vector lattice is called a **truncated Banach lattice**.

Positivity XI - Ljubljana 2023

26 29

A complete normed truncated vector lattice is called a **truncated Banach lattice**.

DEFINITION

If the order ideal of a truncated Banach lattice L generated by the set of all positive fixed points of the truncation is norm-dense, we call L a **topologically truncated Banach lattice.**

A complete normed truncated vector lattice is called a **truncated Banach lattice**.

DEFINITION

If the order ideal of a truncated Banach lattice L generated by the set of all positive fixed points of the truncation is norm-dense, we call L a **topologically truncated Banach lattice.**

THEOREM

A Banach lattice L is topologically truncated if and only if there exists a locally compact Hausdorff space X_L such that $C_0(X_L)$ is truncation (and so lattice) isomorphic with a norm-dense order ideal of L.

The **unit cone** of a truncated vector lattice L is the set

$$U(L) = \{f \in L : |f|^* = |f|\}.$$

The **unit cone** of a truncated vector lattice *L* is the set

$$U(L) = \{f \in L : |f|^* = |f|\}.$$

DEFINITION

Let L, M be two truncated vector lattices. A positive operator $T: L \to M$ that sends U(L) to U(M) is called an **almost Markov operator**.

POSITIVITY XI - LIUBLIANA 2

The **unit cone** of a truncated vector lattice *L* is the set

$$U(L) = \{f \in L : |f|^* = |f|\}.$$

DEFINITION

Let L, M be two truncated vector lattices. A positive operator $T: L \to M$ that sends U(L) to U(M) is called an **almost Markov operator**.

Fact

The set $\mathcal{M}(L, M)$ of all almost Markov operators from L into M is convex.

XI - LIUBLIANA 2

The **unit cone** of a truncated vector lattice *L* is the set

$$U(L) = \{f \in L : |f|^* = |f|\}.$$

DEFINITION

Let L, M be two truncated vector lattices. A positive operator $T : L \to M$ that sends U(L) to U(M) is called an **almost Markov operator**.

Fact

The set $\mathcal{M}(L, M)$ of all almost Markov operators from L into M is convex.

PROBLEM

What do the extreme points of $\mathcal{K}(L, M)$ look like?

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T : L \rightarrow M$.

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T : L \rightarrow M$.

POSITIVITY XI - LJUBLJANA 20

1 T is an extreme almost Markov operator.

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T : L \rightarrow M$.

POSITIVITY XI - LJUBLJANA 2

- **1** T is an extreme almost Markov operator.
- I is a truncation homomorphism.

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T : L \rightarrow M$.

- T is an extreme almost Markov operator.
- I is a truncation homomorphism.
- § T is continuous and there exists a continuous function $\omega X_F \xrightarrow{\tau} \omega X_E$ such that

$$au\left(\infty
ight)=\infty$$
 and $Tf=f\circ au$ for all $f\in\mathcal{C}_{0}\left(X_{E}
ight)$.

This work was conducted in collaboration with my former Ph.D. students

This work was conducted in collaboration with my former Ph.D. students

Positivity XI - Ljubljana 2023

Sameh Bououn (Ph.D., 2023),

This work was conducted in collaboration with my former Ph.D. students

- Sameh Bououn (Ph.D., 2023),
- Rawaa Hajji (Ph.D., 2021),

This work was conducted in collaboration with my former Ph.D. students

- Sameh Bououn (Ph.D., 2023),
- Rawaa Hajji (Ph.D., 2021),
- Hamza Hafsi (Ph.D. 2020),

This work was conducted in collaboration with my former Ph.D. students

- Sameh Bououn (Ph.D., 2023),
- Rawaa Hajji (Ph.D., 2021),
- Hamza Hafsi (Ph.D. 2020),
- Mounir Mahfoudhi (Ph.D. 2020),

This work was conducted in collaboration with my former Ph.D. students

POSITIVITY XI - LJUBLJANA 2023

- Sameh Bououn (Ph.D., 2023),
- Rawaa Hajji (Ph.D., 2021),
- Hamza Hafsi (Ph.D. 2020),
- Mounir Mahfoudhi (Ph.D. 2020),
- Schiheb El Abdeb (Ph.D., 2017), and

This work was conducted in collaboration with my former Ph.D. students

POSITIVITY XI - LJUBLJANA 2023

- Sameh Bououn (Ph.D., 2023),
- Rawaa Hajji (Ph.D., 2021),
- Hamza Hafsi (Ph.D. 2020),
- Mounir Mahfoudhi (Ph.D. 2020),
- S Chiheb El Abdeb (Ph.D., 2017), and
- Mohamed Amine Ben Amor (Ph.D., 2013).