Truncated vector lattices: Something old AND SOMETHING NEW

Karim Boulabiar
University of Tunis El Manar

Positivity XI - Ljubljana 2023

SOME HISTORY

SOME HISTORY

Definition

A vector sublattice L of \mathbb{R}^{X} is said to satisfy the Stone condition if
$1 \wedge f \in L \quad$ for all $f \in L$.

SOME HISTORY

Definition

A vector sublattice L of \mathbb{R}^{X} is said to satisfy the Stone condition if
$1 \wedge f \in L$ for all $f \in L$.

Theorem (Stone, 1948)
If the vector sublattice L of \mathbb{R}^{X} satisfies the Stone condition, then for any σ-order continuous linear functional ψ on L, there exists a measure λ on X such that

$$
\psi f=\int_{X} f d \lambda \quad \text { for all } f \in L
$$

DEFINITION (Fremlin, 1974)

Any vector sublattice of \mathbb{R}^{X} satisying the Stone condition is said to be truncated.

Definition (Fremlin, 1974)

Any vector sublattice of \mathbb{R}^{X} satisying the Stone condition is said to be truncated.

Theorem (Fremlin, 1974)
Let L be a vector lattice with a Fatou M-norm such that the supremum

$$
\sup \{[0, f] \cap \bar{B}(0, \alpha)\}
$$

exists in L for all $f \in L^{+}$and $\alpha \in(0, \infty)$. Then L is (lattice isomorphic to) a truncated vector sublattice of $\ell^{\infty}(X)$ for some X.

Definition

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Definition

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Theorem (Huijsmans-de Pagter, 1984)

Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:

Definition

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Theorem (Huijsmans-de Pagter, 1984)
Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:
(1) L is a subalgebra of A.

Definition

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Theorem (Huijsmans-de Pagter, 1984)
Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:
(1) L is a subalgebra of A.
(2) L is vector sublattice of A.

DEFINITION

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Theorem (Huijsmans-de Pagter, 1984)
Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:
(1) L is a subalgebra of A.
(2) L is vector sublattice of A.
(3) L satisfies the Stone condition.

DEFINITION

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Theorem (Huijsmans-de Pagter, 1984)
Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:
(1) L is a subalgebra of A.
(2) L is vector sublattice of A.
(3) L satisfies the Stone condition.

DEFinition

Let A be an f-algebra with unit e. A subset S of A is said to have the Stone condition if $e \wedge f \in S$ for all $f \in S$.

Theorem (Huijsmans-de Pagter, 1984)
Let L a relatively uniformly closed vector subspace of an Archimedean f-algebra A with unit e. Consider the following conditions:
(1) L is a subalgebra of A.
(2) L is vector sublattice of A.
(3) L satisfies the Stone condition.

Then, $(i) \wedge(j) \Rightarrow(k)$ whenever i, j, k are pairwise different in $\{1,2,3\}$.

The AXIOMATIZATION: A MILESTONE!

Definition (BAll, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,

The AXIOMATIZATION: A MILESTONE!

Definition (BALL, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,
(1) $f \wedge g^{*} \leq f^{*} \leq f$, and

The AXIOMATIZATION: A MILESTONE!

Definition (BALL, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,
(1) $f \wedge g^{*} \leq f^{*} \leq f$, and
(2) if $(n f)^{*}=n f$ for all $n \in\{1,2, \ldots\}$ then $f=0$.

The AXIOMATIZATION: A MILESTONE!

Definition (BALL, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,
(1) $f \wedge g^{*} \leq f^{*} \leq f$, and
(2) if $(n f)^{*}=n f$ for all $n \in\{1,2, \ldots\}$ then $f=0$.

The AXIOMATIZATION: A MILESTONE!

Definition (Ball, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,
(1) $f \wedge g^{*} \leq f^{*} \leq f$, and
(2) if $(n f)^{*}=n f$ for all $n \in\{1,2, \ldots\}$ then $f=0$.

A vector lattice along with a truncation is called a truncated vector lattice.

The AXIOMATIZATION: A MILESTONE!

Definition (Ball, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,
(1) $f \wedge g^{*} \leq f^{*} \leq f$, and
(2) if $(n f)^{*}=n f$ for all $n \in\{1,2, \ldots\}$ then $f=0$.

A vector lattice along with a truncation is called a truncated vector lattice.

LEMMA

A vector lattice L is truncated if and only if there exists a unary operation * on L such that
(1) $0^{*}=0$ and $f^{*} \wedge g=f \wedge g^{*}$ for all $f, g \in L$, and

The AXIOMATIZATION: A MILESTONE!

Definition (Ball, 2014)

A unary operation $*$ on the positive cone L^{+}of a vector lattice L is called a truncation if, for every $f, g \in L^{+}$,
(1) $f \wedge g^{*} \leq f^{*} \leq f$, and
(2) if $(n f)^{*}=n f$ for all $n \in\{1,2, \ldots\}$ then $f=0$.

A vector lattice along with a truncation is called a truncated vector lattice.

LEMMA

A vector lattice L is truncated if and only if there exists a unary operation * on L such that
(1) $0^{*}=0$ and $f^{*} \wedge g=f \wedge g^{*}$ for all $f, g \in L$, and
(2) $\left\{f \in L^{+}:(n f)^{*}=n f\right.$ for all $\left.n \in \mathbb{N}\right\}=\{0\}$.

Definition

By a unitization of a truncated vector lattice L is meant any vector lattice E such that
(1) L is a vector sublattice of E, and

Definition

By a unitization of a truncated vector lattice L is meant any vector lattice E such that
(1) L is a vector sublattice of E, and
(2) E contains a positive element e such that $f^{*}=e \wedge f$ for all $f \in L$.

Definition

By a unitization of a truncated vector lattice L is meant any vector lattice E such that
(1) L is a vector sublattice of E, and
(2) E contains a positive element e such that $f^{*}=e \wedge f$ for all $f \in L$.

Definition

By a unitization of a truncated vector lattice L is meant any vector lattice E such that
(1) L is a vector sublattice of E, and
(2) E contains a positive element e such that $f^{*}=e \wedge f$ for all $f \in L$.

If $e \in L$, then L is said to be unital with e as unit.

DEFInition

By a unitization of a truncated vector lattice L is meant any vector lattice E such that
(1) L is a vector sublattice of E, and
(2) E contains a positive element e such that $f^{*}=e \wedge f$ for all $f \in L$.

If $e \in L$, then L is said to be unital with e as unit.

ExAMPLE

If X is a locally compact Hausdorff space, then $C_{0}(X)$ is a truncated vector lattice with respect to its canonical truncation defined by $f^{*}=1 \wedge f$ for all $f \in C_{0}(X)$. Moreover, $C_{0}(X)$ is unital if and only if X is compact.

Definition

The truncated vector lattice L is said to be weakly truncated if $f \in L^{+}$ and $f^{*}=0$ imply $f=0$.

DEFINITION

The truncated vector lattice L is said to be weakly truncated if $f \in L^{+}$ and $f^{*}=0$ imply $f=0$.

THEOREM (BALL, 2014)

For any weakly truncated Archimedean vector lattice L, there exists a locally compact Hausdorff space X such that L is (lattice isomorphic with) a vector lattice of functions in $C^{\infty}(X)$ and $f^{*}=1 \wedge f$ for all $f \in L^{+}$.

Definition

The truncated vector lattice L is said to be weakly truncated if $f \in L^{+}$ and $f^{*}=0$ imply $f=0$.

THEOREM (BALL, 2014)

For any weakly truncated Archimedean vector lattice L, there exists a locally compact Hausdorff space X such that L is (lattice isomorphic with) a vector lattice of functions in $C^{\infty}(X)$ and $f^{*}=1 \wedge f$ for all $f \in L^{+}$.

Problem

Ball proved that any weakly truncated Archimedean vector lattice has a unitization in ZFC-set theory. The starting point was the question of whether or not the result holds in ZF-set theory (Zaanen Program).

ALEXANDROFF UNITIZATION

DEFINITION

Let L, M be two truncated vector lattices. A linear map $T: L \rightarrow M$ is called a truncation homomorphism if

$$
T\left(f^{*}\right)=(T f)^{*} \quad \text { for all } f \in L .
$$

AleXANDROFF UNITIZATION

DEFINITION

Let L, M be two truncated vector lattices. A linear map $T: L \rightarrow M$ is called a truncation homomorphism if

$$
T\left(f^{*}\right)=(T f)^{*} \quad \text { for all } f \in L
$$

A bijective truncation homomorphism $T: L \rightarrow M$ is called a truncation isomorphism.

Theorem
 Any truncated homomorphism is a lattice homomorphism.

THEOREM
 Any truncated homomorphism is a lattice homomorphism.

Definition

Let L, M be two unital truncated vector lattices with truncation units u, v respectively. A linear operator $T: L \rightarrow M$ is said to be unital or identity preserving if $T u=v$.

THEOREM
 Any truncated homomorphism is a lattice homomorphism.

Definition

Let L, M be two unital truncated vector lattices with truncation units u, v respectively. A linear operator $T: L \rightarrow M$ is said to be unital or identity preserving if $T u=v$.

LEMMA

A unital lattice homomorphism between two unital truncated vector lattices is a truncation homomorphism.

THEOREM

Let L be a truncated vector lattice. There exists a unique (up to a unital lattice isomorphism that leaves L pointwise fixed) unitization αL of L such that, for every unital truncated vector lattice U, any truncation homomorphism $T: L \rightarrow U$ extends uniquely to a unital lattice homomorphism $T^{\alpha}: \alpha L \rightarrow U$:

THEOREM

Let L be a truncated vector lattice. There exists a unique (up to a unital lattice isomorphism that leaves L pointwise fixed) unitization αL of L such that, for every unital truncated vector lattice U, any truncation homomorphism $T: L \rightarrow U$ extends uniquely to a unital lattice homomorphism $T^{\alpha}: \alpha L \rightarrow U$:

Corollary

If the truncated vector lattice L is not unital then αL is the unique (up to a unital lattice isomorphism that leaves L pointwise fixed) unitization L^{*} of L such that, for every unital truncated vector lattice U, any one-to-one truncation homomorphism $T: L \rightarrow U$ extends uniquely to a one-to-one unital lattice homomorphism $T^{*}: L^{*} \rightarrow U$.

DEFINITION
 If L is a truncated vector lattice, the unital truncation vector lattice αL is called the Alexandroff unitization of L.

DEFINITION
 If L is a truncated vector lattice, the unital truncation vector lattice αL is called the Alexandroff unitization of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

DEFINITION
 If L is a truncated vector lattice, the unital truncation vector lattice αL is called the Alexandroff unitization of L.

THEOREM
A truncated vector lattice L is order dense in αL if and only if L is not unital.

Theorem
Let L be a truncated vector lattice.

DEFINITION

If L is a truncated vector lattice, the unital truncation vector lattice αL is called the Alexandroff unitization of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

THEOREM

Let L be a truncated vector lattice.
(1) The direct sum $L \oplus \mathbb{R}$ is a vector lattice whose positive cone is the union

$$
[L \oplus \mathbb{R}]^{+}=L^{+} \cup\left\{f+r: r>0 \text { and }\left(\frac{1}{r} f^{-}\right)^{*}=\frac{1}{r} f^{-}\right\} .
$$

DEFINITION

If L is a truncated vector lattice, the unital truncation vector lattice αL is called the Alexandroff unitization of L.

THEOREM

A truncated vector lattice L is order dense in αL if and only if L is not unital.

Theorem

Let L be a truncated vector lattice.
(1) The direct sum $L \oplus \mathbb{R}$ is a vector lattice whose positive cone is the union

$$
[L \oplus \mathbb{R}]^{+}=L^{+} \cup\left\{f+r: r>0 \text { and }\left(\frac{1}{r} f^{-}\right)^{*}=\frac{1}{r} f^{-}\right\} .
$$

(2) $L \oplus \mathbb{R}$ is an Alexandroff unitization of L.

Lattice norms on the Alexandroff UNITIZATION

Problem
Let L be a truncated vector lattice with a lattice norm. We want to know whether or not $\|$.$\| extends to a lattice norm \|.\|_{u}$ on $\alpha L=L \oplus \mathbb{R}$?

Lattice norms on the Alexandroff UNITIZATION

```
Problem
Let \(L\) be a truncated vector lattice with a lattice norm. We want to know whether or not \(\|\cdot\|\) extends to a lattice norm \(\|.\|_{u}\) on \(\alpha L=L \oplus \mathbb{R}\) ?
```

```
FACT
If so, the set of positive fixed points of the truncation must be norm-bounded.
```


Definition

By a normed truncated vector lattice is meant a truncated vector lattice L with a lattice norm $\|$.$\| such that$

$$
\sup \left\{\left\|f^{*}\right\|: f \in L^{+}\right\}=1
$$

Definition

By a normed truncated vector lattice is meant a truncated vector lattice L with a lattice norm $\|$.$\| such that$

$$
\sup \left\{\left\|f^{*}\right\|: f \in L^{+}\right\}=1
$$

DEFINITION

Let L be a normed truncated vector lattice whose norm is denoted by $\|$.$\| .$ A lattice norm $\|\cdot\|_{u}$ on $L \oplus \mathbb{R}$ is called a unitization norm if $\|1\|_{u}=1$ and $\|f\|_{u}=\|f\|$ for all $f \in L$.

THEOREM

Let L be a normed truncated vector lattice. The formula

$$
\|f+r\|_{u, 1}=\left\|(|f+r|-|r|)^{+}\right\|+|r| \quad \text { for all } f \in L \text { and } r \in \mathbb{R}
$$

defines the largest unitization norm on $L \oplus \mathbb{R}$.

Theorem

Let L be a normed truncated vector lattice. The formula

$$
\|f+r\|_{u, 1}=\left\|(|f+r|-|r|)^{+}\right\|+|r| \quad \text { for all } f \in L \text { and } r \in \mathbb{R}
$$

defines the largest unitization norm on $L \oplus \mathbb{R}$.

THEOREM

Let L be a normed truncated vector lattice. If L has no unit, the gauge function

$$
\|f+r\|_{u, 0}=\sup \{\|g\|:|g| \leq|f+r|\} \quad \text { for all } f \in L \text { and } r \in \mathbb{R}
$$

is the smallest unitization norm on $L \oplus \mathbb{R}$.

THEOREM
 Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.

THEOREM
 Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.
 (1) If L is closed in $L \oplus \mathbb{R}$ then $\|\cdot\|_{u}$ and $\|\cdot\|_{u, 1}$ are equivalent.

THEOREM

Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.
(1) If L is closed in $L \oplus \mathbb{R}$ then $\|\cdot\|_{u}$ and $\|\cdot\|_{u, 1}$ are equivalent.
(2) If L is dense in $L \oplus \mathbb{R}$ then L is not unital and $\|\cdot\|_{u}=\|\cdot\|_{u, 0}$.

THEOREM

Let L be a normed truncated vector lattice and assume that $L \oplus \mathbb{R}$ is equipped with a unitization norm $\|.\|_{u}$. Then the following hold.
(1) If L is closed in $L \oplus \mathbb{R}$ then $\|\cdot\|_{u}$ and $\|\cdot\|_{u, 1}$ are equivalent.
(2) If L is dense in $L \oplus \mathbb{R}$ then L is not unital and $\|\cdot\|_{u}=\|\cdot\|_{u, 0}$.
(3) L is a Banach lattice if and only if $L \oplus \mathbb{R}$ is a Banach lattice.

REPRESENTATIONS BY CONTINUOUS FUNCTIONS

THEOREM
Let L be a truncated Archimedean vector lattice. Then there exists an extremally disconnected locally compact Hausdorff space X such that

REPRESENTATIONS BY CONTINUOUS FUNCTIONS

THEOREM

Let L be a truncated Archimedean vector lattice. Then there exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$, and

REPRESENTATIONS BY CONTINUOUS FUNCTIONS

Theorem

Let L be a truncated Archimedean vector lattice. Then there exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$, and
(2) There exists a clopen set Y of X such that $f^{*}=1_{Y} \wedge f$ for all $f \in L$.

Corollary

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

Corollary

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$,

Corollary

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$,
(2) $f^{*}=1 \wedge f$ for all $f \in L$, and

Corollary

Let L be a weakly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C^{\infty}(X)$,
(2) $f^{*}=1 \wedge f$ for all $f \in L$, and
(3) any $f \in L$ vanishes at infinity.

Definition

The truncated vector lattice L is said to be strongly truncated if for every $f \in L^{+}$the equality $(\lambda f)^{*}=\lambda f$ holds for some $\lambda \in(0, \infty)$.

DEFINITION

The truncated vector lattice L is said to be strongly truncated if for every $f \in L^{+}$the equality $(\lambda f)^{*}=\lambda f$ holds for some $\lambda \in(0, \infty)$.

Corollary

Let L be a strongly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that

Definition

The truncated vector lattice L is said to be strongly truncated if for every $f \in L^{+}$the equality $(\lambda f)^{*}=\lambda f$ holds for some $\lambda \in(0, \infty)$.

Corollary

Let L be a strongly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C_{0}(X)$, and

Definition

The truncated vector lattice L is said to be strongly truncated if for every $f \in L^{+}$the equality $(\lambda f)^{*}=\lambda f$ holds for some $\lambda \in(0, \infty)$.

Corollary

Let L be a strongly truncated Archimedean vector lattice. There exists an extremally disconnected locally compact Hausdorff space X such that
(1) L is (lattice isomorphic with) an order dense vector sublattice of $C_{0}(X)$, and
(2) $f^{*}=1 \wedge f$ for all $f \in L$.

If L is an Archimedean vector lattice, we denote by L^{u} the universal completion of L.

If L is an Archimedean vector lattice, we denote by L^{u} the universal completion of L.

Theorem

Let L be an Archimedean truncated vector lattice L. Hence, there exists a component e of some positive weak unit w in L^{u} such that

$$
f^{*}=e \wedge f \quad \text { for all } f \in L
$$

If L is an Archimedean vector lattice, we denote by L^{u} the universal completion of L.

Theorem

Let L be an Archimedean truncated vector lattice L. Hence, there exists a component e of some positive weak unit w in L^{u} such that

$$
f^{*}=e \wedge f \quad \text { for all } f \in L
$$

Corollary

Let L be an Archimedean weakly truncated vector lattice L. Hence, there exists a positive weak unit w of L^{u} such that

$$
f^{*}=w \wedge f \quad \text { for all } f \in L
$$

Truncated vector lattices of functions

Let L be a truncated vector sublattice of \mathbb{R}^{X}.

Truncated vector lattices of functions

Let L be a truncated vector sublattice of \mathbb{R}^{x}.

Definition

Define a truncation form on L to mean a linear functional ϕ on L such that

$$
\phi(1 \wedge f)=\min \{1, \phi(f)\} \quad \text { for all } f \in L .
$$

Truncated vector lattices of functions

Let L be a truncated vector sublattice of \mathbb{R}^{X}.

Definition

Define a truncation form on L to mean a linear functional ϕ on L such that

$$
\phi(1 \wedge f)=\min \{1, \phi(f)\} \quad \text { for all } f \in L .
$$

LEMMA

If $1 \in L$ then a nonzero linear functional ϕ on L is a truncation form if and only if

$$
\phi(1)=1 \quad \text { and } \quad \phi(|f|)=|\phi(f)| \text { for all } f \in L .
$$

THEOREM (SHIROTA, 1952)

If X is a compact Hausdorff space, a linear functional ϕ on $C(X)$ is a truncation form if and only if $\phi=\delta_{x}$ for some $x \in X$, i.e., $\phi(f)=f(x)$ for all $f \in C(X)$.

THEOREM (SHIROTA, 1952)

If X is a compact Hausdorff space, a linear functional ϕ on $C(X)$ is a truncation form if and only if $\phi=\delta_{x}$ for some $x \in X$, i.e., $\phi(f)=f(x)$ for all $f \in C(X)$.

THEOREM (GARRIDO-JARAMILLO, 2004)

Let X be a Tychonoff space and ϕ be a linear functional on a vector sublattice of $C(X)$ such that $1 \in L$. Then ϕ is a truncated form on L if and only if there exists $u \in \beta X$ such that

$$
\phi(f)=f^{\beta}(u) \quad \text { for all } f \in L,
$$

where f^{β} is the unique extension of f to a continuous function from βX to $\omega \mathbb{R}$.

THEOREM

Let L be a truncated vector sublattice of \mathbb{R}^{X} and ϕ be a linear functional on L. Then ϕ is a truncation form on L if and only if there exists a net $\left(x_{\lambda}\right)$ of elements of X such that

$$
\phi(f)=\lim f\left(x_{\lambda}\right) \text { in } \mathbb{R} \quad \text { for all } f \in L .
$$

THEOREM

Let L be a truncated vector sublattice of \mathbb{R}^{X} and ϕ be a linear functional on L. Then ϕ is a truncation form on L if and only if there exists a net $\left(x_{\lambda}\right)$ of elements of X such that

$$
\phi(f)=\lim f\left(x_{\lambda}\right) \text { in } \mathbb{R} \quad \text { for all } f \in L .
$$

Corollary
Let L be a truncated vector sublattice of $C(X)$ with X a Tychonoff space. Then a linear functional ϕ on L is a truncation form if and only if there exists $u \in \beta X$ such that

$$
\phi(f)=f^{\beta}(u) \quad \text { for all } f \in L .
$$

EXTREME POSITIVE OPERATORS AND TRUNCATIONS

DEFINITION

Let A, B be two semiprime f-algebras. An operator $T: A \rightarrow B$ is said to be contractive if

$$
0 \leq T f \leq I_{B} \quad \text { for all } f \in A \text { with } 0 \leq f \leq I_{A} .
$$

EXTREME POSITIVE OPERATORS AND TRUNCATIONS

Definition

Let A, B be two semiprime f-algebras. An operator $T: A \rightarrow B$ is said to be contractive if

$$
0 \leq T f \leq I_{B} \quad \text { for all } f \in A \text { with } 0 \leq f \leq I_{A} .
$$

FACT

The set $\mathcal{K}(A, B)$ of all positive contractive operators from A to B is convex.

EXTREME POSITIVE OPERATORS AND TRUNCATIONS

Definition

Let A, B be two semiprime f-algebras. An operator $T: A \rightarrow B$ is said to be contractive if

$$
0 \leq T f \leq I_{B} \quad \text { for all } f \in A \text { with } 0 \leq f \leq I_{A} .
$$

FACT

The set $\mathcal{K}(A, B)$ of all positive contractive operators from A to B is convex.

```
Problem
We want to characterize the extreme points of \(\mathcal{K}(A, B)\).
```


FACT

If A is a semiprime f-algebra A then the unary operation $*$ given by

$$
f^{*}=I_{A} \wedge f \quad \text { for all } f \in A
$$

is a truncation on A.

FACT

If A is a semiprime f-algebra A then the unary operation $*$ given by

$$
f^{*}=I_{A} \wedge f \quad \text { for all } f \in A
$$

is a truncation on A.

Theorem

A linear operator $T: A \rightarrow B$ is an extreme point in $\mathcal{K}(A, B)$ if and only if T is a truncation homomorphism.

THEOREM
 Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_{0}(X)$ into $C_{0}(Y)$.

THEOREMLet X and Y be locally compact Hausdorff spaces. The following areequivalent for any operator T from $C_{0}(X)$ into $C_{0}(Y)$.
(1) T is an extreme positive contraction.

Theorem

Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_{0}(X)$ into $C_{0}(Y)$.
(1) T is an extreme positive contraction.
(2) $T(1 \wedge f)=1 \wedge T f$ for all $f \in C_{0}(X)$.

Theorem

Let X and Y be locally compact Hausdorff spaces. The following are equivalent for any operator T from $C_{0}(X)$ into $C_{0}(Y)$.
(1) T is an extreme positive contraction.
(2) $T(1 \wedge f)=1 \wedge T f$ for all $f \in C_{0}(X)$.
(3) There exists a continuous function $\omega Y \xrightarrow{\tau} \omega X$ such that

$$
\tau(\omega)=\omega \quad \text { and } \quad T f=f \circ \tau \text { for all } f \in C_{0}(X)
$$

Definition

A complete normed truncated vector lattice is called a truncated Banach lattice.

DEFInition

A complete normed truncated vector lattice is called a truncated Banach lattice.

Definition

If the order ideal of a truncated Banach lattice L generated by the set of all positive fixed points of the truncation is norm-dense, we call L a topologically truncated Banach lattice.

DEfinition

A complete normed truncated vector lattice is called a truncated Banach lattice.

DEFInition

If the order ideal of a truncated Banach lattice L generated by the set of all positive fixed points of the truncation is norm-dense, we call L a topologically truncated Banach lattice.

THEOREM

A Banach lattice L is topologically truncated if and only if there exists a locally compact Hausdorff space X_{L} such that $C_{0}\left(X_{L}\right)$ is truncation (and so lattice) isomorphic with a norm-dense order ideal of L.

Definition

The unit cone of a truncated vector lattice L is the set

$$
U(L)=\left\{f \in L:|f|^{*}=|f|\right\} .
$$

Definition

The unit cone of a truncated vector lattice L is the set

$$
U(L)=\left\{f \in L:|f|^{*}=|f|\right\} .
$$

Definition

Let L, M be two truncated vector lattices. A positive operator $T: L \rightarrow M$ that sends $U(L)$ to $U(M)$ is called an almost Markov operator.

Definition

The unit cone of a truncated vector lattice L is the set

$$
U(L)=\left\{f \in L:|f|^{*}=|f|\right\} .
$$

Definition

Let L, M be two truncated vector lattices. A positive operator $T: L \rightarrow M$ that sends $U(L)$ to $U(M)$ is called an almost Markov operator.

FACT

The set $\mathcal{M}(L, M)$ of all almost Markov operators from L into M is convex.

Definition

The unit cone of a truncated vector lattice L is the set

$$
U(L)=\left\{f \in L:|f|^{*}=|f|\right\} .
$$

Definition

Let L, M be two truncated vector lattices. A positive operator $T: L \rightarrow M$ that sends $U(L)$ to $U(M)$ is called an almost Markov operator.

FACT

The set $\mathcal{M}(L, M)$ of all almost Markov operators from L into M is convex.

Problem
 What do the extreme points of $\mathcal{K}(L, M)$ look like?

THEOREM

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T: L \rightarrow M$.

THEOREM

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T: L \rightarrow M$.
(1) T is an extreme almost Markov operator.

THEOREM

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T: L \rightarrow M$.
(1) T is an extreme almost Markov operator.
(2) T is a truncation homomorphism.

THEOREM

Let L and M be topologically truncated Banach lattices. The following are equivalent for any operator $T: L \rightarrow M$.
(1) T is an extreme almost Markov operator.
(2) T is a truncation homomorphism.
(3) T is continuous and there exists a continuous function $\omega X_{F} \xrightarrow{\tau} \omega X_{E}$ such that

$$
\tau(\infty)=\infty \quad \text { and } \quad T f=f \circ \tau \text { for all } f \in C_{0}\left(X_{E}\right)
$$

Who are the contributors?

This work was conducted in collaboration with my former Ph.D. students

Who are the contributors?

This work was conducted in collaboration with my former Ph.D. students
(1) Sameh Bououn (Ph.D., 2023),

Who are the contributors?

This work was conducted in collaboration with my former Ph.D. students
(1) Sameh Bououn (Ph.D., 2023),
(2) Rawaa Hajji (Ph.D., 2021),

WHO ARE THE CONTRIBUTORS?

This work was conducted in collaboration with my former Ph.D. students
(1) Sameh Bououn (Ph.D., 2023),
(2) Rawaa Hajji (Ph.D., 2021),
(3) Hamza Hafsi (Ph.D. 2020),

WHO ARE THE CONTRIBUTORS?

This work was conducted in collaboration with my former Ph.D. students
(1) Sameh Bououn (Ph.D., 2023),
(2) Rawaa Hajji (Ph.D., 2021),
(3) Hamza Hafsi (Ph.D. 2020),
(9) Mounir Mahfoudhi (Ph.D. 2020),

WHO ARE THE CONTRIBUTORS?

This work was conducted in collaboration with my former Ph.D. students
(1) Sameh Bououn (Ph.D., 2023),
(2) Rawaa Hajji (Ph.D., 2021),
(3) Hamza Hafsi (Ph.D. 2020),
(9) Mounir Mahfoudhi (Ph.D. 2020),
(3) Chiheb El Abdeb (Ph.D., 2017), and

WHO ARE THE CONTRIBUTORS?

This work was conducted in collaboration with my former Ph.D. students
(1) Sameh Bououn (Ph.D., 2023),
(2) Rawaa Hajji (Ph.D., 2021),
(3) Hamza Hafsi (Ph.D. 2020),
(9) Mounir Mahfoudhi (Ph.D. 2020),
(5) Chiheb El Abdeb (Ph.D., 2017), and
(6) Mohamed Amine Ben Amor (Ph.D., 2013).

