Direct and Inverse Limits of Vector Lattices

Jan Harm van der Walt

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa

Tuesday 11th July, 2023

・ロト・日本・日本・日本 しょうくの

Table of contents

1 Two problems about C(X)

2 Realcompact spaces

Oirect Limits

Inverse Limits

5 Duality

・ロト・日本・日本・日本・日本

Two problems about C(X)

When is C(K) a dual space?

When is C(K) a dual space?

When is C(K) a dual space?

Theorem

Let K be a Stonean space. TFAE

When is C(K) a dual space?

Theorem

Let K be a Stonean space. TFAE

(i) C(K) has a Banach lattice predual.

When is C(K) a dual space?

Theorem

Let K be a Stonean space. TFAE

- (i) C(K) has a Banach lattice predual.
- (ii) C(K) has a Banach space predual.

When is C(K) a dual space?

Theorem

Let K be a Stonean space. TFAE

- (i) C(K) has a Banach lattice predual.
- (ii) C(K) has a Banach space predual.
- (iii) C(K) has a separating order continuous dual.

When is C(K) a dual space?

Theorem

Let K be a Stonean space. TFAE

- (i) C(K) has a Banach lattice predual.
- (ii) C(K) has a Banach space predual.
- (iii) C(K) has a separating order continuous dual.
- (iv) Let \mathcal{F} be a maximal singular family of order continuous functionals on C(K), and for each $\varphi \in \mathcal{F}$ let C_{φ} denote its carrier and P_{φ} the band projection onto C_{φ} . Then

$$\mathcal{C}(K) \ni u \longmapsto (P_{\varphi}u)_{\varphi \in \mathcal{F}} \in \bigoplus_{\infty} \mathcal{C}_{\varphi}$$

is an isometric lattice isomorphism.

(日)

What does the bidual of C(K) look like?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Bidual of C(K)

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \tilde{K} such that the bidual $C(K)^{**}$ of C(K) is isometrically lattice isomorphic to $C(\tilde{K})$.

The Bidual of C(K)

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \tilde{K} such that the bidual $C(K)^{**}$ of C(K) is isometrically lattice isomorphic to $C(\tilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

The Bidual of C(K)

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \tilde{K} such that the bidual $C(K)^{**}$ of C(K) is isometrically lattice isomorphic to $C(\tilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

Kakutani 2: $C(K)^*$ is an AL-space $\Rightarrow C(K)^{**}$ is a unital AM-space.

The Bidual of C(K)

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \tilde{K} such that the bidual $C(K)^{**}$ of C(K) is isometrically lattice isomorphic to $C(\tilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

Kakutani 2: $C(K)^*$ is an AL-space $\Rightarrow C(K)^{**}$ is a unital AM-space.

Kakutani 3: $C(K)^{**}$ is a unital AM-space $\Rightarrow C(K)^{**} \cong C(\tilde{K})$ for some compact Hausdroff \tilde{K}

Two Questions

Question

Can these results be generalised?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Two Questions

Question

Can these results be generalised?

• Compact Hausdorff space $K \longrightarrow \text{Realcompact space } X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two Questions

Question

Can these results be generalised?

- Compact Hausdorff space $K \longrightarrow \text{Realcompact space } X$.
- Norm (bi)dual of $C(K) \rightarrow order$ (bi)dual of C(X).

Realcompact spaces

Realcompact spaces

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Realcompact spaces

Definition

A realcompact space is a Tychonoff space that satisfies any of the following equivalent conditions.

Realcompact spaces

Definition

A realcompact space is a Tychonoff space that satisfies any of the following equivalent conditions.

• X is homeomorphic to a closed subspace of some power of \mathbb{R} .

Realcompact spaces

Definition

A realcompact space is a Tychonoff space that satisfies any of the following equivalent conditions.

- X is homeomorphic to a closed subspace of some power of \mathbb{R} .
- For every x ∈ βX \ X there exists a u ∈ C(X) so that u does not extend to a continuous function ũ : X ∪ {x} → ℝ.

Realcompact spaces

Definition

A realcompact space is a Tychonoff space that satisfies any of the following equivalent conditions.

- X is homeomorphic to a closed subspace of some power of \mathbb{R} .
- For every x ∈ βX \ X there exists a u ∈ C(X) so that u does not extend to a continuous function ũ : X ∪ {x} → ℝ.
- For every 0 ≤ φ ∈ C(X)[~] there exists a regular, compactly supported Borel measure μ on X so that

$$\varphi(u) = \int_X u \ d\mu, \ u \in \mathcal{C}(X).$$

(日)

Realcompact spaces

Definition

A realcompact space is a Tychonoff space that satisfies any of the following equivalent conditions.

- X is homeomorphic to a closed subspace of some power of \mathbb{R} .
- For every x ∈ βX \ X there exists a u ∈ C(X) so that u does not extend to a continuous function ũ : X ∪ {x} → ℝ.
- For every 0 ≤ φ ∈ C(X)[~] there exists a regular, compactly supported Borel measure μ on X so that

$$\varphi(u) = \int_X u \ d\mu, \ u \in \mathcal{C}(X).$$

• . . .

(日)

The realcompactification

Theorem

Let X be a Tychonoff space. There exists a unique realcompact space vX so that C(X) and C(vX) are lattice and ring isomorphic.

The order dual of C(X)

Theorem

Let X be a realcompact space.

The order dual of C(X)

Theorem

Let X be a realcompact space.

•
$$C(X)^{\sim} = M_c(X)$$

The order dual of C(X)

Theorem

Let X be a realcompact space.

• $C(X)^{\sim} = M_c(X)$ (compactly supported regular Borel measures on X).

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{ S_{\varphi} : 0 \le \varphi \in \mathrm{C}(X)_n^{\sim} \}$. TFAE:

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in C(X)_n^{\sim}\}$. TFAE:

• There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in C(X)_n^{\sim}\}$. TFAE:

- There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).
- C(X) is perfect.

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in C(X)_n^{\sim}\}$. TFAE:

- There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).
- C(X) is perfect.
- vS = X, i.e. C(X) is lattice isomorphic to C(S).

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in C(X)_n^{\sim}\}$. TFAE:

- There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).
- C(X) is perfect.
- vS = X, i.e. C(X) is lattice isomorphic to C(S).
- ...?

・ロット (雪) (日) (日) (日)

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in C(X)_n^{\sim}\}$. TFAE:

- There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).
- C(X) is perfect.
- vS = X, i.e. C(X) is lattice isomorphic to C(S).
- ...?

・ロット (雪) (日) (日) (日)

Direct Limits

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Categories of Vector Lattices

	Objects	Morphisms
VL	Vector lattices	Lattice homomorphisms
NVL	Vector lattices	Normal lattice homomorphisms
IVL	Vector lattices	Interval preserving lattice homomorphisms
NIVL	Vector lattices	Normal, interval preserving lattice homomorphisms
TOP	Topological spaces	Continuous functions

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a C-morphism for all $\alpha \leq \beta$ in I.

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a C-morphism for all $\alpha \leq \beta$ in I.

• $\mathcal{D} \coloneqq \left((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \preccurlyeq \beta} \right)$ is a direct system in **C** if, for all $\alpha \preccurlyeq \beta \preccurlyeq \gamma$ in I,

 $e_{\beta,\gamma} \circ e_{\alpha,\beta} = e_{\alpha,\gamma}.$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a C-morphism for all $\alpha \leq \beta$ in I.

• $\mathcal{D} \coloneqq \left((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \preccurlyeq \beta} \right)$ is a direct system in **C** if, for all $\alpha \preccurlyeq \beta \preccurlyeq \gamma$ in I,

 $e_{\beta,\gamma} \circ e_{\alpha,\beta} = e_{\alpha,\gamma}.$

• $S \coloneqq (E, (e_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{D} in **C** if, for all $\alpha \leq \beta$ in I,

 $e_{\beta} \circ e_{\alpha,\beta} = e_{\beta}.$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a C-morphism for all $\alpha \leq \beta$ in I.

• $\mathcal{D} \coloneqq \left((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \preccurlyeq \beta} \right)$ is a direct system in **C** if, for all $\alpha \preccurlyeq \beta \preccurlyeq \gamma$ in I,

$$e_{\beta,\gamma} \circ e_{\alpha,\beta} = e_{\alpha,\gamma}.$$

• $S \coloneqq (E, (e_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{D} in C if, for all $\alpha \leq \beta$ in I,

$$e_{\beta} \circ e_{\alpha,\beta} = e_{\beta}.$$

The compatible system S := (E, (e_α)_{α∈l}) of D in C is the direct limit of D if for any compatible system S̃ := (Ẽ, (ẽ_α)_{α∈l}) of D in C there exists a unique C-morphism r : E → Ẽ so that, for every α ∈ I,

$$r \circ e_{\alpha} = \tilde{e}_{\alpha}$$
.

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a C-morphism for all $\alpha \leq \beta$ in I.

• $\mathcal{D} \coloneqq \left((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \preccurlyeq \beta} \right)$ is a direct system in **C** if, for all $\alpha \preccurlyeq \beta \preccurlyeq \gamma$ in I,

$$e_{\beta,\gamma} \circ e_{\alpha,\beta} = e_{\alpha,\gamma}.$$

• $S \coloneqq (E, (e_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{D} in **C** if, for all $\alpha \leq \beta$ in I,

$$e_{\beta} \circ e_{\alpha,\beta} = e_{\beta}.$$

The compatible system S := (E, (e_α)_{α∈I}) of D in C is the direct limit of D if for any compatible system S̃ := (Ẽ, (ẽ_α)_{α∈I}) of D in C there exists a unique C-morphism r : E → Ẽ so that, for every α ∈ I,

$$r \circ e_{\alpha} = \tilde{e}_{\alpha}.$$
$$\mathbf{E} = \varinjlim \mathbf{E}_{\alpha}$$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a C-morphism for all $\alpha \leq \beta$ in I.

• $\mathcal{D} \coloneqq \left((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \preccurlyeq \beta} \right)$ is a direct system in **C** if, for all $\alpha \preccurlyeq \beta \preccurlyeq \gamma$ in I,

$$e_{\beta,\gamma} \circ e_{\alpha,\beta} = e_{\alpha,\gamma}.$$

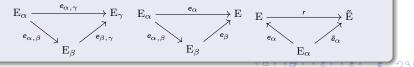
• $S \coloneqq (E, (e_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{D} in C if, for all $\alpha \leq \beta$ in I,

$$e_{\beta} \circ e_{\alpha,\beta} = e_{\beta}.$$

The compatible system S := (E, (e_α)_{α∈l}) of D in C is the direct limit of D if for any compatible system S̃ := (Ẽ, (ẽ_α)_{α∈l}) of D in C there exists a unique C-morphism r : E → Ẽ so that, for every α ∈ I,

$$r \circ e_{\alpha} = \tilde{e}_{\alpha}$$

$E = \varinjlim E_{\alpha}$



Examples

Example

• $n \le m$ in \mathbb{N} : $e_{n,m} : \mathbb{R}^n \ni (x_1, \ldots x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0) \in \mathbb{R}^m$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

Examples

Example

• $n \le m$ in \mathbb{N} : $e_{n,m} : \mathbb{R}^n \ni (x_1, \ldots x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0) \in \mathbb{R}^m$

•
$$\mathbb{R} \xrightarrow{e_{1,2}} \mathbb{R}^2 \xrightarrow{e_{2,3}} \mathbb{R}^3 \cdots \mathbb{R}^n \xrightarrow{e_{n,n+1}} \mathbb{R}^{n+1} \cdots$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● < ○ < ○ >

Examples

Example

• $n \le m$ in \mathbb{N} : $e_{n,m} : \mathbb{R}^n \ni (x_1, \ldots x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0) \in \mathbb{R}^m$

•
$$\mathbb{R} \xrightarrow{e_{1,2}} \mathbb{R}^2 \xrightarrow{e_{2,3}} \mathbb{R}^3 \cdots \mathbb{R}^n \xrightarrow{e_{n,n+1}} \mathbb{R}^{n+1} \cdots$$

• $\lim_{n \to \infty} \mathbb{R}^n = c_{00}$ in **NIVL**.

Inverse Limits

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : E_{\beta} \to E_{\alpha}$ a C-morphism for all $\beta \ge \alpha$ in I.

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : E_{\beta} \to E_{\alpha}$ a C-morphism for all $\beta \ge \alpha$ in I.

• $\mathcal{I} \coloneqq ((E_{\alpha})_{\alpha \in I}, (p_{\beta, \alpha})_{\beta \geqslant \alpha})$ is an inverse system in **C** if, for all $\alpha \leq \beta \leq \gamma$ in I,

 $p_{\beta,\alpha} \circ p_{\gamma,\beta} = p_{\gamma,\alpha}.$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : E_{\beta} \to E_{\alpha}$ a C-morphism for all $\beta \ge \alpha$ in I.

• $\mathcal{I} \coloneqq ((E_{\alpha})_{\alpha \in I}, (p_{\beta, \alpha})_{\beta \geqslant \alpha})$ is an inverse system in \mathbb{C} if, for all $\alpha \leq \beta \leq \gamma$ in I,

$$p_{\beta,\alpha} \circ p_{\gamma,\beta} = p_{\gamma,\alpha}.$$

• $S \coloneqq (E, (p_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{I} in **C** if, for all $\alpha \leq \beta$ in I,

 $p_{\beta,\alpha} \circ p_{\beta} = p_{\alpha}.$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : E_{\beta} \to E_{\alpha}$ a C-morphism for all $\beta \ge \alpha$ in I.

• $\mathcal{I} \coloneqq ((E_{\alpha})_{\alpha \in I}, (p_{\beta, \alpha})_{\beta \geqslant \alpha})$ is an inverse system in **C** if, for all $\alpha \leq \beta \leq \gamma$ in I,

$$p_{\beta,\alpha} \circ p_{\gamma,\beta} = p_{\gamma,\alpha}.$$

• $S \coloneqq (E, (p_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{I} in **C** if, for all $\alpha \leq \beta$ in I,

 $p_{\beta,\alpha} \circ p_{\beta} = p_{\alpha}.$

The compatible system S := (E, (p_α)_{α∈I}) of I in C is the inverse limit of I if for any compatible system S̃ := (Ẽ, (p̃_α)_{α∈I}) of I in C there exists a unique C-morphism s : Ẽ → E so that, for every α ∈ I,

$$p_{\alpha} \circ s = \tilde{p}_{\alpha}$$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : E_{\beta} \to E_{\alpha}$ a C-morphism for all $\beta \ge \alpha$ in I.

• $\mathcal{I} \coloneqq ((E_{\alpha})_{\alpha \in I}, (p_{\beta, \alpha})_{\beta \geqslant \alpha})$ is an inverse system in **C** if, for all $\alpha \leq \beta \leq \gamma$ in I,

$$p_{\beta,\alpha} \circ p_{\gamma,\beta} = p_{\gamma,\alpha}.$$

• $S \coloneqq (E, (p_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{I} in **C** if, for all $\alpha \leq \beta$ in I,

 $p_{\beta,\alpha} \circ p_{\beta} = p_{\alpha}.$

The compatible system S := (E, (p_α)_{α∈I}) of I in C is the inverse limit of I if for any compatible system S̃ := (Ẽ, (p̃_α)_{α∈I}) of I in C there exists a unique C-morphism s : Ẽ → E so that, for every α ∈ I,

 $p_{\alpha} \circ s = \tilde{p}_{\alpha}.$ $\mathbf{E} = \varprojlim \mathbf{E}_{\alpha}$

Definitions

Definition

Let C be a category of vector lattices, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : E_{\beta} \to E_{\alpha}$ a C-morphism for all $\beta \ge \alpha$ in I.

• $\mathcal{I} \coloneqq ((E_{\alpha})_{\alpha \in I}, (p_{\beta, \alpha})_{\beta \geqslant \alpha})$ is an inverse system in \mathbb{C} if, for all $\alpha \leq \beta \leq \gamma$ in I,

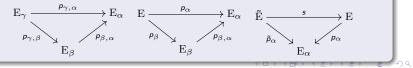
$$p_{\beta,\alpha} \circ p_{\gamma,\beta} = p_{\gamma,\alpha}.$$

• $S \coloneqq (E, (p_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{I} in **C** if, for all $\alpha \leq \beta$ in I,

$$p_{\beta,\alpha} \circ p_{\beta} = p_{\alpha}.$$

The compatible system S := (E, (p_α)_{α∈I}) of I in C is the inverse limit of I if for any compatible system S̃ := (Ẽ, (p̃_α)_{α∈I}) of I in C there exists a unique C-morphism s : Ẽ → E so that, for every α ∈ I,

$$p_{\alpha} \circ s = \tilde{p}_{\alpha}.$$



Examples

Example

•
$$n \le m$$
 in \mathbb{N} : $p_{m,n} : \mathbb{R}^n \ni (x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_n) \in \mathbb{R}^n$

Examples

Example

• $n \le m$ in \mathbb{N} : $p_{m,n} : \mathbb{R}^n \ni (x_1, \dots, x_m) \mapsto (x_1, \dots, x_n) \in \mathbb{R}^n$

•
$$\mathbb{R} \stackrel{p_{2,1}}{\longleftarrow} \mathbb{R}^2 \stackrel{p_{3,2}}{\longleftarrow} \mathbb{R}^3 \cdots \mathbb{R}^n \stackrel{p_{n+1,n}}{\longleftarrow} \mathbb{R}^{n+1} \cdots$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 ● ● ●

Examples

Example

• $n \le m$ in \mathbb{N} : $p_{m,n} : \mathbb{R}^n \ni (x_1, \dots, x_m) \mapsto (x_1, \dots, x_n) \in \mathbb{R}^n$

•
$$\mathbb{R} \stackrel{p_{2,1}}{\longleftarrow} \mathbb{R}^2 \stackrel{p_{3,2}}{\longleftarrow} \mathbb{R}^3 \cdots \mathbb{R}^n \stackrel{p_{n+1,n}}{\longleftarrow} \mathbb{R}^{n+1} \cdots$$

• $\lim_{\leftarrow} \mathbb{R}^n = \mathbb{R}^{\omega}$ in **NVL**.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Duality

Order Adjoints

Theorem

 $T: E \to F$ a positive operator; $T^{\sim}: F^{\sim} \to E^{\sim}$ its order adjoint, $\varphi \mapsto \varphi \circ T$.

Order Adjoints

- $\mathcal{T}: \mathrm{E} \to \mathrm{F} \text{ a positive operator; } \mathcal{T}^{\sim}: \mathrm{F}^{\sim} \to \mathrm{E}^{\sim} \text{ its order adjoint, } \varphi \mapsto \varphi \circ \mathcal{T}.$
- (i) T^{\sim} is positive and order continuous.

Order Adjoints

- $\mathcal{T}: \mathrm{E} \to \mathrm{F} \text{ a positive operator; } \mathcal{T}^{\sim}: \mathrm{F}^{\sim} \to \mathrm{E}^{\sim} \text{ its order adjoint, } \varphi \mapsto \varphi \circ \mathcal{T}.$
- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous \Rightarrow $T^{\sim}[F_n^{\sim}] \subseteq E_n^{\sim}$.

Order Adjoints

- $\mathcal{T}: \mathrm{E} \to \mathrm{F} \text{ a positive operator; } \mathcal{T}^{\sim}: \mathrm{F}^{\sim} \to \mathrm{E}^{\sim} \text{ its order adjoint, } \varphi \mapsto \varphi \circ \mathcal{T}.$
- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous \Rightarrow $T^{\sim}[F_n^{\sim}] \subseteq E_n^{\sim}$.
- (iii) T interval preserving \Rightarrow T[~] a lattice homomorphism.

Order Adjoints

- $\mathcal{T}: \mathrm{E} \to \mathrm{F} \text{ a positive operator; } \mathcal{T}^{\sim}: \mathrm{F}^{\sim} \to \mathrm{E}^{\sim} \text{ its order adjoint, } \varphi \mapsto \varphi \circ \mathcal{T}.$
- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous \Rightarrow $T^{\sim}[F_n^{\sim}] \subseteq E_n^{\sim}$.
- (iii) T interval preserving \Rightarrow T[~] a lattice homomorphism.
- (iv) T a lattice homomorphism \Rightarrow T[~] interval preserving.

Order Adjoints

- $\mathcal{T}: \mathrm{E} \to \mathrm{F} \text{ a positive operator; } \mathcal{T}^{\sim}: \mathrm{F}^{\sim} \to \mathrm{E}^{\sim} \text{ its order adjoint, } \varphi \mapsto \varphi \circ \mathcal{T}.$
- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous \Rightarrow $T^{\sim}[F_n^{\sim}] \subseteq E_n^{\sim}$.
- (iii) T interval preserving \Rightarrow T[~] a lattice homomorphism.
- (iv) T a lattice homomorphism \Rightarrow T[~] interval preserving. The converse is true if ${}^{\circ}F^{\sim} = \{0\}.$

Dual Systems of Direct Systems

Proposition (VV)

(i)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \preccurlyeq \beta})$$
 a direct system in IVL \Rightarrow
 $\mathcal{D}^{\sim} \coloneqq ((E_{\alpha}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \preccurlyeq \beta})$ an inverse system in NIVL

Dual Systems of Direct Systems

Proposition (VV)

(i)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$$
 a direct system in IVL \Rightarrow
 $\mathcal{D}^{\sim} \coloneqq ((E_{\alpha}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \leqslant \beta})$ an inverse system in NIVL

(ii)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$$
 a direct system in NIVL \Rightarrow
 $\mathcal{D}_{n}^{\sim} \coloneqq (((E_{\alpha})_{n}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \leqslant \beta})$ an inverse system in NIVL

・ロト・雪ト・雪ト・雪 うらの

Dual Systems of Direct Systems

Proposition (VV)

(i)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$$
 a direct system in IVL \Rightarrow
 $\mathcal{D}^{\sim} \coloneqq ((E_{\alpha}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \leqslant \beta})$ an inverse system in NIVL

(ii)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$$
 a direct system in NIVL \Rightarrow
 $\mathcal{D}_{n}^{\sim} \coloneqq (((E_{\alpha})_{n}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \leqslant \beta})$ an inverse system in NIVL.

(iii) $S := (E, (e_{\alpha})_{\alpha \in I})$ a compatible system of \mathcal{D} in IVL \Rightarrow $S^{\sim} := (E^{\sim}, (e_{\alpha}^{\sim})_{\alpha \in I})$ a compatible system for \mathcal{D}^{\sim} in NIVL.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dual Systems of Direct Systems

Proposition (VV)

(i)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$$
 a direct system in IVL \Rightarrow
 $\mathcal{D}^{\sim} \coloneqq ((E_{\alpha}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \leqslant \beta})$ an inverse system in NIVL

(ii)
$$\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$$
 a direct system in NIVL \Rightarrow
 $\mathcal{D}_{n}^{\sim} \coloneqq (((E_{\alpha})_{n}^{\sim})_{\alpha \in I}, (e_{\alpha,\beta}^{\sim})_{\alpha \leqslant \beta})$ an inverse system in NIVL.

- (iii) $S := (E, (e_{\alpha})_{\alpha \in I})$ a compatible system of \mathcal{D} in IVL \Rightarrow $S^{\sim} := (E^{\sim}, (e_{\alpha}^{\sim})_{\alpha \in I})$ a compatible system for \mathcal{D}^{\sim} in NIVL.
- (iv) $S \coloneqq (E, (e_{\alpha})_{\alpha \in I})$ a compatible system of \mathcal{D} in NIVL $\Rightarrow S_{n}^{\sim} \coloneqq (E_{n}^{\sim}, (e_{\alpha}^{\sim})_{\alpha \in I})$ a compatible system for \mathcal{D}^{\sim} in NIVL.

イロト 不得 トイヨト イヨト 三日

Duality for Direct Limits

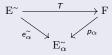
Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leq \beta})$ be a direct system in IVL, and $\varinjlim E_{\alpha} = E$ in IVL. Then $\varinjlim E_{\alpha}^{\sim} = E^{\sim}$ in NVL.

Duality for Direct Limits

Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta})$ be a direct system in IVL, and $\varinjlim_{\alpha} E_{\alpha} = E$ in IVL. Then $\varinjlim_{\alpha} E_{\alpha} = E^{\sim}$ in NVL. That is, if $\varinjlim_{\alpha} E_{\alpha} = (F, (p_{\alpha})_{\alpha \in I})$, then there exists a unique lattice isomorphism $T : E^{\sim} \to F$ so that the diagram commutes:



・ロ・・一部・・川市・・日・ のへで

Order Continuous Duality for Direct Limits

Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leq \beta})$ be a direct system in NIVL. Let

Order Continuous Duality for Direct Limits

Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leq \beta})$ be a direct system in NIVL. Let

• $\varinjlim E_{\alpha} = E$ in NIVL.

Order Continuous Duality for Direct Limits

Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leq \beta})$ be a direct system in NIVL. Let • $\lim_{\alpha \in E} E_{\alpha} = E$ in NIVL.

• $e_{\alpha,\beta}$ be injective for all $\alpha \leq \beta$ in I.

Order Continuous Duality for Direct Limits

Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leq \beta})$ be a direct system in NIVL. Let • $\lim_{\alpha \in E_{\alpha}} E_{\alpha} = E$ in NIVL.

• $e_{\alpha,\beta}$ be injective for all $\alpha \leq \beta$ in I.

Then $\lim_{\leftarrow} (E_{\alpha})_{n}^{\sim} = E_{n}^{\sim}$ in NVL.

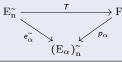
Order Continuous Duality for Direct Limits

Theorem (VV)

Let $\mathcal{D} \coloneqq ((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leq \beta})$ be a direct system in NIVL. Let • $\lim_{\alpha \in E} E_{\alpha} = E$ in NIVL.

• $e_{\alpha,\beta}$ be injective for all $\alpha \leq \beta$ in I.

Then $\lim_{n \to \infty} (E_{\alpha})_n^{\sim} = E_n^{\sim}$ in NVL. That is, if $\lim_{n \to \infty} (E_{\alpha})_n^{\sim} = (F, (p_{\alpha})_{\alpha \in I})$, then there exists a unique lattice isomorphism $T : E_n^{\sim} \to F$ so that the diagram commutes:



Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} \coloneqq ((\mathbb{E}_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let

Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} := ((\mathbb{E}_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let • $\lim_{n \to \infty} \mathbb{E}_n = (\mathbb{E}, (p_n)_{n \in \mathbb{N}})$ in VL.

Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} := ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let • $\lim_{n \to \infty} E_n = (E, (p_n)_{n \in \mathbb{N}})$ in VL.

• $p_{m,n}$ be a surjection for all $m \ge n$ in \mathbb{N} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

26 / 39

Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} := ((\mathbb{E}_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let • $\lim_{n \to \infty} \mathbb{E}_n = (\mathbb{E}, (p_n)_{n \in \mathbb{N}})$ in VL.

• $p_{m,n}$ be a surjection for all $m \ge n$ in \mathbb{N} .

Then $\lim_{n \to \infty} (E_n)^{\sim} = E^{\sim}$ in **NIVL**.

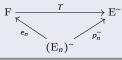
Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} := ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let • $\lim_{n \to \infty} E_n = (E, (p_n)_{n \in \mathbb{N}})$ in VL.

• $p_{m,n}$ be a surjection for all $m \ge n$ in \mathbb{N} .

Then $\varinjlim (E_n)^{\sim} = E^{\sim}$ in **NIVL**. That is, if $\varinjlim (E_n)^{\sim} = (F, (e_n)_{n \in \mathbb{N}})$, then there exists a unique lattice isomorphism $T : F \to E^{\sim}$ so that the diagram commutes:



Order Continuous Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} \coloneqq ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let

Order Continuous Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} \coloneqq ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let

• $\lim_{n \to \infty} E_n = (E, (p_n)_{n \in \mathbb{N}})$ in **VL**.

Order Continuous Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} \coloneqq ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let

- $\varprojlim \mathbf{E}_n = (\mathbf{E}, (p_n)_{n \in \mathbb{N}})$ in **VL**.
- $p_{m,n}$ be a surjection for all $m \ge n$ in \mathbb{N} .

Order Continuous Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} \coloneqq ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let

- $\varprojlim \mathbf{E}_n = (\mathbf{E}, (p_n)_{n \in \mathbb{N}})$ in **VL**.
- $p_{m,n}$ be a surjection for all $m \ge n$ in \mathbb{N} .

Then $\varinjlim (E_n)_n^{\sim} = E_n^{\sim}$ in NIVL.

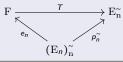
Order Continuous Duality for Inverse Limits

Theorem (VV)

Let $\mathcal{I} \coloneqq ((E_n)_{n \in \mathbb{N}}, (p_{m,n})_{m \ge n})$ be an inverse system in IVL. Let

- $\varprojlim \mathbf{E}_n = (\mathbf{E}, (p_n)_{n \in \mathbb{N}})$ in **VL**.
- $p_{m,n}$ be a surjection for all $m \ge n$ in \mathbb{N} .

Then $\lim_{n \to \infty} (E_n)_n^{\sim} = E_n^{\sim}$ in **NIVL**. That is, if $\lim_{n \to \infty} (E_n)_n^{\sim} = (F, (e_n)_{n \in \mathbb{N}})$, then there exists a unique lattice isomorphism $T : F \to E^{\sim}$ so that the diagram commutes:



(日) (個) (E) (E) (E)

Inverse Limits of Perfect Spaces

Theorem (VV)

Let $\mathcal{I} \coloneqq \left((E_{\alpha})_{\alpha \in \mathcal{I}}, (_{\beta, \alpha})_{\beta \succcurlyeq \alpha} \right)$ be an inverse system in NIVL. Assume that

▲ロト▲御ト▲臣ト▲臣ト 臣 のQで

28 / 39

Inverse Limits of Perfect Spaces

Theorem (VV)

Let $\mathcal{I} \coloneqq \left((E_{\alpha})_{\alpha \in \mathcal{I}}, (_{\beta, \alpha})_{\beta \succcurlyeq \alpha} \right)$ be an inverse system in NIVL. Assume that

•
$$E = \lim_{\alpha} E_{\alpha}$$
 in VL.

Inverse Limits of Perfect Spaces

Theorem (VV)

Let $\mathcal{I} \coloneqq \left((E_{\alpha})_{\alpha \in \mathcal{I}}, (_{\beta, \alpha})_{\beta \succcurlyeq \alpha} \right)$ be an inverse system in NIVL. Assume that

- $E = \lim_{\alpha} E_{\alpha}$ in VL.
- $p_{\beta,\alpha}$ is surjective for all $\beta \ge \alpha$ in I.

Inverse Limits of Perfect Spaces

Theorem (VV)

Let $\mathcal{I} \coloneqq \left((E_{\alpha})_{\alpha \in \mathcal{I}}, (_{\beta,\alpha})_{\beta \succcurlyeq \alpha} \right)$ be an inverse system in NIVL. Assume that

- $E = \lim_{\leftarrow} E_{\alpha}$ in VL.
- $p_{\beta,\alpha}$ is surjective for all $\beta \ge \alpha$ in I.
- E_{α} is perfect for every $\alpha \in I$.

Inverse Limits of Perfect Spaces

Theorem (VV)

Let $\mathcal{I} \coloneqq ((E_{\alpha})_{\alpha \in \mathcal{I}}, (_{\beta,\alpha})_{\beta \geqslant \alpha})$ be an inverse system in NIVL. Assume that

- $E = \lim_{\leftarrow} E_{\alpha}$ in VL.
- $p_{\beta,\alpha}$ is surjective for all $\beta \ge \alpha$ in I.
- E_{α} is perfect for every $\alpha \in I$.

Then E is perfect.

・ロト・日本・日本・ 日本・ シック・

Solutions

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

29 / 39

 Two problems about C(X)

 Realcompact spaces

 Direct Limits

 Inverse Limits

 Duality

 Solutions

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in \mathrm{C}(X)_n^{\sim}\}$. TFAE

- There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).
- C(X) is perfect.
- vS = X, i.e. C(X) is lattice isomorphic to C(S).

• ...?

Example

 Two problems about C(X)

 Realcompact spaces

 Direct Limits

 Inverse Limits

 Duality

 Solutions

Example

Let X be a realcompact space, $\mathcal{O} = \{O_{\alpha} : \alpha \in I\}$ a collection of open sets so that

 $\bullet \ \mathcal{O}$ is upward directed by inclusion.

Two problems about C(X) Realcompact spaces Direct Limits Inverse Limits Solutions When is C(X) an order dual space?

Example

- $\bullet \ \mathcal{O}$ is upward directed by inclusion.
- each \overline{O}_{α} is compact.

When is C(X) an order dual space?

Example

- $\bullet \ \mathcal{O}$ is upward directed by inclusion.
- each \overline{O}_{α} is compact.
- $X = \bigcup O_{\alpha}$.

Two problems about C(X) Realcompact spaces Direct Limits Inverse Limits Duality Solutions When is C(X) an order dual space?

Example

- $\bullet \ \mathcal{O}$ is upward directed by inclusion.
- each \overline{O}_{α} is compact.
- $X = \bigcup O_{\alpha}$.
- $O_{\alpha} \subseteq O_{\beta}$: $p_{\beta,\alpha}$: $C(\overline{O}_{\beta}) \ni u \mapsto u_{|\overline{O}_{\alpha}} \in C(\overline{O}_{\alpha})$

When is C(X) an order dual space?

Example

- $\bullet \ \mathcal{O}$ is upward directed by inclusion.
- each \overline{O}_{α} is compact.
- $X = \bigcup O_{\alpha}$.
- $O_{\alpha} \subseteq O_{\beta}$: $p_{\beta,\alpha}$: $C(\overline{O}_{\beta}) \ni u \mapsto u_{|\overline{O}_{\alpha}} \in C(\overline{O}_{\alpha})$
- $p_{\alpha}: \mathcal{C}(X) \ni u \mapsto u_{|\overline{O}_{\alpha}} \in \mathcal{C}(\overline{O}_{\alpha})$

When is C(X) an order dual space?

Example

- $\bullet \ \mathcal{O}$ is upward directed by inclusion.
- each \overline{O}_{α} is compact.
- $X = \bigcup O_{\alpha}$.
- $O_{\alpha} \subseteq O_{\beta}$: $p_{\beta,\alpha}$: $C(\overline{O}_{\beta}) \ni u \mapsto u_{|\overline{O}_{\alpha}} \in C(\overline{O}_{\alpha})$
- $p_{\alpha}: C(X) \ni u \mapsto u_{|\overline{O}_{\alpha}} \in C(\overline{O}_{\alpha})$
- $\varprojlim C(\overline{O}_{\alpha}) = C(X)$ in **VL**.

Two problems about $C(X)$	
Realcompact spaces	
Direct Limits	
Inverse Limits	
Duality	
Solutions	
When is $C(X)$ an order dual space?	

Two problems about $C(X)$	
Realcompact spaces	
Direct Limits	
Inverse Limits	
Duality	
Solutions	
When is $C(X)$ an order dual space?	

• $\mathcal{O} = \{S_{\varphi} : 0 \leq \varphi \in C(X)_n^{\sim}\}$ is upward directed by inclusion.

- $\mathcal{O} = \{S_{\varphi} : 0 \leq \varphi \in C(X)_n^{\sim}\}$ is upward directed by inclusion.
- each S_{φ} is open and compact.

- $\mathcal{O} = \{S_{\varphi} : 0 \leq \varphi \in C(X)_n^{\sim}\}$ is upward directed by inclusion.
- each S_{φ} is open and compact.
- $C_{\varphi} = C(S_{\varphi}).$

- $\mathcal{O} = \{S_{\varphi} : 0 \leq \varphi \in C(X)_n^{\sim}\}$ is upward directed by inclusion.
- each S_{φ} is open and compact.
- $C_{\varphi} = C(S_{\varphi}).$
- $S_{\varphi} \subseteq S_{\psi}$: Projection of C_{ψ} onto C_{φ} = restriction of functions.

- $\mathcal{O} = \{S_{\varphi} : 0 \leq \varphi \in C(X)_n^{\sim}\}$ is upward directed by inclusion.
- each S_{φ} is open and compact.
- $C_{\varphi} = C(S_{\varphi}).$
- $S_{\varphi} \subseteq S_{\psi}$: Projection of C_{ψ} onto C_{φ} = restriction of functions.

 $S = \bigcup \{ S_{\varphi} : 0 \le \varphi \in \mathrm{C}(X)_{n}^{\sim} \} \Rightarrow \varprojlim \mathrm{C}_{\varphi} = \mathrm{C}(S) \text{ in NVL}.$

Two problems about C(X) Realcompact spaces Direct Limits Inverse Limits Duality Solutions When is C(X) an order dual space?

Theorem (Xiong 1983 & VV 2022)

Let X be an extremally disconnected realcompact space, and let $S = \bigcup \{S_{\varphi} : 0 \le \varphi \in C(X)_n^{\sim}\}$. TFAE

- There exists a vector lattice E so that E^{\sim} is lattice isomorphic to C(X).
- C(X) is perfect.
- vS = X, i.e. C(X) is lattice isomorphic to C(S).
- $\lim_{\varphi \to \infty} C_{\varphi} = C(X)$ in **NVL**, with band projections as linking maps.

・ロット (雪) (日) (日) (日)

The order bidual of C(X)

The order bidual of C(X)

Example (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

The order bidual of C(X)

Example (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

•
$$K_{\alpha} \subseteq K_{\beta}$$
: $e_{\alpha,\beta}$: $M(K_{\alpha}) \rightarrow M(K_{\beta})$

The order bidual of C(X)

Example (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

•
$$K_{\alpha} \subseteq K_{\beta}$$
: $e_{\alpha,\beta}$: $M(K_{\alpha}) \rightarrow M(K_{\beta})$ $e_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

The order bidual of C(X)

Example (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

• $K_{\alpha} \subseteq K_{\beta}$: $e_{\alpha,\beta}$: $M(K_{\alpha}) \rightarrow M(K_{\beta})$ $e_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$K_{\alpha} \in \mathcal{K}$$
: $e_{\alpha} : M(K_{\alpha}) \to M_{c}(X)$

The order bidual of C(X)

Example (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

• $K_{\alpha} \subseteq K_{\beta}$: $e_{\alpha,\beta}$: $M(K_{\alpha}) \to M(K_{\beta})$ $e_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

• $K_{\alpha} \in \mathcal{K}: e_{\alpha} : M(K_{\alpha}) \to M_{c}(X) = \mu(B \cap K_{\alpha})$

The order bidual of C(X)

Example (DV, 2022)

- $K_{\alpha} \subseteq K_{\beta}$: $e_{\alpha,\beta}$: $M(K_{\alpha}) \to M(K_{\beta})$ $e_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$
- $\mathcal{K}_{\alpha} \in \mathcal{K}$: $e_{\alpha} : M(\mathcal{K}_{\alpha}) \to M_{c}(X)$ $e_{\alpha}(\mu)(B) = \mu(B \cap \mathcal{K}_{\alpha})$
- $\lim M(K_{\alpha}) = M_c(X) = C(X)^{\sim}$ in IVL.

The order bidual of C(X)

Example (DV, 2022)

•
$$K_{\alpha} \subseteq K_{\beta}$$
: $e_{\alpha,\beta}$: $M(K_{\alpha}) \rightarrow M(K_{\beta})$ $e_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$\mathcal{K}_{\alpha} \in \mathcal{K}: e_{\alpha} : M(\mathcal{K}_{\alpha}) \to M_{c}(X) = e_{\alpha}(\mu)(B) = \mu(B \cap \mathcal{K}_{\alpha})$$

•
$$\lim_{\alpha \to \infty} M(K_{\alpha}) = M_c(X) = C(X)^{\sim}$$
 in IVL.

•
$$C(X)^{\sim} = \lim_{k \to \infty} M(K_{\alpha})^{\sim}$$
.

The order bidual of C(X)

Example (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

•
$$K_{\alpha} \subseteq K_{\beta}$$
: $e_{\alpha,\beta}$: $M(K_{\alpha}) \rightarrow M(K_{\beta})$ $e_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$\mathcal{K}_{\alpha} \in \mathcal{K}: e_{\alpha} : M(\mathcal{K}_{\alpha}) \to M_{c}(X) = e_{\alpha}(\mu)(B) = \mu(B \cap \mathcal{K}_{\alpha})$$

•
$$\lim_{\alpha \to \infty} M(K_{\alpha}) = M_c(X) = C(X)^{\sim}$$
 in IVL

•
$$C(X)^{\sim} = \varprojlim M(K_{\alpha})^{\sim}$$
.

•
$$C(X)^{\sim} = \varprojlim C(\tilde{K}_{\alpha}).$$

・ロト・日本・日本・日本・日本・日本

Let $K_{\alpha} \subseteq K_{\beta} \subseteq X$ be compact.

◆□▼ ▲□▼ ▲□▼ ▲□▼ ▲□▼

36 / 39

Two problems about $C(X)$	
Realcompact spaces	
Direct Limits	
Inverse Limits	
Duality	
Solutions	
The order bidual of $C(X)$	
× /	

Let $K_{\alpha} \subseteq K_{\beta} \subseteq X$ be compact.

• $e_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is an interval preserving lattice homomorphism.

- $e_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is an interval preserving lattice homomorphism.
- $e_{\alpha,\beta}^{\sim} : M(K_{\beta})^{\sim} \to M(K_{\alpha})^{\sim}$ is an interval preserving lattice homomorphism.

Two problems about C(X)Realcompact spaces Direct Limits Inverse Limits Duality Solutions The order bidual of C(X)

- $e_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is an interval preserving lattice homomorphism.
- $e_{\alpha,\beta}^{\sim} : M(K_{\beta})^{\sim} \to M(K_{\alpha})^{\sim}$ is an interval preserving lattice homomorphism.
- $e_{\tilde{\alpha},\beta}^{\sim}: C(\tilde{K}_{\beta}) \to C(\tilde{K}_{\alpha})$ is an interval preserving lattice homomorphism.

Two problems about C(X)Realcompact spaces Direct Limits Inverse Limits Dualty Solutions The order bidual of C(X)

- $e_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is an interval preserving lattice homomorphism.
- $e^{\sim}_{\alpha,\beta}: M(\mathcal{K}_{\beta})^{\sim} \to M(\mathcal{K}_{\alpha})^{\sim}$ is an interval preserving lattice homomorphism.
- $e_{\alpha,\beta}^{\sim}: C(\tilde{K}_{\beta}) \to C(\tilde{K}_{\alpha})$ is an interval preserving lattice homomorphism.
- $e_{\alpha,\beta}^{\sim}(\mathbf{1}_{\tilde{K}_{\beta}}) = \mathbf{1}_{\tilde{K}_{\alpha}}.$

- $e_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is an interval preserving lattice homomorphism.
- $e^{\sim}_{\alpha,\beta}: M(\mathcal{K}_{\beta})^{\sim} \to M(\mathcal{K}_{\alpha})^{\sim}$ is an interval preserving lattice homomorphism.
- $e_{\alpha,\beta}^{\sim}: C(\tilde{K}_{\beta}) \to C(\tilde{K}_{\alpha})$ is an interval preserving lattice homomorphism.
- $e_{\alpha,\beta}^{\sim}(\mathbf{1}_{\tilde{K}_{\beta}}) = \mathbf{1}_{\tilde{K}_{\alpha}}.$
- There exists $\theta_{\alpha,\beta}: \tilde{K}_{\alpha} \to \tilde{K}_{\beta}$ continuous s.t. $e_{\alpha,\beta}^{\sim}(u) = u \circ \theta_{\alpha,\beta}, u \in C(\tilde{K}_{\beta})$.

The order bidual of C(X)

Proposition (DV, 2022)

The order bidual of C(X)

Proposition (DV, 2022)

X a realcompact space; $\mathcal{K} = \{K_{\alpha} : \alpha \in I\}$ the nonempty compact subsets of X.

• $((\tilde{K}_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta})$ is an direct system in **TOP**.

The order bidual of C(X)

Proposition (DV, 2022)

- $((\tilde{K}_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta})$ is an direct system in **TOP**.
- $\varinjlim \tilde{K}_{\alpha}$ exists in **TOP**.

The order bidual of C(X)

Proposition (DV, 2022)

- $((\tilde{K}_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta})$ is an direct system in **TOP**.
- $\varinjlim \tilde{K}_{\alpha}$ exists in **TOP**.
- If $Y = \varinjlim \tilde{K}_{\alpha}$ in **TOP** then $\varinjlim C(\tilde{K}_{\alpha}) = C(Y)$ in **VL**.

The order bidual of C(X)

Proposition (DV, 2022)

- $((\tilde{K}_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta})$ is an direct system in **TOP**.
- $\varinjlim \tilde{K}_{\alpha}$ exists in **TOP**.
- If $Y = \varinjlim \tilde{K}_{\alpha}$ in **TOP** then $\varinjlim C(\tilde{K}_{\alpha}) = C(Y)$ in **VL**.

Two problems about C(X) Realcompact spaces Direct Limits Inverse Limits Duality Solutions The order bidual of C(X)

Theorem (DV, 2022)

X a realcompact space. There exists a unique realcompact, extremally disconnected space Z so that $C(X)^{\sim\sim}$ is lattice isomorphic to C(Z)

The End

39 / 39