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When is C(K) a dual space?

Let K be a Stonean space. TFAE
(i) C(K) has a Banach lattice predual.
(i) C(K) has a Banach space predual.
(iii) C(K) has a separating order continuous dual.
(iv) Let F be a maximal singular family of order continuous functionals on C(K'), and

for each p € F let Cy, denote its carrier and P, the band projection onto Cy.
Then

C(K) 5 ur— (Pou)per e D Cy

is an isometric lattice isomorphism.
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Kakutani 1: C(K) is an AM-space = C(K)* is an AL-space.
Kakutani 2: C(K)* is an AL-space = C(K)** is a unital AM-space.

Kakutani 3: C(K)** is a unital AM-space = C(K)** = C(K) for some compact Hausdroff K
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Realcompact spaces

The realcompactification

Let X be a Tychonoff space. There exists a unique realcompact space vX so that
C(X) and C(vX) are lattice and ring isomorphic.
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The order dual of C(X)

Let X be a realcompact space.

o C(X)” =Mc(X) (compactly supported regular Borel measures on X).
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Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let
S=U{Sy : 0<peC(X).}. TFAE:
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C(X) is perfect.
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Direct Limits

Categories of Vector Lattices

OBJECTS MORPHISMS
VL Vector lattices Lattice homomorphisms
NVL Vector lattices Normal lattice homomorphisms
IVL Vector lattices Interval preserving lattice homomorphisms
NIVL | Vector lattices Normal, interval preserving lattice homomorphisms
TOP | Topological spaces | Continuous functions
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€1,2 €,3 €n,n+1
o R —5R2 5 R3..R" 25 RL..

° H_)m]R" = cgo in NIVL.
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T :E - F a positive operator; T~ : ¥~ — E~ its order adjoint, ¢ — o T.

(i) T~ is positive and order continuous.
(if) T order continuous = T~ [Fy] < Ef.
(iii) T interval preserving = T~ a lattice homomorphism.

(iv) T a lattice homomorphism = T~ interval preserving. The converse is true if
°F~ = {0}.
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Duality

Inverse Limits of Perfect Spaces

Let T:= ((Ea)aez, (B,Q)Bza) be an inverse system in NIVL. Assume that

e E=IlimE, in VL.

<«
@ pg.o is surjective for all > in I.
o E is perfect for every ac € I.

Then E is perfect.
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Solutions

When is C(X) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let
S=U{Sy, : 0<peC(X).}. TFAE

o There exists a vector lattice E so that E” is lattice isomorphic to C(X).
o C(X) is perfect.

o vS =X, i.e. C(X) is lattice isomorphic to C(S).

e ...7
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When is C(X) an order dual space?

Let X be a realcompact space, O = {0, : a€l} a collection of open sets so that
o O is upward directed by inclusion.
e each O, is compact.
e X=UO,.

€ C(0a)

Ou € O3: pg,a 10(65) durug

Pa:C(X) 3 um ug € C(0w)

lim C(Oa) = C(X) in VL.
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Let X be an extremally disconnected realcompact space. We have
e O={S, : 0<peC(X),} is upward directed by inclusion.
@ each S, is open and compact.
o Cy, =C(Sy).
@ S, € Sy Projection of Cy, onto C, = restriction of functions.

S=U{S, : 0<peC(X);} = limCy = C(S) in NVL.

32/39



Solutions

When is C(X) an order dual space?

Theorem (Xiong 1983 & VV 2022)

Let X be an extremally disconnected realcompact space, and let
S=U{Sy : 0<peC(X).}. TFAE

o There exists a vector lattice E so that E~ is lattice isomorphic to C(X).
o C(X) is perfect.

e vS =X, i.e. C(X) is lattice isomorphic to C(S).

o lim G, = C(X) in NVL, with band projections as linking maps.
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Example (DV, 2022)

X a realcompact space; K = {K, : a €[} the nonempty compact subsets of X.

0 Ko € Kg: eq,3: M(Ka) > M(Kg) eqp(p)(B)=pn(BnKa)

Ka €K: e : M(Ka) > Mc(X)  ea(p)(B) =pu(BnKa)

lim M(Ka) = Mc(X) = C(X)™ in IVL.

o O(X)™ =lim M(Ka)"™.

C(X)™ = lim C(Ka).
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Let Ko € Kg € X be compact.
@ ey 8: M(Ky) = M(Kp) is an interval preserving lattice homomorphism.
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Solutions

The order bidual of C(X)

Let K, C KB c X be compact.

eq,3 : M(Ka) = M(Kjg) is an interval preserving lattice homomorphism.

e, 5 M(Kg)” = M(Ka)~ is an interval preserving lattice homomorphism.

e, 5" C(Kg) — C(Kq) is an interval preserving lattice homomorphism.

e;ﬁ(lkﬁ) = lka'

@ There exists 0, g : Ko — R,g continuous s.t. e B(u) =uofyp, UE C(Rg) .
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Solutions

The order bidual of C(X)

Theorem (DV, 2022)

X a realcompact space. There exists a unique realcompact, extremally disconnected
space Z so that C(X)~~ is lattice isomorphic to C(Z)
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The End
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