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When is C(K) a dual space?

Theorem

Let K be a Stonean space. TFAE

(i) C(K) has a Banach lattice predual.

(ii) C(K) has a Banach space predual.

(iii) C(K) has a separating order continuous dual.

(iv) Let F be a maximal singular family of order continuous functionals on C(K), and
for each φ ∈ F let Cφ denote its carrier and Pφ the band projection onto Cφ.
Then

C(K) ∋ u z→ (Pφu)φ∈F ∈ ⊕
∞

Cφ

is an isometric lattice isomorphism.
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The Bidual of C(K)

What does the bidual of C(K) look like?
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The Bidual of C(K)

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K̃ such that the bidual C(K)∗∗ of C(K) is isometrically lattice isomorphic to C(K̃).

Kakutani 1: C(K) is an AM-space ⇒ C(K)∗ is an AL-space.

Kakutani 2: C(K)∗ is an AL-space ⇒ C(K)∗∗ is a unital AM-space.

Kakutani 3: C(K)∗∗ is a unital AM-space ⇒ C(K)∗∗ ≅ C(K̃) for some compact Hausdroff K̃
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Two Questions

Question

Can these results be generalised?

Compact Hausdorff space K Ð→ Realcompact space X.

Norm (bi)dual of C(K) Ð→ order (bi)dual of C(X).
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Realcompact spaces

Definition

A realcompact space is a Tychonoff space that satisfies any of the following equivalent
conditions.

X is homeomorphic to a closed subspace of some power of R.

For every x ∈ βX ∖X there exists a u ∈ C(X) so that u does not extend to a
continuous function ũ ∶ X ∪ {x} → R.

For every 0 ≤ φ ∈ C(X)∼ there exists a regular, compactly supported Borel
measure µ on X so that

φ(u) = ∫
X
u dµ, u ∈ C(X).

. . .
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The realcompactification

Theorem

Let X be a Tychonoff space. There exists a unique realcompact space υX so that
C(X) and C(υX) are lattice and ring isomorphic.
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The order dual of C(X )

Theorem

Let X be a realcompact space.

C(X)∼ =Mc(X) (compactly supported regular Borel measures on X).
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When is C(X ) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let
S = ⋃{Sφ ∶ 0 ≤ φ ∈ C(X)

∼
n}. TFAE:

There exists a vector lattice E so that E∼ is lattice isomorphic to C(X).

C(X) is perfect.

υS = X, i.e. C(X) is lattice isomorphic to C(S).

. . . ?

C(S) = . . .?
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Categories of Vector Lattices

Objects Morphisms
VL Vector lattices Lattice homomorphisms
NVL Vector lattices Normal lattice homomorphisms
IVL Vector lattices Interval preserving lattice homomorphisms
NIVL Vector lattices Normal, interval preserving lattice homomorphisms
TOP Topological spaces Continuous functions
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Definitions

Definition

Let C be a category of vector lattices, I a directed set, Eα a vector lattice for each
α ∈ I , and eα,β ∶ Eα → Eβ a C-morphism for all α ≼ β in I .

D ∶= ((Eα)α∈I , (eα,β)α≼β) is a direct system in C if, for all α ≼ β ≼ γ in I ,

eβ,γ ○ eα,β = eα,γ .

S ∶= (E, (eα)α∈I ) is a compatible system of D in C if, for all α ≼ β in I ,

eβ ○ eα,β = eβ .

The compatible system S ∶= (E, (eα)α∈I ) of D in C is the direct limit of D if for
any compatible system S̃ ∶= (Ẽ, (ẽα)α∈I ) of D in C there exists a unique
C-morphism r ∶ E→ Ẽ so that, for every α ∈ I ,

r ○ eα = ẽα.

E = lim
Ð→

Eα

Eα Eγ

Eβ

eα,β

eα,γ

eβ,γ

Eα E

Eβ

eα,β

eα

eβ

E Ẽ

Eα

r

eα ẽα
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Examples

Example

n ≤ m in N: en,m ∶ Rn
∋ (x1, . . . xn) ↦ (x1, . . . , xn,0, . . . ,0) ∈ Rm

R
e1,2
Ð→ R2

e2,3
Ð→ R3

⋯Rn
en,n+1
Ð→ Rn+1

⋯

lim
Ð→

Rn
= c00 in NIVL.
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Definitions

Definition

Let C be a category of vector lattices, I a directed set, Eα a vector lattice for each
α ∈ I , and pβ,α ∶ Eβ → Eα a C-morphism for all β ≽ α in I .

I ∶= ((Eα)α∈I , (pβ,α)β≽α) is an inverse system in C if, for all α ≼ β ≼ γ in I ,

pβ,α ○ pγ,β = pγ,α.

S ∶= (E, (pα)α∈I ) is a compatible system of I in C if, for all α ≼ β in I ,

pβ,α ○ pβ = pα.

The compatible system S ∶= (E, (pα)α∈I ) of I in C is the inverse limit of I if for
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Ẽ E

Eα

p̃α

s

pα

19 / 39



Two problems about C(X)
Realcompact spaces

Direct Limits
Inverse Limits

Duality
Solutions

Definitions

Definition

Let C be a category of vector lattices, I a directed set, Eα a vector lattice for each
α ∈ I , and pβ,α ∶ Eβ → Eα a C-morphism for all β ≽ α in I .

I ∶= ((Eα)α∈I , (pβ,α)β≽α) is an inverse system in C if, for all α ≼ β ≼ γ in I ,

pβ,α ○ pγ,β = pγ,α.

S ∶= (E, (pα)α∈I ) is a compatible system of I in C if, for all α ≼ β in I ,

pβ,α ○ pβ = pα.

The compatible system S ∶= (E, (pα)α∈I ) of I in C is the inverse limit of I if for
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Example

n ≤ m in N: pm,n ∶ Rn
∋ (x1, . . . xm) ↦ (x1, . . . , xn) ∈ Rn

R
p2,1
←Ð R2

p3,2
←Ð R3

⋯Rn
pn+1,n
←Ð Rn+1

⋯

lim
←Ð

Rn
= Rω in NVL.
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Inverse Limits

Duality
Solutions

Order Adjoints

Theorem

T ∶ E→ F a positive operator; T∼ ∶ F∼ → E∼ its order adjoint, φ↦ φ ○T.

(i) T∼ is positive and order continuous.

(ii) T order continuous ⇒ T∼[F∼n] ⊆ E∼n.

(iii) T interval preserving ⇒ T∼ a lattice homomorphism.

(iv) T a lattice homomorphism ⇒ T∼ interval preserving.The converse is true if
○F∼ = {0}.
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Dual Systems of Direct Systems

Proposition (VV)

(i) D ∶= ((Eα)α∈I , (eα,β)α≼β) a direct system in IVL ⇒

D
∼
∶= ((E∼α)α∈I , (e∼α,β)α≼β) an inverse system in NIVL.

(ii) D ∶= ((Eα)α∈I , (eα,β)α≼β) a direct system in NIVL ⇒

D
∼
n ∶= (((Eα)

∼
n)α∈I , (e

∼
α,β)α≼β) an inverse system in NIVL.

(iii) S ∶= (E, (eα)α∈I ) a compatible system of D in IVL ⇒
S
∼
∶= (E∼, (e∼α)α∈I ) a compatible system for D∼ in NIVL.

(iv) S ∶= (E, (eα)α∈I ) a compatible system of D in NIVL ⇒
S
∼
n ∶= (E

∼
n, (e

∼
α)α∈I ) a compatible system for D∼ in NIVL.
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Duality for Direct Limits

Theorem (VV)

Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and lim
Ð→

Eα = E in IVL.

Then lim
←Ð

Eα
∼
= E∼ in NVL.

That is, if lim
←Ð

Eα
∼
= (F, (pα)α∈I ), then there exists a

unique lattice isomorphism T ∶ E∼ → F so that the diagram commutes:

E∼ F

E∼α
e∼α

T

pα
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Order Continuous Duality for Direct Limits

Theorem (VV)

Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in NIVL. Let

lim
Ð→

Eα = E in NIVL.

eα,β be injective for all α ≼ β in I .

Then lim
←Ð
(Eα)

∼
n = E

∼
n in NVL. That is, if lim

←Ð
(Eα)

∼
n = (F, (pα)α∈I ), then there exists

a unique lattice isomorphism T ∶ E∼n → F so that the diagram commutes:

E∼n F

(Eα)
∼
n

e∼α

T

pα
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Duality for Inverse Limits

Theorem (VV)

Let I ∶= ((En)n∈N, (pm,n)m≥n) be an inverse system in IVL. Let

lim
←Ð

En = (E, (pn)n∈N) in VL.

pm,n be a surjection for all m ≥ n in N.

Then lim
Ð→
(En)

∼
= E∼ in NIVL. That is, if lim

Ð→
(En)

∼
= (F, (en)n∈N), then there exists a

unique lattice isomorphism T ∶ F→ E∼ so that the diagram commutes:

F E∼

(En)
∼

T

en p∼n
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en p∼n
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Inverse Limits of Perfect Spaces

Theorem (VV)

Let I ∶= ((Eα)α∈I , (β,α)β≽α) be an inverse system in NIVL. Assume that

E = lim
←Ð

Eα in VL.

pβ,α is surjective for all β ≽ α in I .

Eα is perfect for every α ∈ I .

Then E is perfect.
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Two problems about C(X)
Realcompact spaces

Direct Limits
Inverse Limits

Duality
Solutions

When is C(X ) an order dual space?

Theorem (Xiong, 1983)

Let X be an extremally disconnected realcompact space, and let
S = ⋃{Sφ ∶ 0 ≤ φ ∈ C(X)

∼
n}. TFAE

There exists a vector lattice E so that E∼ is lattice isomorphic to C(X).

C(X) is perfect.

υS = X, i.e. C(X) is lattice isomorphic to C(S).

. . . ?
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Duality
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When is C(X ) an order dual space?

Example

Let X be a realcompact space, O = {Oα ∶ α ∈ I} a collection of open sets so that

O is upward directed by inclusion.

each Oα is compact.

X = ⋃Oα.

Oα ⊆ Oβ : pβ,α ∶ C(Oβ) ∋ u ↦ u∣Oα
∈ C(Oα)

pα ∶ C(X) ∋ u ↦ u∣Oα
∈ C(Oα)

lim
←Ð

C(Oα) = C(X) in VL.
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Two problems about C(X)
Realcompact spaces

Direct Limits
Inverse Limits

Duality
Solutions

When is C(X ) an order dual space?

Let X be an extremally disconnected realcompact space. We have

O = {Sφ ∶ 0 ≤ φ ∈ C(X)
∼
n} is upward directed by inclusion.

each Sφ is open and compact.

Cφ = C(Sφ).

Sφ ⊆ Sψ : Projection of Cψ onto Cφ = restriction of functions.

S = ⋃{Sφ ∶ 0 ≤ φ ∈ C(X)
∼
n} ⇒ lim

←Ð
Cφ = C(S) in NVL.
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Two problems about C(X)
Realcompact spaces

Direct Limits
Inverse Limits

Duality
Solutions

When is C(X ) an order dual space?

Theorem (Xiong 1983 & VV 2022)

Let X be an extremally disconnected realcompact space, and let
S = ⋃{Sφ ∶ 0 ≤ φ ∈ C(X)

∼
n}. TFAE

There exists a vector lattice E so that E∼ is lattice isomorphic to C(X).

C(X) is perfect.

υS = X, i.e. C(X) is lattice isomorphic to C(S).

lim
←Ð

Cφ = C(X) in NVL, with band projections as linking maps.
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Inverse Limits

Duality
Solutions

The order bidual of C(X )

Example (DV, 2022)

X a realcompact space; K = {Kα ∶ α ∈ I} the nonempty compact subsets of X .

Kα ⊆ Kβ : eα,β ∶M(Kα) →M(Kβ) eα,β(µ)(B) = µ(B ∩Kα)

Kα ∈ K: eα ∶M(Kα) →Mc(X) eα(µ)(B) = µ(B ∩Kα)

lim
Ð→

M(Kα) =Mc(X) = C(X)
∼ in IVL.

C(X)∼∼ = lim
←Ð

M(Kα)
∼.

C(X)∼∼ = lim
←Ð

C(K̃α).
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The order bidual of C(X )

Let Kα ⊆ Kβ ⊆ X be compact.

eα,β ∶M(Kα) →M(Kβ) is an interval preserving lattice homomorphism.

e∼α,β ∶M(Kβ)
∼
→M(Kα)∼ is an interval preserving lattice homomorphism.

e∼α,β ∶ C(K̃β) → C(K̃α) is an interval preserving lattice homomorphism.

e∼α,β(1K̃β
) = 1K̃α

.

There exists θα,β ∶ K̃α → K̃β continuous s.t. e∼α,β(u) = u ○ θα,β , u ∈ C(K̃β) .
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The order bidual of C(X )

Proposition (DV, 2022)

X a realcompact space; K = {Kα ∶ α ∈ I} the nonempty compact subsets of X .
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The order bidual of C(X )

Theorem (DV, 2022)

X a realcompact space. There exists a unique realcompact, extremally disconnected
space Z so that C(X)∼∼ is lattice isomorphic to C(Z)
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