Continuity and robustness of risk measures

Foivos Xanthos

Department of Mathematics Toronto Metropolitan University

Positivity XI

July 11, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This talk is based on a joint project with N. Gao and C. Munari

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Let (Ω, F, P) be a non-atomic probability space. We denote by L⁰ the set of Borel measurable functions X : Ω → R.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let (Ω, F, P) be a non-atomic probability space. We denote by L⁰ the set of Borel measurable functions X : Ω → R.

Let X be a subset of L⁰. We denote by M(X) = {ℙ ∘ X⁻¹ : X ∈ X} the set of all Borel probability measures on ℝ that arise as the distribution of some X ∈ X

- Let (Ω, F, P) be a non-atomic probability space. We denote by L⁰ the set of Borel measurable functions X : Ω → R.
- Let X be a subset of L⁰. We denote by M(X) = {ℙ ∘ X⁻¹ : X ∈ X} the set of all Borel probability measures on ℝ that arise as the distribution of some X ∈ X
- A functional $\rho : \mathcal{X} \to \mathbb{R}$ is said to be law-invariant whenever $\rho(X) = \rho(Y)$ for each $X, Y \in \mathcal{X}$ with $\mathbb{P} \circ X^{-1} = \mathbb{P} \circ Y^{-1}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let (Ω, F, P) be a non-atomic probability space. We denote by L⁰ the set of Borel measurable functions X : Ω → R.
- Let X be a subset of L⁰. We denote by M(X) = {ℙ ∘ X⁻¹ : X ∈ X} the set of all Borel probability measures on ℝ that arise as the distribution of some X ∈ X
- A functional $\rho : \mathcal{X} \to \mathbb{R}$ is said to be law-invariant whenever $\rho(X) = \rho(Y)$ for each $X, Y \in \mathcal{X}$ with $\mathbb{P} \circ X^{-1} = \mathbb{P} \circ Y^{-1}$.
- Let ρ : X → ℝ be a law-invariant functional. The associated statistical functional R_ρ : M(X) → ℝ is given by the formula

$$\mathcal{R}_{\rho}(\mathbb{P}\circ X^{-1}):=
ho(X).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $X \in \mathcal{X}$.

Statistical consistency

Let (X_n) be a sequence of independent identical random variables in L^0 with common law μ_0 . Then we denote by

$$\widehat{m}_n = \frac{1}{n} \sum_{i=1}^n \delta_X$$

the empirical distribution of (X_n) and by

$$\widehat{\rho}_n := \mathcal{R}_{\rho}(\widehat{m}_n)$$

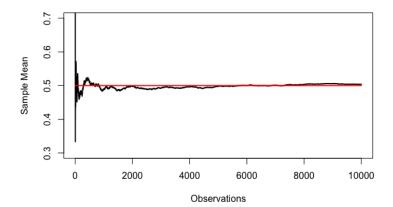
the corresponding estimate.

We say that ρ is statistical consistent at $X \in \mathcal{X}$ whenever

$$\widehat{\rho}_n = \mathcal{R}_{\rho}(\widehat{m}_n) \xrightarrow{a.s.} \mathcal{R}_{\rho}(\mu_0) = \rho(X).$$

Law of large numbers

$$\mathcal{X} = L^1(\mathbb{P}),
ho(X) = \mathbb{E}[X], \mathcal{R}_
ho(\mu) := \int x \mu(dx)$$



Risk measures

The axiomatic approach to risk measures $(+,\geq)$ was introduced by Artzner, Delbaen, Eber and Heath '99 . One of the main axioms is that ρ is convex.

$$\mathbb{V}[X] := \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$\mathit{ES}_{\lambda}(X) := rac{1}{\lambda} \int_{0}^{\lambda} \mathit{VaR}_{lpha}(X) \mathit{d}lpha$$

$$HG_{\alpha}(X) := \inf_{m \in \mathbb{R}} \{m + \| (X - m)^+ \|_{\Phi_{\alpha}} \}$$

$$GP^{\lambda}(X) := \mathbb{E}[X] + \lambda \mathbb{E}[|X^* - X^{**}|]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Risk measures

The axiomatic approach to risk measures $(+, \geq)$ was introduced by Artzner, Delbaen, Eber and Heath '99 . One of the main axioms is that ρ is convex.

$$\mathbb{V}[X] := \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$\mathit{ES}_\lambda(X) := rac{1}{\lambda} \int_0^\lambda \mathit{VaR}_lpha(X) \mathit{d}lpha$$

$$HG_{\alpha}(X) := \inf_{m \in \mathbb{R}} \{m + \|(X - m)^+\|_{\Phi_{\alpha}}\}$$

$$GP^{\lambda}(X) := \mathbb{E}[X] + \lambda \mathbb{E}[|X^* - X^{**}|]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The goal of our project is to explore abstract conditions $(+, \geq)$ under which convex, law-invariant functionals are statistical consistent.

Automatic continuity of positive linear functionals

Theorem (Krein, 1940)

Let \mathcal{X} be a Banach lattice. Then any positive linear functional $f : \mathcal{X} \to \mathbb{R}$ is continuous.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Automatic continuity of positive linear functionals

Theorem (Krein, 1940)

Let \mathcal{X} be a Banach lattice. Then any positive linear functional $f : \mathcal{X} \to \mathbb{R}$ is continuous.

Definition

Let \mathcal{X} be a Riesz space, (X_n) be a sequence in \mathcal{X} and $X \in \mathcal{X}$. We say that (X_n) converges uniformly to $X \in \mathcal{X}$ and write $X_n \xrightarrow{u} X$ iff

$$\exists V \in \mathcal{X}_+ \ \forall \epsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ |X_n - X| \le \epsilon V$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We also say that V is the regulator of the uniform convergence.

Automatic continuity of positive linear functionals

Theorem (Krein, 1940)

Let \mathcal{X} be a Banach lattice. Then any positive linear functional $f : \mathcal{X} \to \mathbb{R}$ is continuous.

Definition

Let \mathcal{X} be a Riesz space, (X_n) be a sequence in \mathcal{X} and $X \in \mathcal{X}$. We say that (X_n) converges uniformly to $X \in \mathcal{X}$ and write $X_n \xrightarrow{u} X$ iff

$$\exists V \in \mathcal{X}_+ \ \forall \epsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ |X_n - X| \le \epsilon V$$

We also say that V is the regulator of the uniform convergence.

Definition

Let \mathcal{X} be a Riesz space. We say that a functional $f : \mathcal{X} \to \mathbb{R}$ is almost order bounded above if for any $V \in \mathcal{X}_+$ and $X \in \mathcal{X}$ there exists $\lambda > 0$ and $w \in \mathbb{R}$ such that $f(X + \lambda Y) \leq w$ for all $Y \in [-V, V]$.

Linearity can be relaxed to convexity

Theorem (G-M-X)

Let \mathcal{X} be a Riesz space and $f : \mathcal{X} \to \mathbb{R}$ be a convex functional that is almost order bounded above. Then for every sequence (X_n) in \mathcal{X} and $X \in \mathcal{X}$ such that $X_n \xrightarrow{u} X$ we have that $f(X_n) \to f(X)$.

Sketch proof

Let V be the regulator of the uniform convergence $X_n \xrightarrow{u} X$ and fix $0 < \epsilon < 1$. Since f is almost order bounded above, there exists $w \in \mathbb{R}$ and $\lambda > 0$ such that $f(X + \lambda Y) \leq w$ for all $Y \in [-V, V]$. Thus we have

$$f(X + \lambda Y) \le w \le f(X) + |w - f(X)| \tag{1}$$

We fix also $n_0 \in \mathbb{N}$ such that

$$\frac{1}{\lambda\epsilon}|X_n - X| \in [-V, V]$$
(2)

for all $n \ge n_0$.

Note that

$$X_n = (1 - \epsilon)X + \epsilon(X + \frac{1}{\epsilon}(X_n - X))$$

By the convexity of f we have

$$f(X_n) \le (1-\epsilon)f(X) + \epsilon f(x + \frac{1}{\epsilon}(X_n - X))$$
(3)

and

$$f(2X - X_n) \le (1 - \epsilon)f(X) + \epsilon f(X + \frac{1}{\epsilon}(X - X_n))$$
(4)

Therefore by (3) we get

$$f(X_n) - f(X) \le \epsilon \left(f(X + \frac{1}{\epsilon}(X_n - X)) - f(X) \right)$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thus by (1), (2) and (5) we get for all $n \ge n_0$ that

$$f(X_n) - f(X) \le \epsilon \Big(f(X) + |w - f(X)| - f(X) \Big) \le \epsilon |w - f(X)|$$
 (6)

Topological Version

(4日) (個) (主) (主) (三) の(の)

Topological Version

A linear topology τ on a Riesz space is said locally solid if τ has a basis for zero consisting of solid sets. A Frechét space is a Riesz space equipped with a complete metrizable locally solid topology.

Lemma

Let (\mathcal{X}, τ) be a Frechét space and (X_n) in \mathcal{X} such that $X_n \xrightarrow{\tau} X$, then there exists a subsequence (X_{k_n}) of (X_n) such that $X_{k_n} \xrightarrow{u} X$.

Topological Version

A linear topology τ on a Riesz space is said locally solid if τ has a basis for zero consisting of solid sets. A Frechét space is a Riesz space equipped with a complete metrizable locally solid topology.

Lemma

Let (\mathcal{X}, τ) be a Frechét space and (X_n) in \mathcal{X} such that $X_n \xrightarrow{\tau} X$, then there exists a subsequence (X_{k_n}) of (X_n) such that $X_{k_n} \xrightarrow{u} X$.

Corollary

Let (\mathcal{X}, τ) be a Frechét space and $f : \mathcal{X} \to \mathbb{R}$ be a convex functional. Then the following are equivalent

(i) f is almost order bounded above.

(ii) f is continuous.

Proof.

 $(ii) \Rightarrow (i)$: Let $V \in \mathcal{X}_+$ and $X \in \mathcal{X}$. Since f is continuous at X, we can find a neighbourhood \mathcal{V} of 0 and w in \mathbb{R} such that $f(X + Y) \leq w$ for all $Y \in \mathcal{V}$. The topological boundedness of [-V, V] ensures that there exists $\lambda > 0$ such that $[-V, V] \subseteq \frac{1}{\lambda} \mathcal{V}$. Thus for any $Y \in [-V, V]$ we have that $f(X + \lambda Y) \leq w$. In particular, f is almost order bounded above.

Orlicz space framework

A non constant function $\Phi : [0, \infty) \to [0, \infty]$ is said to be an *Orlicz* function if it is non decreasing, left-continuous, and satisfies $\Phi(0) = 0$. The Young class of the Orlicz function Φ is denoted by

$$Y^{\Phi} := \left\{ X \in L^{0} \, ; \, \mathbb{E}\left[\Phi\left(|X|
ight)
ight] < \infty
ight\}.$$

The Orlicz space L^{Φ} and the Orlicz heart H^{Φ} associated with Φ are defined as follows

$$L^{\Phi}:=\left\{X\in L^{0}\,;\,\,\mathbb{E}\left[\Phi\left(k|X|
ight)
ight]<\infty ext{ for some }k\in\mathbb{N}
ight\}.$$

 $H^{\Phi} := \left\{ X \in L^{0} \, ; \, \mathbb{E}\left[\Phi\left(k | X | \right)
ight] < \infty \text{ for all } k \in \mathbb{N}
ight\}.$

$$H^{\Phi} \subset Y^{\Phi} \subset L^{\Phi}$$

We say that Φ satisfies the Δ_2 -condition whenever there are $C, x_0 > 0$ such that $\Phi(2x) \leq C\Phi(x)$ for all $x \geq x_0$.

(ロ)、(型)、(E)、(E)、(E)、(O)への

Statistical Robustness

Let Φ be an Orlicz function. For a sequence $(X_n) \subset Y^{\Phi}$ and $X \in Y^{\Phi}$ we say that $(X_n) \Phi$ -converges in distribution to X and write $X_n \xrightarrow{\Phi-dist.} X$ whenever

$$X_n \xrightarrow{dist.} X$$
 and $\mathbb{E}[\Phi(|X_n|)] o \mathbb{E}[\Phi(|X|)].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Statistical Robustness

Let Φ be an Orlicz function. For a sequence $(X_n) \subset Y^{\Phi}$ and $X \in Y^{\Phi}$ we say that $(X_n) \Phi$ -converges in distribution to X and write $X_n \xrightarrow{\Phi-dist.} X$ whenever

$$X_n \xrightarrow{dist.} X$$
 and $\mathbb{E}[\Phi(|X_n|)] \to \mathbb{E}[\Phi(|X|)].$

Definition (Krätschmer-Schied-Zähle 2014)

Let $\rho: Y^{\Phi} \to \mathbb{R}$ be a law-invariant functional. We say that ρ statistical robust at $X \in Y^{\Phi}$ whenever ρ is continuous at $X \in Y^{\Phi}$ with respect to the Φ -convergence in distribution, that is $X_n \xrightarrow{\Phi\text{-dist.}} X \Rightarrow \rho(X_n) \to \rho(X)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Statistical Robustness

Let Φ be an Orlicz function. For a sequence $(X_n) \subset Y^{\Phi}$ and $X \in Y^{\Phi}$ we say that $(X_n) \Phi$ -converges in distribution to X and write $X_n \xrightarrow{\Phi-dist.} X$ whenever

$$X_n \xrightarrow{dist.} X$$
 and $\mathbb{E}[\Phi(|X_n|)] \to \mathbb{E}[\Phi(|X|)].$

Definition (Krätschmer-Schied-Zähle 2014)

Let $\rho: Y^{\Phi} \to \mathbb{R}$ be a law-invariant functional. We say that ρ statistical robust at $X \in Y^{\Phi}$ whenever ρ is continuous at $X \in Y^{\Phi}$ with respect to the Φ -convergence in distribution, that is $X_n \xrightarrow{\Phi\text{-dist.}} X \Rightarrow \rho(X_n) \to \rho(X)$.

Remark

The (LLN) implies that if ρ is statistical robust then is also statistical consistent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Order convergence vs Φ -convergence in distribution

Let \mathcal{X} be a subset of L^0 , (X_n) be a sequence in \mathcal{X} and $X \in \mathcal{X}$, we write

 $X_n \xrightarrow{o} X$ in $\mathcal{X} : \iff X_n \xrightarrow{a.s.} X$ and $\sup |X_n| \in \mathcal{X}$.

Order convergence vs Φ -convergence in distribution

Let \mathcal{X} be a subset of L^0 , (X_n) be a sequence in \mathcal{X} and $X \in \mathcal{X}$, we write

$$X_n \xrightarrow{o} X$$
 in $\mathcal{X} : \iff X_n \xrightarrow{a.s.} X$ and $\sup |X_n| \in \mathcal{X}$.

Lemma

Let $(X_n) \subset Y^{\Phi}$ and $X \in Y^{\Phi}$ such that $X_n \xrightarrow{\Phi-dist.} X$. Then there exists a subsequence (X_{k_n}) of (X_n) , a sequence $(Y_n) \subset Y^{\Phi}$ and $Y \in Y^{\Phi}$ such that Y_n has the same law as X_{k_n} , Y has the same law as X and $Y_n \xrightarrow{o} Y$ in Y^{Φ} .

Sketch proof

Since our probability space is non-atomic, the classical Skorohod representation yields $(Y_n) \subset Y^{\Phi}$ and $Y \in Y^{\Phi}$ such that $Y \sim X$, and $Y_n \sim X_n$ for every $n \in \mathbb{N}$, and $Y_n \xrightarrow{a.s.} Y$. Clearly,

$$\lim \mathbb{E}[\Phi(|Y_n|)] = \lim \mathbb{E}[\Phi(|X_n|)] = \mathbb{E}[\Phi(|X|)] = \mathbb{E}[\Phi(|Y|)] < \infty.$$
(7)

Since Φ is an Orlicz function, we also have that $\Phi(|Y_n|) \xrightarrow{a.s.} \Phi(|Y|)$. This combined with (7) yields that $\Phi(|Y_n|) \xrightarrow{||\cdot||_1} \Phi(|Y|)$. Thus by passing to a subsequence we may assume that $\mathbb{E}[\sup_{n \in \mathbb{N}} \Phi(|Y_n|)] < +\infty$. Since Φ is an Orlicz function we get that

$$\mathbb{E}[\Phi(\sup_{n\in\mathbb{N}}|Y_n|)] = \mathbb{E}[\sup_{n\in\mathbb{N}}\Phi(|Y_n|)] < +\infty.$$

In particular we have $Y_n \xrightarrow{o} Y$ in Y^{Φ}

Definition Let $\mathcal{X} \subset L^0$ and $\rho : \mathcal{X} \to \mathbb{R}$,

- ▶ We say that ρ has the \mathcal{X} -Lebesgue property at $X \in \mathcal{X}$, whenever $X_n \xrightarrow{o} X$ in \mathcal{X} implies that $\rho(X_n) \rightarrow \rho(X)$ for all (X_n) in \mathcal{X} .
- We say that ρ has the \mathcal{X} -Fatou property at $X \in \mathcal{X}$, whenever $X_n \xrightarrow{o} X$ in \mathcal{X} implies that $\rho(X) \leq \liminf \rho(X_n)$ for all (X_n) in \mathcal{X}

Definition Let $\mathcal{X} \subset L^0$ and $\rho : \mathcal{X} \to \mathbb{R}$,

- We say that ρ has the \mathcal{X} -Lebesgue property at $X \in \mathcal{X}$, whenever $X_n \xrightarrow{o} X$ in \mathcal{X} implies that $\rho(X_n) \rightarrow \rho(X)$ for all (X_n) in \mathcal{X} .
- ▶ We say that ρ has the \mathcal{X} -Fatou property at $X \in \mathcal{X}$, whenever $X_n \xrightarrow{o} X$ in \mathcal{X} implies that $\rho(X) \leq \liminf \rho(X_n)$ for all (X_n) in \mathcal{X}

Corollary

Let Φ be an Orlicz function, $X \in Y^{\Phi}$ and $\mathcal{X} \subset L^{0}$ such that $Y^{\Phi} \subset \mathcal{X}$. Let $\rho : \mathcal{X} \to \mathbb{R}$ be a law-invariant functional and consider the continuity properties.

- (i) ρ is statistical robust at X.
- (ii) ρ has the Y^{Φ} -Lebesgue property at X.
- (iii) ρ is lower semi-continuous at X with respect to the Φ-convergence in distribution i.e. for every sequence (X_n) ⊂ Y^Φ and every X ∈ Y^Φ we have X_n ^{Φ-dist.} X ⇒ ρ(X) ≤ lim inf ρ(X_n).
 (iv) ρ has the Y^Φ-Fatou property at X.

Then $(i) \iff (ii)$ and $(iii) \iff (iv)$.

Statistical Robustness \iff Almost order bounded above

The following improves the celebrated result of Krätschmer-Schied-Zähle 2014.

Theorem (G-M-X)

Let Φ be an Orlicz function that satisfies the Δ_2 condition and $\rho: Y^{\Phi} \to \mathbb{R}$ be a convex, law-invariant functional. Then the following are equivalent.

- (i) ρ is almost order bounded above,
- (ii) ρ is statistical robust.

Proof.

We recall here that since Φ satisfies the Δ_2 condition we have that $Y^{\Phi} = H^{\Phi} = L^{\Phi}$. Also L^{Φ} is a Frechét space and the underlying topology is order continuous. Thus ρ is τ continuous if and only if ρ has the Y^{Φ} Lebesgue property. Now by applying our previous results we get the equivalence of (i) and (ii).

When Φ fails the Δ_2

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

Theorem (Chen-Gao-Leung-Li 2022)

Let Φ be an Orlicz function and $\rho : L^{\Phi} \to \mathbb{R}$ be a convex, decreasing, law-invariant functional. Then ρ has the L^{Φ} -Fatou property at any $X \in L^{\Phi}$ such that $X^{-} \in H^{\Phi}$.

Corollary

Let Φ be an Orlicz function and $\rho : L^{\Phi} \to \mathbb{R}$ be a convex, decreasing, law-invariant functional. Then ρ is lower semi-continuous at any $X \in H^{\Phi}$ with respect to the Φ -convergence in distribution.

Statistical consistency

Proposition (M-G-X)

Let Φ be an Orlicz function $X \in L^{\Phi}$, and $\rho : L^{\Phi} \to \mathbb{R}$ be a law-invariant functional. If ρ has the L^{Φ} -Lebesgue property at X, then ρ is statistical consistent at X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Statistical consistency

Proposition (M-G-X)

Let Φ be an Orlicz function $X \in L^{\Phi}$, and $\rho : L^{\Phi} \to \mathbb{R}$ be a law-invariant functional. If ρ has the L^{Φ} -Lebesgue property at X, then ρ is statistical consistent at X.

Sketch proof WLOG we may assume that $X \in Y^{\Phi}$. Let μ_0 be the law of X, (X_n) be a sequence of independent identical random variables in L^0 with common law μ_0 and \hat{m}_n the corresponding empirical distribution of (X_n) . By an application of (LLN) we can find a measurable set $\Omega_0 \in \mathcal{F}$ with $\mathbb{P}(\Omega_0) = 1$ such that for each $\omega \in \Omega_0$ we have $\int \Phi(|x|)\widehat{m}_n(\omega)(dx) = \frac{1}{n}\sum_{i=1}^n \Phi(|X_i|) \to \mathbb{E}[\Phi(|X|)] = \int \Phi(|x|)\mu(dx)$ and $m_n(\omega) \xrightarrow{dist.} \mu_0$. Since our probability space is non-atomic, we may find $(X_n^{\omega}), X \in L^0$ with law $(\mu_n(\omega))$ and μ_0 respectively. We then clearly have that $X_n^{\omega} \xrightarrow{\Phi \text{-dist.}} X$ and the continuity of ρ with respect to the Φ-convergence in distribution yields that $\hat{\rho}_n(\omega) \to \rho(X)$ and thus ρ is strongly consistent at X.

Haezendonck-Goovaerts principle

For the following we fix a finite-valued convex Orlicz function Φ that is normalized by $\Phi(1) = 1$, a confidence level $\alpha \in (0, 1)$ and we set $\Phi_{\alpha} := \frac{\Phi}{1-\alpha}$.

Definition

The Haezendonck-Goovaerts premium principle associated to Φ at level α is the map $\pi_{\alpha}: L^{\Phi} \to \mathbb{R}$ defined by

$$HG_{\alpha}(X) := \inf_{m \in \mathbb{R}} \{m + \|(X - m)^+\|_{\Phi_{\alpha}}\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• HG_{α} is convex, increasing, and law invariant.

Theorem (Ahn-Shyamalkumar 2014)

The Haezendonck-Goovaerts premium principle HG_{α} is statistical consistent at any $X \in L^{\Phi}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Ahn-Shyamalkumar 2014)

The Haezendonck-Goovaerts premium principle HG_{α} is statistical consistent at any $X \in L^{\Phi}$.

Proposition (G-M-X)

For the Haezendonck-Goovaerts premium principle HG_{α} the following statements are equivalent:

- (i) HG_{α} is statistical robust on Y^{Φ} .
- (ii) Φ satisfies the Δ_2 condition.

Theorem (Ahn-Shyamalkumar 2014)

The Haezendonck-Goovaerts premium principle HG_{α} is statistical consistent at any $X \in L^{\Phi}$.

Proposition (G-M-X)

For the Haezendonck-Goovaerts premium principle HG_{α} the following statements are equivalent:

- (i) HG_{α} is statistical robust on Y^{Φ} .
- (ii) Φ satisfies the Δ_2 condition.

Proposition (G-M-X)

The Haezendonck-Goovaerts premium principle HG_{α} , restricted to Y^{Φ} , is lower semicontinuous with respect to Φ -convergence in distribution, i.e. for every sequence $(X_n) \subset Y^{\Phi}$ and every $X \in Y^{\Phi}$ we have

$$X_n \xrightarrow{\Phi\text{-dist.}} X \implies HG_{\alpha}(X) \leq \liminf HG_{\alpha}(X_n).$$

・ロト・国ト・モート ヨー うらぐ

Thank you for your attention!