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0.0022
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0.0644
0.7764
0.0517
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Here the eight columns and rows represent, in order,
BBB, BB, B, CCC, and Default.

0.0000 0.0000
0.0029  0.0000
0.0045  0.0000
0.0160 0.0018
0.1043  0.0127
0.8246 0.0435
0.0754 0.6493
0.0000 0.0000

the credit ratings AAA, AA, A,

Wei 2001)

0.0000
0.0000
0.0009
0.0045
0.0241
0.0685
0.2319
1.0000
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» P is a Markov matrix.

» Pk k e N, contains the transition probabilities from one
rating to another within k years.
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Motivation — credit rating

A continuous Markov process can be described by a Markov
semigroup, i. e., a family (P(t))¢>0 of Markov matrices such that

1. P(0) =1d,
2. P(t+s) = P(t)P(s) for all s,t >0,

3. [0,00) = M™"  t — P(t) continuous.

We are looking for a Markov semigroup (P(t))¢>0 such that
P(1) = P.
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Example
P .= <(1) (1)> is not embeddable into a continuous Markov
semigroup.

Proof.
Suppose P is embeddable into the Markov semigroup (P(t))¢>o0.

Let P (%) = (i Z) where a, b, c,d > 0.

Then we have

(3 o)-P-Pw=PR)PR

_ a’+ bc ab+ bd
“\cat+dc cb+d? )"

Comparing the entries yields a contradiction. O
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Embedding in general not unique

Example (J. M. O. Speakman 1967)

2 Wabrscheinlichkeitstheorio verw, Geb. 7, 224 (1967)

‘Two Markov Chains with a Common Skeleton
3.M. 0. Seramax*

Received Novembe 9, 1963

but not all ¢ >0. The first has @-matrix (matrix of transition-probabilty deriv-
atives gy = p,(0+))

—1 10 1y
@={ 01 1)wmdthosccond@={ §-1 i)
1o 1oi-

The characteristic equation of Q@ is (7 + 1) = | 50 that the transition functions
aro of tho form a + be-%2 cos /34]2 + o) for some a, b and . From considera-
N tho functions i 3.

This and the values of the functions and of their irst derivatives at 0 determine.
the functions completely and we have

Pu) = pra) = pual) = 13 + 23 2 cos 3112,

Pia(0) = pat) = par(t) = 13-+ 232 on (/32 — 22/3) and

P13l = put) = pralt) = 1/3 + 23+~ con (/3472 + 2a13)

By
Pult) = pr (0= prat) = 13+ 203+ 6 and
Pul)=1/3— 1/3 -3 whenever i+ j. The two sets of functions coincide when
b= 4ka))/3 whero kis any integer.

Statistical Laborstory
University of Casmbridgo.
Engltad

ring
 Reseacch Studentabip from irton College.
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Questions

1. Existence: For a given Markov matrix P is there a Markov
semigroup (P(t))s>o such that P(1) = P?

2. Uniqueness: If so, how many such processes are there?

3. If not embeddable, what is the “nearest” Markov process?
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More general problem
X suitable Banach space, T € £(X)

Question
Is there a

Co-semigroup (T (t))s>o0 such that T(1) = T7

1) T. Eisner, (2009)
2) G. Elfving (1937), M. Baake and J. Sumner (2020)

Now 3) and 4), where X € {C"; co; (P,1 < p < o0}
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Remark
dim X < oo, T embeddable = T invertible

Example
T =0 € £(L?[0,1]) is real-embeddable into nilpotent shift

semigroup.
Since L2[0, 1] 2 ear £2, 0 € L(£?) is real-embeddable.
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» E:={T € L({?): T contraction}
endowed with the strong operator topology

» M:={T € E: T embeddable into real contractive Cy-s.g.}

Proposition (Real-embeddability is typical.)

M is residual in E, i. e. its complement M€ is a countable union of
nowhere dense sets.
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Setting

» R9*9 space of d x d matrices endowed with the norm
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» T invertible and for each n € N there exists 0 < S € R9*d
such that S" = T.

Invertibility 4+ existence of positive n-th roots for all n ¢ N
not sufficient in /2

Example (Kingman, 1962): Shift by 1 on /2(Q)
» is invertible,
P is positive,
» has positive n-th roots (namely shift by 1/n).

However, the diagonal entries in its matrix representation on
02 = pos. 22(Q) are all 0.
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