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Introduction

Infinite-dimensional control systems

We are interested in positivity and well-posedness of
infinite-dimensional control systems described as

z(t) = Anz(t), t>0,
z(0) = x, (1)
(G-T)z(t) = Ku(t), t>0,

where Ap : D(Am) C X — X is closed with D(Ap) = X,
K e £(U,0X) (X, U, 90X are Banach lattices), and
G,T : (D(Am), |l - l|a,) — O0X are linear continuous.
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Introduction

Infinite-dimensional control systems

We are interested in positivity and well-posedness of
infinite-dimensional control systems described as

z(t) = Amz(t), t>0,
z(0) = x,
(G-T)z(t) = Ku(t), t>0,

where Ap, : D(An) € X — X is closed with D(Ap) = X,
K e £(U,0X) (X, U, 90X are Banach lattices), and

G,T : (D(Am), |l - l|a,) — O0X are linear continuous.
To (1) we associate the operator

A:=Am,  DA)={xecDAm): (G-T)x=0}.
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Assumptions

(H1) A= (Am)|ker G is @ densely defined resolvent positive
operator on X s.t. Jup > s(A), Y > o, Ic(p) > 0 with

IR, A = c()lixll, — (x € Xy), (@)
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Introduction

Assumptions

(H1) A= (Am)|ker G is @ densely defined resolvent positive
operator on X s.t. Jup > s(A), Y > o, Ic(p) > 0 with

IR, A = c()lixll, — (x € Xy), (@)

(H2) G is surjective.
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Known results

Here instead of (H1) one assumes that
A = An with domain D(A) := ker G generates a Cy-semigroup
on X, then

» [ = 0: wellposedness of (1) is obtained by the theory of
well-posed linear systems, see O.J. Staffans 2005.
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Known results

Here instead of (H1) one assumes that
A = An with domain D(A) := ker G generates a Cy-semigroup
on X, then
» [ = 0: wellposedness of (1) is obtained by the theory of
well-posed linear systems, see O.J. Staffans 2005.
» K=0,T e L(X,0X): wellposedness of (1) is obtained by
G. Greiner 1987.
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Introduction

Known results

Here instead of (H1) one assumes that
A = An with domain D(A) := ker G generates a Cy-semigroup
on X, then
» [ = 0: wellposedness of (1) is obtained by the theory of
well-posed linear systems, see O.J. Staffans 2005.
» K=0,T e L(X,0X): wellposedness of (1) is obtained by
G. Greiner 1987.

» K =0, and admissibility conditions imply wellposedness of
(1), see S. Hadd, R. Manzo and A. Rh. 2015.
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The Greiner approach

» (H1) = A generates a positive Cy-semigroup on X, see
W. Arendt 1987.
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The Greiner approach

» (H1) = A generates a positive Cy-semigroup on X, see
W. Arendt 1987.

» (H2) = D(Am) = D(A) & ker(ulx — Am), 1 > s(A), and
the Dirichlet operator
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The Greiner approach

» (H1) = A generates a positive Cy-semigroup on X, see
W. Arendt 1987.

» (H2) = D(Am) = D(A) & ker(ulx — Am), 1 > s(A), and
the Dirichlet operator

—1
DH = <G|ker(H/X7Am)> € L(8X7 ker(,u/x B Am)),

see G. Greiner 1987.
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t=0 on X.
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t>0 on X. The extrapolation space X_; is the
completion of X with respect to
IX[-1 = I(A = A", x € X,
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t>0 on X. The extrapolation space X_; is the
completion of X with respect to
Ix|[—1 := [I[(A = A)~'||, x € X. We say that y € X_; is
positive, if y € XTFH'H*.
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t>0 on X. The extrapolation space X_; is the
completion of X with respect to
Ix|[—1 := [I[(A = A)~'||, x € X. We say that y € X_; is
positive, if y € XTFH'H*. Then, X, = XN (X_1), where
(X_1)+ = {y e X q: y > 0}
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t>0 on X. The extrapolation space X_; is the
completion of X with respect to
Ix]|—1 :== [[(A = A)~"||, x € X. We say that y € X_4 is
positive, if y € XTFH'H*. Then, X, = XN (X_1), where
(X_1)+ = {y e X q: y > 0}

> (A= A1) T (X1)+ € (Xo1)+, YA > s(Aq) = s(A) and
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t>0 on X. The extrapolation space X_; is the
completion of X with respect to
Ix]|—1 :== [[(A = A)~"||, x € X. We say that y € X_4 is
positive, if y € XTFH'H*. Then, X, = XN (X_1), where
(X_1)+ = {y e X q: y > 0}

> (A= A1) (X 1)+ C (Xoq)+, YA > s(A_q) = s(A) and
B € £(X,X_1) is positive iff [(A\ —A_1)""B] X} C X, for
any large .
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Resolvent positive operators and extrapolation

» (H1) implies A generates a positive Cy-semigroup on X,
and s(A) = wp(A), cf. W. Arendt 1987.

> Let A be the generator of a positive Cy-semigroup
(T(1)))t>0 on X. The extrapolation space X_; is the
completion of X with respect to
Ix|[—1 := [I[(A = A)~'||, x € X. We say that y € X_; is
positive, if y € XTFH'H*. Then, X, = XN (X_1), where
(X_1)+ = {y e X q: y > 0}

> (A= A1) (X 1)+ C (X_1)4, VA > S(A_4) = s(A) and
B € £(X,X_1) is positive iff [(A\ —A_1)""B] X} C X, for
any large .

See A. Batkai, B. Jacob, J. Voigt and J. Wintermayr 2018.
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Infinite-dimensional control systems
Define the "control operator”

B:= (,u — A_1)D‘u € L(@X, X_1),
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Infinite-dimensional control systems
Define the "control operator”

B:= (,u — A_1)D‘u € L(@X, X_1),
and the "observation operator”

C= F\D(A).
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Infinite-dimensional control systems

Infinite-dimensional control systems
Define the "control operator”

B:= (,u — A_1)D‘u € L(@X, X_1),
and the "observation operator”
C = F\D(A).

Problem (1) (with K = 0) can be written as a boundary
input-output linear system
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Infinite-dimensional control systems

Infinite-dimensional control systems
Define the "control operator”

B:= (,u — A_1)D‘u € L(@X, X_1),
and the "observation operator”
C = F\D(A).

Problem (1) (with K = 0) can be written as a boundary
input-output linear system

z(t) = A_1z(t)+ Bv(t), t>0, z(0) = x,
Gz(t) = v(t), t>0,
y(t) =Tz(t), t>0,

with the feedback law "v = y".
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Infinite-dimensional control systems

The Salamon-Weiss approach
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The Salamon-Weiss approach

> Define ®fv := [ T_4(t — s)Bv(s) ds, v € L' (R; 8X). Bis
called L'-admissible |f

P e L(LY(R;8X), X), Vt > 0.
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Infinite-dimensional control systems

The Salamon-Weiss approach

> Define ®fv := [ T_4(t — s)Bv(s) ds, v € L' (R; 8X). Bis
called L'-admissible |f

P e L(LY(R;8X), X), Vt > 0.

» Cis called L'-admissible if 3o > 0 s.t.
| eT @ ot < 2lxi, vx € X,
0

and some vy = vy(a) >0
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The Salamon-Weiss approach
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Infinite-dimensional control systems

The Salamon-Weiss approach

Remark: The mild solution of the above differential equation is

z(t) = T()x + ofv.
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Infinite-dimensional control systems

The Salamon-Weiss approach

Remark: The mild solution of the above differential equation is
z(t) = T()x + ofv.
Hence, the output function

y(t) =Tz(t) = CT(t)x + Fdfv =: (Wx)(t) + (Fv)(t)
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Infinite-dimensional control systems

The Salamon-Weiss approach

Remark: The mild solution of the above differential equation is
z(t) = T()x + ofv.
Hence, the output function
y(t) =Tz(t) = CT(t)x + Fdfv =: (Wx)(t) + (Fv)(t)

is well-defined for x € D(A), v € W, ([0, 1], X).

ABDELAZIZ RHANDI (University of Salerno) Positivity of linear systems



Infinite-dimensional control systems

The Salamon-Weiss approach
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The Salamon-Weiss approach

Well-posed linear system: (A, B, C) is called well-posed if
B, C are L'-admissible operators and F € £(L'([0, t], 0X)) for
any t > 0.
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Infinite-dimensional control systems

The Salamon-Weiss approach

Well-posed linear system: (A, B, C) is called well-posed if
B, C are L'-admissible operators and F € £(L'([0, t], 0X)) for
any t > 0.

Regular linear system: A Well-posed linear system (A, B, C)
is called regular if

Range(D,,) C D(Cn)

for some (and hence for all) . € p(A), where
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Infinite-dimensional control systems

The Salamon-Weiss approach

Well-posed linear system: (A, B, C) is called well-posed if
B, C are L'-admissible operators and F € £(L'([0, t], 0X)) for
any t > 0.

Regular linear system: A Well-posed linear system (A, B, C)
is called regular if

Range(D,,) C D(Cn)

for some (and hence for all) . € p(A), where

D(Cp) = {xeX: “T CuR(u, A)x exists in 0X},
pu—>+00
Cax = lim CuR(u,A)x, x € D(Cp).
H—>—+00
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Infinite-dimensional control systems

The Salamon-Weiss approach

Well-posed linear system: (A, B, C) is called well-posed if
B, C are L'-admissible operators and F € £(L'([0, t], 0X)) for
any t > 0.

Regular linear system: A Well-posed linear system (A, B, C)
is called regular if

Range(D,,) C D(Cn)

for some (and hence for all) . € p(A), where

D(Cp) = {xeX: “T CuR(u, A)x exists in 0X},
pu—>+00
Cax = lim CuR(u,A)x, x € D(Cp).
H—>—+00

see G. Weiss 1994.
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Regular linear systems

Assume that (A, B, C) is a regular system. Then
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Infinite-dimensional control systems

Regular linear systems

Assume that (A, B, C) is a regular system. Then
» D(Am) C D(Cp) and Cax = Tx, Vx € D(An).
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Infinite-dimensional control systems

Regular linear systems

Assume that (A, B, C) is a regular system. Then
» D(Am) C D(Cp) and Cax = T'x, Vx € D(Am).
» The operator A_{ + BCx with domain
D(A_1 + BCp) := {x € D(Cp) : (A_1 + BCp)x € X}
coincides with A.
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Infinite-dimensional control systems

Regular linear systems

Assume that (A, B, C) is a regular system. Then
» D(Am) C D(Cp) and Cax = Tx, Vx € D(An).

» The operator A_{ + BCx with domain
D(A_1+ BCp) :={x € D(Cp) : (A_1 + BCp)x € X}
coincides with A. Recall

A = Am, D(A) ={x € D(Am) : Gx =Tx}.
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Infinite-dimensional control systems

Regular linear systems

Assume that (A, B, C) is a regular system. Then
» D(Am) C D(Cp) and Cax = Tx, Vx € D(An).

» The operator A_{ + BCx with domain
D(A_1+ BCp) :={x € D(Cp) : (A_1 + BCp)x € X}
coincides with A. Recall

A = Am, D(A) ={x € D(Am) : Gx =Tx}.

See S. Hadd, R. Manzo and A. Rh. 2015.
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Main theorem
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Main theorem

Assume

(A1) T >0, D, >0, Vu large, (H1), (H2),

(A2) C =T|pais L'-admissible,

(A3) limy_100 [TDx| = O,

(A4) 3uq > s(A) s.t. sup,,,, [#DuV]| < o0, Vv € OX.
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Main theorem

Assume

(A1) T >0, D, >0, Vpu large, (H1), (H2),

(A2) C =T|pa is L'-admissible,

(A3) limys 00 [TDA]l =0,

(A4) Jur > s(A) s.t. sup,~,,, lnDuv| < oo, Vv € 0X.

Then A generates a positive Cyp-semigroup on X and
S(A) = w(A).
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Main theorem

Proof
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Main theorem

Proof

> (H1) = Bis L'-admissible.
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Proof

> (H1) = Bis L'-admissible.
> (Ad) = F e L(L'([0, 1], 0X)), Vt > 0, where Fv = [¢fv.

ABDELAZIZ RHANDI (University of Salerno) Positivity of linear systems



Proof

> (H1) = Bis L'-admissible.
> (Ad) = F e L(L'([0, 1], 0X)), Vt > 0, where Fv = [¢fv.

» Since A_1x = Anx — BGx, x € D(Anm), one has
AR(X,A)Dy = Dy — D) (WLOG s(A) < 0) and hence,
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Proof

> (H1) = Bis L"-admissible.
> (Ad) = F e L(L'([0, 1], 0X)), Vt > 0, where Fv = [¢fv.
» Since A_1x = Anx — BGx, x € D(Anm), one has
AR(M\, A)Dy = Dy — D) (WLOG s(A) < 0) and hence,
C)\R()\,A)DO =IDy—TDy, VA > S(A)
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Proof

> (H1) = Bis L"-admissible.
> (Ad) = F e L(L'([0, 1], 0X)), Vt > 0, where Fv = [¢fv.
» Since A_1x = Anx — BGx, x € D(Anm), one has
AR(M\, A)Dy = Dy — D) (WLOG s(A) < 0) and hence,
CAR(\,A)Dy = TDy — I'Dy, VA > s(A). Thus, (A3)
—> Range(Dy) C D(Ch).
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Proof

> (H1) = Bis L"-admissible.
> (Ad) = F e L(L'([0, 1], 0X)), Vt > 0, where Fv = [¢fv.
» Since A_1x = Anx — BGx, x € D(Anm), one has
AR(M\, A)Dy = Dy — D) (WLOG s(A) < 0) and hence,
CAR(\,A)Dy = TDy — I'Dy, VA > s(A). Thus, (A3)
—> Range(Dy) C D(Ch).
> (A, B, C)isregular.
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Main theorem

Proof
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Main theorem

Proof
» (A, B, C)isregular = Vu > s(A), x € D(A),
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Proof
» (A, B, C)isregular = Vu > s(A), x € D(A),
(MIX — .A)X = (,u/x — A_1 — Br)X
— (ulx — A_1)(Ix — DuM)x
= (ulx = A)(Ix = Du)x,

since x — D,I'x € D(A).
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Proof
» (A, B, C)isregular = Vu > s(A), x € D(A),
(MIX — .A)X = (,u/x — A_1 — Br)X
= (ulx — A4)(Ix — DuN)x
= (,ulx — A)(/x — D#F)x,
since x — D,I'x € D(A).
» (A3) = Fuo > s(A) s.t. [|[TDy,|| < 1.
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Proof
» (A, B, C)isregular = Vu > s(A), x € D(A),

(MIX — .A)X = (,u/x — A_1 — Br)X
= (ulx = A—1)(Ix — DuIN)x
= (,ulx — A)(/x — D#F)x,

since x — D,I'x € D(A).

» (A3) = Jup > s(A) s.t. |[TD,,|| < 1. Hence,
ITDull < ITDy, || <1, Vi = paz
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Proof

» (A, B, C)isregular = Vu > s(A), x € D(A),

(MIX — .A)X = (,u/x — A_1 — Br)X
= (ulx = A—1)(Ix — DuIN)x
= (,ulx — A)(/x — D#F)x,

since x — D,I'x € D(A).

» (A3) = Jup > s(A) s.t. |[TD,,|| < 1. Hence,

ITDL|l < |ITD,,|l < 1, ¥iu > pa. Thus,
Al A) = (k= D) AG A)

= +DZI’D "TR(u, A)

> R( 7A)7VIU’Z:U’2
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Main theorem

Proof
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Main theorem

Proof

» (H1) and R(u, A) > R(p, A) =
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Proof

» (H1) and R(u, A) > R(p, A) =
IRk, A)X|| = [[R(p, A)x[l = c(u)lIx]l;

Vx e Xy, p>max{pg, p2}-
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Proof

» (H1) and R(u, A) > R(p, A) =
IRk, A)X|| = [[R(p, A)x[l = c(u)lIx]l;

Vx e Xy, p>max{pg, p2}-
» W. Arendt 1987 — the statement.
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Application

Boltzmann equation on a finite connected graph
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Application

Boltzmann equation on a finite connected graph
Consider the PDE (X1\)

22t %, V) = vzt x, V) + qx, )zt x, V), 120, (x,v) €Q,

zi(0,x,v) = fi(x,v) > 0, (x,v) € Q,
§2i(8.1,7) = Wy SRl fIk(2)(8.0, ), t>0,

ie{1,...,N}, je{1,....M}, Q:=1[0,1] X [Vmin, Vmax],
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Application

Boltzmann equation on a finite connected graph
Consider the PDE (X1\)

22t %, V) = vzt x, V) + qx, )zt x, V), 120, (x,v) €Q,

zi(0,x,v) = fi(x,v) > 0, (x,v) € Q,
§2i(8.1,7) = Wy SRl fIk(2)(8.0, ), t>0,

ie{1,...,N}, je{1,....M}, Q:=1[0,1] X [Vmin, Vmax],

& € eV
jout . YA, it VieTr e ) g if eV
if /A

0, ifnot, 0, ifnot,
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Application

Boltzmann equation on a finite connected graph
Consider the PDE (X1\)

22t %, V) = vzt x, V) + qx, )zt x, V), 120, (x,v) €Q,

zi(0,x,v) = fi(x,v) > 0, (x,v) € Q,
§2i(8.1,7) = Wy SRl fIk(2)(8.0, ), t>0,

ie{1,...,N}, je{1,....M}, Q:=1[0,1] X [Vmin, Vmax],

8 € oV
out.— J1, qf Ve ne._ )1, it — Vi,
/. i =
0, ifnot, 0, ifnot,

0 < Vmin < Vimaxs gj € LOO(Q)
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(X1n) as Cauchy problem
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(X1n) as Cauchy problem

M
M
X:=(L'@)" lellx =3 leilluay:
j=1

N
N
oX = <L1(Vmina Vmax)> ’ ||gH8X = Z ”fiHU(Vmi"’VmaX)’
i=1

W= (W)Y, IIfllw = [Ifllx + [9xflx.

W(Q) :={geL'(Q):dxgecL'(Q)}.
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(X1n) as Cauchy problem
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Application

(X1n) as Cauchy problem

Amf = vixf + q(-, )f, D(Am) = {f eW: f(1,v) ¢ Range(J\‘,’V“t)T} .
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Application

(X1n) as Cauchy problem
Amf = vixf + q(-, )f, D(Am) = {f eW: f(1,v) ¢ Range(J\‘,’V“t)T} .

vmax
V) = [ v VIR VIOV, (v €9, F e X

Vmin
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Application

(X1n) as Cauchy problem
Amf = vixf + q(-, )f, D(Am) = {f eW: f(1,v) ¢ Range(J\‘,’V“t)T} .

vmax
V) = [ v VIR VIOV, (v €9, F e X

Vmin

Gf = 3% f(1, v), [f := 3C(JF)(0, V), V € [Vimin, Vmax], f € W,
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Application

(X1n) as Cauchy problem
Amf = vixf + q(-, )f, D(Am) = {f eW: f(1,v) ¢ Range(ﬁevuf)T} .
() = [ kv ), (V) €9, e X

Gf = 3% f(1, v), [f := 3C(JF)(0, V), V € [Vimin, Vmax], f € W,

jout (lelgut) jout (Zl?ut) Jinc — ( /nC) J= dlag(.ﬂk)
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(X1n) as Cauchy problem
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(X1n) as Cauchy problem

One can rewrite (X1N) as
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Well-posedness
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Well-posedness

One can see
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Application

Well-posedness

One can see
(Du9)j(x,v) = v Z wiigi(v

gj(o,v)—p "
(R A (x. V) = / ol NI Ly )y, Vi > max o
X
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Well-posedness

One can see
(Du9)j(x,v) = v Z wiigi(v

gj(o,v)—p "
(R A (x. V) = / ol NI Ly )y, Vi > max o
X

Main Theorem — well-posedness.
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Application

Many thanks for your attention
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