
Functions operating on several

multivariate distribution functions

Paul Ressel

Let I1, . . . , Id ⊆ R be non-degenerate intervals, I := I1 × · · · × Id,

and let f : I → R be any function. For s ∈ I, h ∈ Rd
+ such that also

s + h ∈ I , put

(Ehf )(s) := f (s + h)

and ∆h := Eh − E0, i.e. (∆hf )(s) := f (s + h) − f (s). Since

{Eh |h ∈ Rd
+} is commutative (where de�ned), so is also {∆h |h ∈

Rd
+}. In particular, with e1, . . . , ed denoting standard unit vectors

in Rd, ∆h1e1, . . . ,∆hded commute. As usual, ∆0
hf := f (also for

h = 0, but clearly ∆0f = 0). For n = (n1, . . . , nd) ∈ Nd
0 and

h = (h1, . . . , hd) ∈ Rd
+ we put

∆n
h := ∆n1

h1e1
∆n2
h2e2

. . .∆
nd
hded

,

so that (∆n
hf ) (s) is de�ned for s, s +

∑d
i=1 nihiei ∈ I .

De�nition. f : I → R is n -↑ (read "n-increasing") i� (∆p
hf )(s) ≥

0 ∀s ∈ I, h ∈ Rd
+,p ∈ Nd

0, 0 ̸= p ≤ n, such that sj + pjhj ∈ Ij ∀j ∈
[d].
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A specially important case is n = 1d; being 1d - ↑ is the "crucial"

property of d.f.s. More precisely: f : I → R+ is the d.f. of a (non-

negative) measure µ, i.e. f (s) = µ
(
[−∞, s] ∩ Ī

)
∀s ∈ I , if and only

if f is 1d -↑ and right-continuous; c.f. [9], Theorem 7.

Let us for a moment consider the case d = 1. Then I ⊆ R,n = n ∈
N, we assume n ≥ 2, and a famous old result of Boas and Widder

([1], Lemma 1) shows that a continuous function f : I → R is n - ↑
(i.e. ∆j

hf ≥ 0 ∀j ∈ [n], ∀h > 0) i�(
∆h1∆h2 . . .∆hjf

)
(s) ≥ 0

∀j ∈ [n],∀h1, . . . , hj > 0 such that s, s+h1+· · ·+hj ∈ I . For n = 2,

f is 2 - ↑ i� it is increasing and convex (and BTW automatically

continuous on I \ {sup I}).

The following de�nition now seems to be natural:

De�nition. Let I1, . . . , Id ⊆ R be non-degenerate intervals, I =

I1 × · · · × Id, f : I → R, and k ∈ N. Then f is called k-increasing

("k -↑") i� ∀j ∈ [k], ∀h(1), . . . , h(j) ∈ Rd
+, ∀s ∈ I such that s+h(1)+

· · · + h(j) ∈ I (
∆h(1) . . .∆h(j)f

)
(s) ≥ 0.

(We do not assume f to be continuous.)

We mentioned already that a univariate f is 2 -↑ i� it is increasing

and convex. But also multivariate 2-↑ functions are well-known: they
are called ultramodular, mostly ultramodular aggregation functions,

the latter meaning they are also increasing, and de�ned as functions

f : [0, 1]d → [0, 1] with f (0d) = 0 and f (1d) = 1. Some simple

properties of k -↑ functions are shown �rst.
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Lemma 1. Let f : [0, 1]d → R be 2 -↑. Then

(i) f is continuous i� f is continuous in 1d.

(ii) f is right-continuous and on [0, 1[d continuous.

Our �rst theorem will state some equivalent conditions for f to

be k - ↑. An essential ingredient will be positive linear (or a�ne)

mappings: a linear function ψ : Rm → Rd is called positive i�

ψ(Rm
+) ⊆ Rd

+; and an a�ne φ : Rm → Rd is positive i� its "lin-

ear part" φ− φ(0) is.

Theorem 1. Let I ⊆ Rd be a non-degenerate interval, f : I →
R, k, d ∈ N. Then there are equivalent:

(i) f is k -↑

(ii) f is n -↑ ∀n ∈ Nd
0 with 0 < |n| ≤ k

(iii) ∀m ∈ N, ∀ non-degenerate interval J ⊆ Rm, ∀ positive a�ne

φ : Rm → Rd such that φ(J) ⊆ I, also f ◦ φ is k -↑

(iv) ∀m, J , φ as before, and ∀n ∈ Nm
0 with 0 < |n| ≤ k the function

f ◦ φ is n -↑

(v) ∀m, J , φ as before, and ∀n ∈ {0, 1}m with 0 < |n| ≤ k the

function f ◦ φ is n -↑.

Corollary 1. Let I ⊆ Rd and B ⊆ R be non-degenerate intervals.

If g : I → B and f : B → R are both k -↑, then so is f ◦ g.

Theorem 2. Let I ⊆ Rd1 and J ⊆ Rd2 be non-degenerate intervals,

f : I → R and g : J → R, both non-negative and k - ↑. Then also

f ⊗ g is k -↑ on I × J , and in case I = J the product f · g is k -↑,
too.
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Proof. We �rst apply (ii) of Theorem 1. For 0 ̸= (m,n) ∈ Nd1
0 ×Nd2

0 ,

(x, y) ∈ I × J , h(1) ∈ Rd1
+ , h

(2) ∈ Rd2
+ we have[

∆m,n

(h(1),h(2))
(f ⊗ g)

]
(x, y) =

(
∆m
h(1)
f
)
(x) ·

(
∆n
h(2)
g
)
(y)

and for |(m,n)| = |m| + |n| ≤ k both factors on the RHS are non-

negative. Since m = 0 or n = 0 is allowed, only (m,n) ̸= 0 being

required, we need in fact f ≥ 0 and g ≥ 0.

For I = J (with d1 = d2 =: d) let φ : Rd → R2d be given by

φ(x) := (x, x), a positive linear map. Then φ(I) ⊆ I × I , and by

Theorem 1 (iii) (f ⊗ g) ◦ φ = f · g is also k -↑.

We see that any monomial f (x) =
∏d

i=1 x
ni
i (ni ∈ N) is k - ↑ on Rd

+

for each k ∈ N. If ci ∈]0,∞[ then
∏d

i=1 x
ci
i is k -↑ on Rd

+ at least for

ci ≥ k − 1, i = 1, . . . , d.

Examples 1. (a) For a > 0 the function f (x, y) := (xy− a)+ is 2 -↑
on R2

+, since t 7→ (t − a)+ is 2 -↑ on R+, by Corollary 1. In [11] on

page 261 it was shown that f is not (2, 1) - ↑ (resp. (1, 2) - ↑), but
it is of course (1, 1) - ↑, and so a bivariate d.f.. The tensor product

g(x, y) := (x − a)+ · (y − b)+ is (2, 2) - ↑ ∀a, b > 0, hence certainly

2 -↑, but not 3 -↑ since x 7→ (x− a)+ is not.

Similarly (xyz−a)2+ is 3 -↑ on R3
+, for a > 0, and of course (xy−a)2+

is 3 -↑ on R2
+. We'll see later on that xy + xz + yz − xyz is 2 -↑ on

[0, 1]3, but not 3 -↑.

(b) Consider fn(t) := tn/(1+t) for t ≥ 0. It was shown in [6], Lemma

2.4, that fn is n -↑ (it is not (n+1) -↑). So for any non-negative n -↑
function g on any interval in any dimension, gn/(1 + g) is n -↑, too.
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Approximation by Bernstein polynomials

The proof of our main result relies heavily on these special polyno-

mials, since they inherit the monotonicity properties of interest. To

de�ne them we introduce for r ∈ N, i ∈ {0, 1, . . . , r}

bi,r(t) :=

(
r

i

)
ti(1− t)r−i, t ∈ R

and for i = (i1, . . . , id) ∈ {0, 1, . . . , r}d

Bi,r := bi1,r ⊗ · · · ⊗ bid,r.

For any f : [0, 1]d → R the associated Bernstein polynomials f (1), f (2), . . .

are de�ned by

f (r) :=
∑

0d≤i≤rd

f

(
i

r

)
·Bi,r.

It is perhaps not so well-known, that for each continuity point x of

f we have

f (r)(x) → f (x), r → ∞.

In the following the "upper right boundary" of [0, 1]d will play a role.

Let for α ⊆ [d]

Tα := {x ∈ [0, 1]d |xi < 1 ⇔ i ∈ α}.

Then [0, 1]d = ∪· α⊆[d]Tα, T∅ = {1d} and T[d] = [0, 1[d. The union⋃
α⫋[d] Tα is called the upper right boundary of [0, 1]d.

Theorem 3. Let f : [0, 1]d → R have the property that each restric-

tion f |Tα for ∅ ≠ α ⊆ [d] is continuous. Then

lim
r→∞

f (r)(x) = f (x) ∀x ∈ [0, 1]d,

i.e. the Bernstein polynomials converge pointwise to f everywhere.
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For a function f of d variables we'll use a short notation for its partial

derivatives (if they exist). Let p ∈ Nd
0 \ {0}, then

fp :=
∂|p|f

∂xp11 . . . ∂x
pd
d

,

complemented by f0d := f .

Lemma 2. Let f : [0, 1]d → R be arbitrary, 0 ̸= p ∈ Nd
0.

(i) If ∆p
hf ≥ 0 ∀h ∈ Rd

+ then
(
f (r)
)
p
≥ 0 ∀r ∈ N.

(ii) If f is in addition C∞, then fp ≥ 0.

Theorem 4. Let f : [0, 1]d → R be a C∞-function, n ∈ Nd, k ∈ N.

Then

(i) f is n -↑ ⇔ fp ≥ 0 ∀0 ̸= p ≤ n,p ∈ Nd
0

(ii) f is k -↑ ⇔ fp ≥ 0 ∀0 < |p| ≤ k, p ∈ Nd
0.

Proof. (i) "⇒": follows from Lemma 2.

"⇐": Let for m ∈ N σm : Rm → R be the sum function, σn :=

σn1 × σn2 × · · · × σnd. By [12], Theorem 5 we have

f is n -↑ ⇔ f ◦ σn is 1|n| -↑ on J :=

d∏
i=1

[
0,

1

ni

]ni
.

The chain rule gives

(f ◦ σn)1|n| = fn ◦ σn ≥ 0,

so that for x, x + h ∈ J, h ≥ 0 by Fubini's theorem(
∆

1|n|
h (f ◦ σn)

)
(x) =

∫
[x,x+h]

(f ◦ σn)1|n| dλ
|n| ≥ 0.
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Examples 2. (a) f (x, y) := x2y−ax2y2+ y2 on [0, 1]2, 0 < a ≤ 1
2.

Since fp ≥ 0 for p ∈ {(1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}, f is 2 -↑;
but f(1,2)(x, y) = −4ax shows that f is neither 3-↑ nor (2, 2)-↑.

(b) f : R2
+ → R is de�ned by f (0, 0) := 0 and else

f (x, y) :=
xy(x2 − y2)

x2 + y2
+ 13 · (x2 + y2) + 3xy

See [8], page 321, where it is given as an example of an ultra-

modular function on R2
+ (which doesn't automatically include

that it is increasing). However, all partial derivatives fp with

0 < |p| ≤ 2 are ≥ 0, hence f is 2 -↑ (and not 3 -↑, BTW).

(c) With the abbreviation xα :=
∏

i∈α xi for α ⊆ [d], x∅ := 1, a

polynomial of the form

f (x) =
∑
α⊆[d]

cαx
α

is called multilinear. f is a�ne in each variable, therefore fp =

0 whenever pi > 1 for some i. Hence f is k - ↑ i� fp ≥ 0

∀p ≤ 1d with 0 < |p| ≤ k, and n - ↑ i� f is (n ∧ 1d) - ↑. The

example (d = 3)

f (x) := x1x2 + x1x3 + x2x3 − x1x2x3

is thus 2 - ↑ on [0, 1]3, but not 3 - ↑, since f(1,1,1) = −1. And f

is (n, n, 0) -↑ ∀n.

Theorem 5. Let f : [0, 1]d → R, 2d ≤ n ∈ Nd
0, 2 ≤ k ∈ N. The

Bernstein polynomials of f are denoted f (1), f (2), . . ..

(i) If f is n -↑ then so is each f (r), and f (r) → f pointwise.

(ii) If f is k -↑ then so is each f (r), and f (r) → f pointwise.
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The main results

The proof of Theorem 6 below makes use of a far reaching generaliza-

tion of the usual multivariate chain rule. This admirable result was

shown by Constantine and Savits ([3], Theorem 2.1), and we present

it here, keeping (almost) their notation.

Let d,m ∈ N, let g1, . . . , gm be de�ned and C∞ in a neighborhood

of x(0) ∈ Rd (real-valued), put g := (g1, . . . , gm), let f be de�ned and

C∞ in a neighborhood of y(0) := g(x(0)) ∈ Rm.

For µ, ν ∈ Nd
0 de�ne

(i) |µ| < |ν|
or

µ ≺ ν :⇔ (ii) |µ| = |ν| and µ1 < ν1

or

(iii) |µ| = |ν|, µ1 = ν1, . . . , µk = νk, µk+1 < νk+1,∃k ∈ [d− 1]

(implying µ ̸= ν).

Examples:

(a) (1, 3, 0, 4, 1) ≺ (1, 3, 1, 1, 3), here k = 2

(b) ed ≺ ed−1 ≺ · · · ≺ e1

(c) For d = 1 we have µ ≺ ν ⇔ µ < ν.
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We need some abbreviations:

Dν
x :=

∂|ν|

∂xν11 . . . ∂x
νd
d

for |ν| > 0, D0
x := Id

xν :=
d∏
i=1

xνii , ν! :=
d∏
i=1

νi!, |ν| :=
d∑
i=1

νi

g(i)µ := (Dµ
xgi) (x

(0)), gµ :=
(
g(1)µ , . . . , g(m)

µ

)
fλ :=

(
Dλ
yf
)
(y(0))

h := f ◦ g, hν := (Dν
xh) (x

(0))

and, for ν ∈ Nd
0, λ ∈ Nm

0 , s ∈ N, s ≤ |ν|

Ps(ν, λ) :=

(k1, . . . , ks; l1, . . . , ls) | |kj| > 0, 0 ≺ l1 ≺ · · · ≺ ls,

s∑
j=1

kj = λ,

s∑
j=1

|kj|lj = ν


where (of course) kj ∈ Nm

0 and lj ∈ Nd
0. (For some values of s these

sets may be empty.)

The announced formula by Constantine and Savits then reads

hν =
∑

1≤|λ|≤|ν|

fλ ·
|ν|∑
s=1

∑
Ps(ν,λ)

ν! ·
s∏
j=1

(glj)
kj

(kj!) · (lj!)|kj |
(∗∗)

This formula reduces for d = 1 to the classical one of Faa di Bruno

from 1855, see [3].

One more result is needed, allowing general d.f.s to be "replaced" by

C∞ ones:

Lemma 3. (i) Let (Ω,A, ρ) be a �nite measure space, ∅ ≠ B ⊆ A
a �nite collection of measurable sets. Then there is another

�nite measure ρ0 on A with �nite support such that ρ0|B = ρ|B.
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(ii) Let F on Rd be the d.f. of some �nite measure, ∅ ≠ B ⊆ Rd

a �nite subset. Then there is a C∞ d.f. F̃ on Rd such that

F̃ |B = F |B.

Theorem 6. Let f : [0, 1]m → R+ be d-↑ (d ≥ 2) and let g1, . . . , gm :

Rd → [0, 1] be d.f.s of (subprobability) measures on Rd. Then also

f ◦ (g1, . . . , gm) is a d.f. on Rd.

Proof. Put g := (g1, . . . , gm) : Rd → [0, 1]m, h := f ◦ g. By Lemma

1 also h is right-continuous, and it remains to show that h is 1d -↑,
the crucial property of a d.f. on Rd.

A consequence of Theorem 5 is that we may assume f to be C∞, and

we �rst let also g1, . . . , gm be C∞ functions.

Now to the general case: in order to see that h = f ◦ g is 1d -↑, we
have to show for given x ∈ Rd and ξ ∈ Rd

+(
∆

1d
ξ h
)
(x) = h(x + ξ)∓ · · · + (−1)dh(x) ≥ 0,

(as well as the analogue for some variables �xed, which is shown

similarly).

In Lemma 3 we choose the �nite set{
x +

∑
i∈α

ξiei |α ⊆ [d]

}
=: B

and �nd C∞ d.f.s g̃1, . . . , g̃m such that g̃i|B = gi|B for each i ≤ m.

Then

0 ≤
(
∆

1d
ξ (f ◦ g̃)

)
(x) =

(
∆

1d
ξ h
)
(x)

thus �nishing the proof.
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Remark 4. If for a given f the conclusion of Theorem 6 holds for

all d.f.s g1, . . . , gm, then f must be d -↑. This follows from Theorem

1(v), since each component of an a�ne positive function φ is of course

1d -↑.

Examples 3. (a) We saw before that f (x) := x1x2+x1x3+x2x3−
x1x2x3 is 2 - ↑ on [0, 1]3. Hence for arbitrary bivariate d.f.s

g1, g2, g3 also g1g2 + g1g3 + g2g3 − g1g2g3 is a d.f., while f itself

is not a 3-dimensional d.f..

(b) Put fa(t) := (t − a)+/(1 − a) for t ∈ [0, 1] and a ∈ [0, 1[,

complemented by f1 := 1{1}. Then {fnα | a ∈ [0, 1]} are the

"essential" extreme points for (n+1) -↑ functions on [0, 1], and

{fn1a1 ⊗ · · · ⊗ f
nd
ad | a ∈ [0, 1]d} correspondingly for (n + 1d) - ↑

functions on [0, 1]d, cf. [11]. In the bivariate case, fa ⊗ fb is

(2, 2) -↑, in particular 2 -↑, so that fc◦ (fa⊗fb) is 2 -↑ on [0, 1]2.

For any bivariate d.f.s g1, g2 we see that[
(g1 − a)+ · (g2 − b)+
(1− a) · (1− b)

− c

]
+

, (a, b, c) ∈ [0, 1[3

is again a bivariate d.f..

Another important property of k - ↑ functions is their "universal"

compatibility and composebility within their class, made precise in

Theorem 7. Letm, d, k ∈ N, J ⊆ Rm and I ⊆ Rd be non-degenerate

intervals, g = (g1, . . . , gm) : I → J , f : J → R, each gi and f being

k -↑. Then also f ◦ g is k -↑.

Proof. The case k = 1 being obvious, let's assume k ≥ 2. Since

any non-degenerate interval is an increasing union of compact non-

degenerate subintervals, we may choose I = [0, 1]d and J = [0, 1]m.
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By Theorem 1 we have to show that h := f ◦g is n -↑ for any n ∈ Nd
0

such that 0 < |n| ≤ k. Since the variables i with ni = 0 do not

enter, we may and do assume n ∈ Nd, in particular k ≥ d. Then

each gi is n -↑, or equivalently, by [12] Theorem 5, gi ◦ σn is 1|n| -↑
on
∏

i≤d

[
0, 1

ni

]ni
. Theorem 6 above now implies that also

f ◦ (g1 ◦ σn, . . . , gm ◦ σn) = h ◦ σn

is 1|n| -↑, which in turn means that h is n -↑.

An open problem

While n - ↑ functions on [0, 1]d, non-negative and normalized, are a

Bauer simplex, with "essentially" {fa1⊗· · ·⊗fad | a ∈ [0, 1]d} as their
extreme points (see Examples 3(b) above), not much so far is known

for k -↑ functions. Let's consider d = k = 2 and

K := {f : [0, 1]2 → [0, 1] | f is 2 -↑ and f (1, 1) = 1}.

K is obviously convex and compact, and also stable under (pointwise)

multiplication. It is easy to see that each fc ◦ (fa⊗ fb) is an extreme

point of K - but that's it, for the time being.
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