Functions operating on several multivariate distribution functions

Paul Ressel

Let $I_{1}, \ldots, I_{d} \subseteq \mathbb{R}$ be non-degenerate intervals, $I:=I_{1} \times \cdots \times I_{d}$, and let $f: I \rightarrow \mathbb{R}$ be any function. For $s \in I, h \in \mathbb{R}_{+}^{d}$ such that also $s+h \in I$, put

$$
\left(E_{h} f\right)(s):=f(s+h)
$$

and $\Delta_{h}:=E_{h}-E_{0}$, i.e. $\left(\Delta_{h} f\right)(s):=f(s+h)-f(s)$. Since $\left\{E_{h} \mid h \in \mathbb{R}_{+}^{d}\right\}$ is commutative (where defined), so is also $\left\{\Delta_{h} \mid h \in\right.$ $\left.\mathbb{R}_{+}^{d}\right\}$. In particular, with e_{1}, \ldots, e_{d} denoting standard unit vectors in $\mathbb{R}^{d}, \Delta_{h_{1 e_{1}}}, \ldots, \Delta_{h_{d} e_{d}}$ commute. As usual, $\Delta_{h}^{0} f:=f$ (also for $h=0$, but clearly $\Delta_{0} f=0$). For $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ and $h=\left(h_{1}, \ldots, h_{d}\right) \in \mathbb{R}_{+}^{d}$ we put

$$
\Delta_{h}^{\mathrm{n}}:=\Delta_{h_{1} e_{1}}^{n_{1}} \Delta_{h_{2} e_{2}}^{n_{2}} \ldots \Delta_{h_{d} e_{d}}^{n_{d}},
$$

so that $\left(\Delta_{h}^{\mathbf{n}} f\right)(s)$ is defined for $s, s+\sum_{i=1}^{d} n_{i} h_{i} e_{i} \in I$.
Definition. $f: I \rightarrow \mathbb{R}$ is $\mathbf{n}-\uparrow\left(\right.$ read "n-increasing") iff $\left(\Delta_{h}^{\mathrm{p}} f\right)(s) \geq$ $0 \forall s \in I, h \in \mathbb{R}_{+}^{d}, \mathbf{p} \in \mathbb{N}_{0}^{d}, 0 \neq \mathbf{p} \leq \mathbf{n}$, such that $s_{j}+p_{j} h_{j} \in I_{j} \forall j \in$ $[d]$.

A specially important case is $\mathbf{n}=\mathbf{1}_{d}$; being $\mathbf{1}_{d}-\uparrow$ is the "crucial" property of d.f.s. More precisely: $f: I \rightarrow \mathbb{R}_{+}$is the d.f. of a (nonnegative) measure μ, i.e. $f(s)=\mu([-\infty, s] \cap \bar{I}) \forall s \in I$, if and only if f is $\mathbf{1}_{d}-\uparrow$ and right-continuous; c.f. [9], Theorem 7 .

Let us for a moment consider the case $d=1$. Then $I \subseteq \mathbb{R}, \mathbf{n}=n \in$ \mathbb{N}, we assume $n \geq 2$, and a famous old result of Boas and Widder ([1], Lemma 1) shows that a continuous function $f: I \rightarrow \mathbb{R}$ is $n-\uparrow$ (i.e. $\Delta_{h}^{j} f \geq 0 \forall j \in[n], \forall h>0$) iff

$$
\left(\Delta_{h_{1}} \Delta_{h_{2}} \ldots \Delta_{h_{j}} f\right)(s) \geq 0
$$

$\forall j \in[n], \forall h_{1}, \ldots, h_{j}>0$ such that $s, s+h_{1}+\cdots+h_{j} \in I$. For $n=2$, f is $2-\uparrow$ iff it is increasing and convex (and BTW automatically continuous on $I \backslash\{\sup I\}$).

The following definition now seems to be natural:
Definition. Let $I_{1}, \ldots, I_{d} \subseteq \mathbb{R}$ be non-degenerate intervals, $I=$ $I_{1} \times \cdots \times I_{d}, f: I \rightarrow \mathbb{R}$, and $k \in \mathbb{N}$. Then f is called k-increasing (" k - \uparrow ") iff $\forall j \in[k], \forall h^{(1)}, \ldots, h^{(j)} \in \mathbb{R}_{+}^{d}, \forall s \in I$ such that $s+h^{(1)}+$ $\cdots+h^{(j)} \in I$

$$
\left(\Delta_{h^{(1)}} \ldots \Delta_{h^{(j)}} f\right)(s) \geq 0 .
$$

(We do not assume f to be continuous.)

We mentioned already that a univariate f is $2-\uparrow$ iff it is increasing and convex. But also multivariate $2-\uparrow$ functions are well-known: they are called ultramodular, mostly ultramodular aggregation functions, the latter meaning they are also increasing, and defined as functions $f:[0,1]^{d} \rightarrow[0,1]$ with $f\left(\mathbf{0}_{d}\right)=0$ and $f\left(\mathbf{1}_{d}\right)=1$. Some simple properties of $k-\uparrow$ functions are shown first.

Lemma 1. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be $2-\uparrow$. Then
(i) f is continuous iff f is continuous in $\mathbf{1}_{d}$.
(ii) f is right-continuous and on $\left[0,1^{d}\right.$ continuous.

Our first theorem will state some equivalent conditions for f to be $k-\uparrow$. An essential ingredient will be positive linear (or affine) mappings: a linear function $\psi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is called positive iff $\psi\left(\mathbb{R}_{+}^{m}\right) \subseteq \mathbb{R}_{+}^{d} ;$ and an affine $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is positive iff its "linear part" $\varphi-\varphi(0)$ is.

Theorem 1. Let $I \subseteq \mathbb{R}^{d}$ be a non-degenerate interval, $f: I \rightarrow$ $\mathbb{R}, k, d \in \mathbb{N}$. Then there are equivalent:
(i) f is $k-\uparrow$
(ii) f is $\mathbf{n}-\uparrow \quad \forall \mathbf{n} \in \mathbb{N}_{0}^{d}$ with $0<|\mathbf{n}| \leq k$
(iii) $\forall m \in \mathbb{N}, \forall$ non-degenerate interval $J \subseteq \mathbb{R}^{m}, \forall$ positive affine $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is $k-\uparrow$
(iv) $\forall m, J, \varphi$ as before, and $\forall \mathbf{n} \in \mathbb{N}_{0}^{m}$ with $0<|\mathbf{n}| \leq k$ the function $f \circ \varphi$ is $\mathbf{n}-\uparrow$
(v) $\forall m$, J, φ as before, and $\forall \mathbf{n} \in\{0,1\}^{m}$ with $0<|\mathbf{n}| \leq k$ the function $f \circ \varphi$ is $\mathbf{n}-\uparrow$.

Corollary 1. Let $I \subseteq \mathbb{R}^{d}$ and $B \subseteq \mathbb{R}$ be non-degenerate intervals. If $g: I \rightarrow B$ and $f: B \rightarrow \mathbb{R}$ are both $k-\uparrow$, then so is $f \circ g$.

Theorem 2. Let $I \subseteq \mathbb{R}^{d_{1}}$ and $J \subseteq \mathbb{R}^{d_{2}}$ be non-degenerate intervals, $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$, both non-negative and $k-\uparrow$. Then also $f \otimes g$ is $k-\uparrow$ on $I \times J$, and in case $I=J$ the product $f \cdot g$ is $k-\uparrow$, too.

Proof. We first apply (ii) of Theorem 1. For $0 \neq(\mathbf{m}, \mathbf{n}) \in \mathbb{N}_{0}^{d_{1}} \times \mathbb{N}_{0}^{d_{2}}$, $(x, y) \in I \times J, h^{(1)} \in \mathbb{R}_{+}^{d_{1}}, h^{(2)} \in \mathbb{R}_{+}^{d_{2}}$ we have

$$
\left[\Delta_{\left(h^{1(1)}, h^{(2)}\right)}^{\mathbf{m}, \mathbf{n}}(f \otimes g)\right](x, y)=\left(\Delta_{h^{(1)}}^{\mathbf{m}} f\right)(x) \cdot\left(\Delta_{h^{(2)}}^{\mathbf{n}} g\right)(y)
$$

and for $|(\mathbf{m}, \mathbf{n})|=|\mathbf{m}|+|\mathbf{n}| \leq k$ both factors on the RHS are nonnegative. Since $\mathbf{m}=0$ or $\mathbf{n}=0$ is allowed, only $(\mathbf{m}, \mathbf{n}) \neq 0$ being required, we need in fact $f \geq 0$ and $g \geq 0$.

For $I=J$ (with $d_{1}=d_{2}=: d$) let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2 d}$ be given by $\varphi(x):=(x, x)$, a positive linear map. Then $\varphi(I) \subseteq I \times I$, and by Theorem 1 (iii) $(f \otimes g) \circ \varphi=f \cdot g$ is also $k-\uparrow$.

We see that any monomial $f(x)=\prod_{i=1}^{d} x_{i}^{n_{i}}\left(n_{i} \in \mathbb{N}\right)$ is $k-\uparrow$ on \mathbb{R}_{+}^{d} for each $k \in \mathbb{N}$. If $\left.c_{i} \in\right] 0, \infty\left[\right.$ then $\prod_{i=1}^{d} x_{i}^{c_{i}}$ is $k-\uparrow$ on \mathbb{R}_{+}^{d} at least for $c_{i} \geq k-1, i=1, \ldots, d$.

Examples 1. (a) For $a>0$ the function $f(x, y):=(x y-a)_{+}$is $2-\uparrow$ on \mathbb{R}_{+}^{2}, since $t \mapsto(t-a)_{+}$is $2-\uparrow$ on \mathbb{R}_{+}, by Corollary 1. In [11] on page 261 it was shown that f is not $(2,1)-\uparrow$ (resp. $(1,2)-\uparrow$), but it is of course $(1,1)-\uparrow$, and so a bivariate d.f.. The tensor product $g(x, y):=(x-a)_{+} \cdot(y-b)_{+}$is $(2,2)-\uparrow \forall a, b>0$, hence certainly $2-\uparrow$, but not $3-\uparrow$ since $x \mapsto(x-a)_{+}$is not.

Similarly $(x y z-a)_{+}^{2}$ is $3-\uparrow$ on \mathbb{R}_{+}^{3}, for $a>0$, and of course $(x y-a)_{+}^{2}$ is $3-\uparrow$ on \mathbb{R}_{+}^{2}. We'll see later on that $x y+x z+y z-x y z$ is $2-\uparrow$ on $[0,1]^{3}$, but not $3-\uparrow$.
(b) Consider $f_{n}(t):=t^{n} /(1+t)$ for $t \geq 0$. It was shown in [6], Lemma 2.4, that f_{n} is $n-\uparrow$ (it is not $(n+1)-\uparrow$). So for any non-negative $n-\uparrow$ function g on any interval in any dimension, $g^{n} /(1+g)$ is $n-\uparrow$, too.

Approximation by Bernstein polynomials

The proof of our main result relies heavily on these special polynomials, since they inherit the monotonicity properties of interest. To define them we introduce for $r \in \mathbb{N}, i \in\{0,1, \ldots, r\}$

$$
b_{i, r}(t):=\binom{r}{i} t^{i}(1-t)^{r-i}, \quad t \in \mathbb{R}
$$

and for $\mathbf{i}=\left(i_{1}, \ldots, i_{d}\right) \in\{0,1, \ldots, r\}^{d}$

$$
B_{\mathbf{i}, r}:=b_{i_{1}, r} \otimes \cdots \otimes b_{i_{d}, r} .
$$

For any $f:[0,1]^{d} \rightarrow \mathbb{R}$ the associated Bernstein polynomials $f^{(1)}, f^{(2)}, \ldots$ are defined by

$$
f^{(r)}:=\sum_{0_{d} \leq \mathbf{i} \leq \mathbf{r}_{d}} f\left(\frac{\mathbf{i}}{r}\right) \cdot B_{\mathbf{i}, r} .
$$

It is perhaps not so well-known, that for each continuity point x of f we have

$$
f^{(r)}(x) \rightarrow f(x), \quad r \rightarrow \infty .
$$

In the following the "upper right boundary" of $[0,1]^{d}$ will play a role. Let for $\alpha \subseteq[d]$

$$
T_{\alpha}:=\left\{x \in[0,1]^{d} \mid x_{i}<1 \Leftrightarrow i \in \alpha\right\} .
$$

Then $[0,1]^{d}=\biguplus_{\alpha \subseteq[d]} T_{\alpha}, T_{\emptyset}=\left\{\mathbf{1}_{d}\right\}$ and $T_{[d]}=\left[0,1\left[{ }^{d}\right.\right.$. The union $\bigcup_{\alpha \subsetneq[d]} T_{\alpha}$ is called the upper right boundary of $[0,1]^{d}$.
Theorem 3. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ have the property that each restriction $f \mid T_{\alpha}$ for $\emptyset \neq \alpha \subseteq[d]$ is continuous. Then

$$
\lim _{r \rightarrow \infty} f^{(r)}(x)=f(x) \quad \forall x \in[0,1]^{d},
$$

i.e. the Bernstein polynomials converge pointwise to f everywhere.

For a function f of d variables we'll use a short notation for its partial derivatives (if they exist). Let $\mathbf{p} \in \mathbb{N}_{0}^{d} \backslash\{0\}$, then

$$
f_{\mathbf{p}}:=\frac{\partial^{|\mathbf{p}|} f}{\partial x_{1}^{p_{1}} \ldots \partial x_{d}^{p_{d}}},
$$

complemented by $f_{0_{d}}:=f$.
Lemma 2. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be arbitrary, $0 \neq \mathbf{p} \in \mathbb{N}_{0}^{d}$.
(i) If $\Delta_{h}^{\mathrm{p}} f \geq 0 \forall h \in \mathbb{R}_{+}^{d}$ then $\left(f^{(r)}\right)_{\mathrm{p}} \geq 0 \forall r \in \mathbb{N}$.
(ii) If f is in addition C^{∞}, then $f_{\mathrm{p}} \geq 0$.

Theorem 4. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be a C^{∞}-function, $\mathbf{n} \in \mathbb{N}^{d}, k \in \mathbb{N}$. Then
(i) f is $\mathbf{n}-\uparrow \Leftrightarrow f_{\mathbf{p}} \geq 0 \forall 0 \neq \mathbf{p} \leq \mathbf{n}, \mathbf{p} \in \mathbb{N}_{0}^{d}$
(ii) f is $k-\uparrow \Leftrightarrow f_{\mathbf{p}} \geq 0 \forall 0<|\mathbf{p}| \leq k, \mathbf{p} \in \mathbb{N}_{0}^{d}$.

Proof. (i) " \Rightarrow ": follows from Lemma 2.
$" \Leftarrow$ ": Let for $m \in \mathbb{N} \sigma_{m}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the sum function, $\sigma_{\mathrm{n}}:=$ $\sigma_{n_{1}} \times \sigma_{n_{2}} \times \cdots \times \sigma_{n_{d}}$. By [12], Theorem 5 we have

$$
f \text { is } \mathbf{n}-\uparrow \Leftrightarrow f \circ \sigma_{\mathbf{n}} \text { is } \mathbf{1}_{|\mathbf{n}|}-\uparrow \text { on } J:=\prod_{i=1}^{d}\left[0, \frac{1}{n_{i}}\right]^{n_{i}} .
$$

The chain rule gives

$$
\left(f \circ \sigma_{\mathbf{n}}\right)_{1_{|\mathbf{n}|}}=f_{\mathbf{n}} \circ \sigma_{\mathbf{n}} \geq 0,
$$

so that for $x, x+h \in J, h \geq 0$ by Fubini's theorem

$$
\left(\Delta_{h}^{1_{[\mathbf{n} \mid}}\left(f \circ \sigma_{\mathbf{n}}\right)\right)(x)=\int_{[x, x+h]}\left(f \circ \sigma_{\mathbf{n}}\right)_{\mathbf{1}_{[\mathbf{n} \mid}} d \boldsymbol{\lambda}^{|\mathbf{n}|} \geq 0 .
$$

Examples 2. (a) $f(x, y):=x^{2} y-a x^{2} y^{2}+y^{2}$ on $[0,1]^{2}, 0<a \leq \frac{1}{2}$. Since $f_{\mathbf{p}} \geq 0$ for $\mathbf{p} \in\{(1,0),(0,1),(1,1),(2,0),(0,2)\}, f$ is $2-\uparrow$; but $f_{(1,2)}(x, y)=-4 a x$ shows that f is neither $3-\uparrow$ nor $(2,2)-\uparrow$.
(b) $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ is defined by $f(0,0):=0$ and else

$$
f(x, y):=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}+13 \cdot\left(x^{2}+y^{2}\right)+3 x y
$$

See [8], page 321, where it is given as an example of an ultramodular function on \mathbb{R}_{+}^{2} (which doesn't automatically include that it is increasing). However, all partial derivatives $f_{\mathbf{p}}$ with $0<|\mathbf{p}| \leq 2$ are ≥ 0, hence f is $2-\uparrow$ (and not $3-\uparrow$, BTW).
(c) With the abbreviation $x^{\alpha}:=\prod_{i \in \alpha} x_{i}$ for $\alpha \subseteq[d], x^{\emptyset}:=1$, a polynomial of the form

$$
f(x)=\sum_{\alpha \subseteq[d]} c_{\alpha} x^{\alpha}
$$

is called multilinear. f is affine in each variable, therefore $f_{\mathbf{p}}=$ 0 whenever $p_{i}>1$ for some i. Hence f is $k-\uparrow$ iff $f_{\mathbf{p}} \geq 0$ $\forall \mathbf{p} \leq \mathbf{1}_{d}$ with $0<|\mathbf{p}| \leq k$, and $\mathbf{n}-\uparrow$ iff f is $\left(\mathbf{n} \wedge \mathbf{1}_{d}\right)-\uparrow$. The example $(d=3)$

$$
f(x):=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{2} x_{3}
$$

is thus $2-\uparrow$ on $[0,1]^{3}$, but not $3-\uparrow$, since $f_{(1,1,1)}=-1$. And f is $(n, n, 0)-\uparrow \forall n$.

Theorem 5. Let $f:[0,1]^{d} \rightarrow \mathbb{R}, \mathbf{2}_{d} \leq \mathbf{n} \in \mathbb{N}_{0}^{d}, 2 \leq k \in \mathbb{N}$. The Bernstein polynomials of f are denoted $f^{(1)}, f^{(2)}, \ldots$.
(i) If f is $\mathbf{n}-\uparrow$ then so is each $f^{(r)}$, and $f^{(r)} \rightarrow f$ pointwise.
(ii) If f is $k-\uparrow$ then so is each $f^{(r)}$, and $f^{(r)} \rightarrow f$ pointwise.

The main results

The proof of Theorem 6 below makes use of a far reaching generalization of the usual multivariate chain rule. This admirable result was shown by Constantine and Savits ([3], Theorem 2.1), and we present it here, keeping (almost) their notation.

Let $d, m \in \mathbb{N}$, let g_{1}, \ldots, g_{m} be defined and C^{∞} in a neighborhood of $x^{(0)} \in \mathbb{R}^{d}$ (real-valued), put $g:=\left(g_{1}, \ldots, g_{m}\right)$, let f be defined and C^{∞} in a neighborhood of $y^{(0)}:=g\left(x^{(0)}\right) \in \mathbb{R}^{m}$.

For $\mu, \nu \in \mathbb{N}_{0}^{d}$ define
(i) $|\mu|<|\nu|$

Or
$\mu \prec \nu \quad: \Leftrightarrow \quad$ (ii) $|\mu|=|\nu|$ and $\mu_{1}<\nu_{1}$
or
(iii) $|\mu|=|\nu|, \mu_{1}=\nu_{1}, \ldots, \mu_{k}=\nu_{k}, \mu_{k+1}<\nu_{k+1}, \exists k \in[d-1]$
(implying $\mu \neq \nu$).
Examples:
(a) $(1,3,0,4,1) \prec(1,3,1,1,3)$, here $k=2$
(b) $e_{d} \prec e_{d-1} \prec \cdots \prec e_{1}$
(c) For $d=1$ we have $\mu \prec \nu \Leftrightarrow \mu<\nu$.

We need some abbreviations:

$$
\begin{aligned}
D_{x}^{\nu} & :=\frac{\partial^{|\nu|}}{\partial x_{1}^{\nu_{1}} \ldots \partial x_{d}^{\nu_{d}}} \text { for }|\nu|>0, \quad D_{x}^{0}:=\mathrm{Id} \\
x^{\nu} & :=\prod_{i=1}^{d} x_{i}^{\nu_{i}}, \quad \nu!:=\prod_{i=1}^{d} \nu_{i}!, \quad|\nu|:=\sum_{i=1}^{d} \nu_{i} \\
g_{\mu}^{(i)} & :=\left(D_{x}^{\mu} g_{i}\right)\left(x^{(0)}\right), \quad g_{\mu}:=\left(g_{\mu}^{(1)}, \ldots, g_{\mu}^{(m)}\right) \\
f_{\lambda} & :=\left(D_{y}^{\lambda} f\right)\left(y^{(0)}\right) \\
h & :=f \circ g, \quad h_{\nu}:=\left(D_{x}^{\nu} h\right)\left(x^{(0)}\right)
\end{aligned}
$$

and, for $\nu \in \mathbb{N}_{0}^{d}, \lambda \in \mathbb{N}_{0}^{m}, s \in \mathbb{N}, s \leq|\nu|$
$P_{s}(\nu, \lambda):=\left\{\left(k_{1}, \ldots, k_{s} ; l_{1}, \ldots, l_{s}\right)| | k_{j} \mid>0,0 \prec l_{1} \prec \cdots \prec l_{s}, \sum_{j=1}^{s} k_{j}=\lambda, \sum_{j=}^{s}\right.$
where (of course) $k_{j} \in \mathbb{N}_{0}^{m}$ and $l_{j} \in \mathbb{N}_{0}^{d}$. (For some values of s these sets may be empty.)

The announced formula by Constantine and Savits then reads

$$
\begin{equation*}
h_{\nu}=\sum_{1 \leq|\lambda| \leq|\nu|} f_{\lambda} \cdot \sum_{s=1}^{|\nu|} \sum_{P_{s}(\nu, \lambda)} \nu!\cdot \prod_{j=1}^{s} \frac{\left(g_{l_{j}}\right)^{k_{j}}}{\left(k_{j}!\right) \cdot\left(l_{j}!\right)^{\left|k_{j}\right|}} \tag{**}
\end{equation*}
$$

This formula reduces for $d=1$ to the classical one of Faa di Bruno from 1855, see [3].

One more result is needed, allowing general d.f.s to be "replaced" by C^{∞} ones:

Lemma 3. (i) Let $(\Omega, \mathcal{A}, \rho)$ be a finite measure space, $\emptyset \neq \mathcal{B} \subseteq \mathcal{A}$ a finite collection of measurable sets. Then there is another finite measure ρ_{0} on \mathcal{A} with finite support such that $\rho_{0}|\mathcal{B}=\rho| \mathcal{B}$.
(ii) Let F on \mathbb{R}^{d} be the d.f. of some finite measure, $\emptyset \neq B \subseteq \mathbb{R}^{d}$ a finite subset. Then there is a C^{∞} d.f. \tilde{F} on \mathbb{R}^{d} such that $\tilde{F}|B=F| B$.

Theorem 6. Let $f:[0,1]^{m} \rightarrow \mathbb{R}_{+}$be $d-\uparrow(d \geq 2)$ and let g_{1}, \ldots, g_{m} : $\mathbb{R}^{d} \rightarrow[0,1]$ be d.f.s of (subprobability) measures on \mathbb{R}^{d}. Then also $f \circ\left(g_{1}, \ldots, g_{m}\right)$ is a d.f. on \mathbb{R}^{d}.

Proof. Put $g:=\left(g_{1}, \ldots, g_{m}\right): \mathbb{R}^{d} \rightarrow[0,1]^{m}, h:=f \circ g$. By Lemma 1 also h is right-continuous, and it remains to show that h is $\mathbf{1}_{d}-\uparrow$, the crucial property of a d.f. on \mathbb{R}^{d}.

A consequence of Theorem 5 is that we may assume f to be C^{∞}, and we first let also g_{1}, \ldots, g_{m} be C^{∞} functions.

Now to the general case: in order to see that $h=f \circ g$ is $\mathbf{1}_{d}-\uparrow$, we have to show for given $x \in \mathbb{R}^{d}$ and $\xi \in \mathbb{R}_{+}^{d}$

$$
\left(\Delta_{\xi}^{1_{d}} h\right)(x)=h(x+\xi) \mp \cdots+(-1)^{d} h(x) \geq 0,
$$

(as well as the analogue for some variables fixed, which is shown similarly).

In Lemma 3 we choose the finite set

$$
\left\{x+\sum_{i \in \alpha} \xi_{i} e_{i} \mid \alpha \subseteq[d]\right\}=: B
$$

and find C^{∞} d.f.s $\tilde{g}_{1}, \ldots, \tilde{g}_{m}$ such that $\tilde{g}_{i}\left|B=g_{i}\right| B$ for each $i \leq m$. Then

$$
0 \leq\left(\Delta_{\xi}^{1_{d}}(f \circ \tilde{g})\right)(x)=\left(\Delta_{\xi}^{1_{d}} h\right)(x)
$$

thus finishing the proof.

Remark 4. If for a given f the conclusion of Theorem 6 holds for all d.f.s g_{1}, \ldots, g_{m}, then f must be $d-\uparrow$. This follows from Theorem $1(\mathrm{v})$, since each component of an affine positive function φ is of course $\mathbf{1}_{d}-\uparrow$.

Examples 3. (a) We saw before that $f(x):=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}-$ $x_{1} x_{2} x_{3}$ is $2-\uparrow$ on $[0,1]^{3}$. Hence for arbitrary bivariate d.f.s g_{1}, g_{2}, g_{3} also $g_{1} g_{2}+g_{1} g_{3}+g_{2} g_{3}-g_{1} g_{2} g_{3}$ is a d.f., while f itself is not a 3 -dimensional d.f..
(b) Put $f_{a}(t):=(t-a)_{+} /(1-a)$ for $t \in[0,1]$ and $a \in[0,1[$, complemented by $f_{1}:=1_{\{1\}}$. Then $\left\{f_{\alpha}^{n} \mid a \in[0,1]\right\}$ are the "essential" extreme points for $(n+1)-\uparrow$ functions on $[0,1]$, and $\left\{f_{a_{1}}^{n_{1}} \otimes \cdots \otimes f_{a_{d}}^{n_{d}} \mid a \in[0,1]^{d}\right\}$ correspondingly for $\left(\mathbf{n}+\mathbf{1}_{d}\right)-\uparrow$ functions on $[0,1]^{d}$, cf. [11]. In the bivariate case, $f_{a} \otimes f_{b}$ is $(2,2)-\uparrow$, in particular $2-\uparrow$, so that $f_{c} \circ\left(f_{a} \otimes f_{b}\right)$ is $2-\uparrow$ on $[0,1]^{2}$. For any bivariate d.f.s g_{1}, g_{2} we see that

$$
\left[\frac{\left(g_{1}-a\right)_{+} \cdot\left(g_{2}-b\right)_{+}}{(1-a) \cdot(1-b)}-c\right]_{+}, \quad(a, b, c) \in\left[0,1\left[^{3}\right.\right.
$$

is again a bivariate d.f..

Another important property of $k-\uparrow$ functions is their "universal" compatibility and composebility within their class, made precise in

Theorem 7. Let $m, d, k \in \mathbb{N}, J \subseteq \mathbb{R}^{m}$ and $I \subseteq \mathbb{R}^{d}$ be non-degenerate intervals, $g=\left(g_{1}, \ldots, g_{m}\right): I \rightarrow J, f: J \rightarrow \mathbb{R}$, each g_{i} and f being $k-\uparrow$. Then also $f \circ g$ is $k-\uparrow$.

Proof. The case $k=1$ being obvious, let's assume $k \geq 2$. Since any non-degenerate interval is an increasing union of compact nondegenerate subintervals, we may choose $I=[0,1]^{d}$ and $J=[0,1]^{m}$.

By Theorem 1 we have to show that $h:=f \circ g$ is $\mathbf{n}-\uparrow$ for any $\mathbf{n} \in \mathbb{N}_{0}^{d}$ such that $0<|\mathbf{n}| \leq k$. Since the variables i with $n_{i}=0$ do not enter, we may and do assume $\mathbf{n} \in \mathbb{N}^{d}$, in particular $k \geq d$. Then each g_{i} is $\mathbf{n}-\uparrow$, or equivalently, by [12] Theorem 5, $g_{i} \circ \sigma_{\mathbf{n}}$ is $\mathbf{1}_{|\mathbf{n}|}-\uparrow$ on $\prod_{i \leq d}\left[0, \frac{1}{n_{i}}\right]^{n_{i}}$. Theorem 6 above now implies that also

$$
f \circ\left(g_{1} \circ \sigma_{\mathbf{n}}, \ldots, g_{m} \circ \sigma_{\mathbf{n}}\right)=h \circ \sigma_{\mathbf{n}}
$$

is $\mathbf{1}_{|\mathbf{n}|}-\uparrow$, which in turn means that h is $\mathbf{n}-\uparrow$.

An open problem

While $\mathbf{n}-\uparrow$ functions on $[0,1]^{d}$, non-negative and normalized, are a Bauer simplex, with "essentially" $\left\{f_{a_{1}} \otimes \cdots \otimes f_{a_{d}} \mid a \in[0,1]^{d}\right\}$ as their extreme points (see Examples 3(b) above), not much so far is known for $k-\uparrow$ functions. Let's consider $d=k=2$ and

$$
K:=\left\{f:[0,1]^{2} \rightarrow[0,1] \mid f \text { is } 2-\uparrow \text { and } f(1,1)=1\right\} .
$$

K is obviously convex and compact, and also stable under (pointwise) multiplication. It is easy to see that each $f_{c} \circ\left(f_{a} \otimes f_{b}\right)$ is an extreme point of K - but that's it, for the time being.

