Functions operating on several

multivariate distribution functions

Paul Ressel

Let I1,...,I; € R be non-degenerate intervals, I = I; X --- X I,
and let f: I — R be any function. For s € I, h € R? such that also
s+ h eI, put

(Enf)(s) = f(s+h)
and Ay, = E, — Fy, ie. (Apf)(s) = f(s+ h) — f(s). Since
{E;|h € R} is commutative (where defined), so is also {A |k €
Ri}. In particular, with eq,...,e; denoting standard unit vectors
in R?, Apjers -+ -3 Apge, commute. As usual, AVf = f (also for
h = 0, but clearly Agf = 0). For n = (ng,...,ny) € NZ and
h=(hi,...,hs) € R we put
A=A AT AT

hie1"hges * * * —hgey’
so that (A} f) (s) is defined for s, s+ Zle n;he; € 1.
Definition. f : I — R is n -1 (read "n-increasing") iff (AP f)(s) >

0Vs € I,h € RY,p € NI 0# p <mn, such that s; + p;jh; € [;Vj €
d].



A specially important case is n = 1,4; being 1, -7 is the "crucial”
property of d.f.s. More precisely: f : I — R, is the d.f. of a (non-
negative) measure p, Le. f(s) = p([—o0,s]NTI) Vs € I, if and only
if fis 14-7 and right-continuous; c.f. [9], Theorem 7.

Let us for a moment consider the case d =1. Then I CR,n=n €
N, we assume n > 2, and a famous old result of Boas and Widder
([1], Lemma 1) shows that a continuous function f: 1 — Risn-1
(i.e. AJf >0V € [n], Vh > 0) iff

(AhlAhg RN Ahjf> (S) Z 0

Vj € [n|,Yhy, ..., h; > Osuchthat s,s+h;+---+h; € I. Forn =2,
f is 2 -1 iff it is increasing and convex (and BTW automatically

continuous on I \ {supI}).

The following definition now seems to be natural:

Definition. Let [;,...,I; € R be non-degenerate intervals, I =
L x---x1g f: I — R and kK € N. Then f is called k-increasing
("k-1") iff V5 € [k], VAW, ... AU € RY ) Vs € T such that s+ A1 +
e+ R0 er

Ay - Ay f) (s) 2 0.

(We do not assume f to be continuous.)

We mentioned already that a univariate f is 2-1 iff it is increasing
and convex. But also multivariate 2-1 functions are well-known: they
are called wltramodular, mostly ultramodular aggregation functions,
the latter meaning they are also increasing, and defined as functions
f:[0,1]* — [0,1] with f(04) = 0 and f(1;) = 1. Some simple

properties of k-1 functions are shown first.
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Lemma 1. Let f:[0,1]¢ — R be 2-1. Then

(1) f is continuous iff f is continuous in 14.

(ii) f is right-continuous and on [0,1[* continuous.

Our first theorem will state some equivalent conditions for f to
be k- 1. An essential ingredient will be positive linear (or affine)
mappings: a linear function ¢ : R™ — R? is called positive iff
Y(R™) € RZ; and an affine ¢ : R™ — R? is positive iff its "lin-
ear part" ¢ — ¢(0) is.

Theorem 1. Let I C R? be a non-degenerate interval, f : I —
R, k,d € N. Then there are equivalent:

(i) fis k-
(ii) fisn-7 Vn e NI with 0 < |n| <k
(ii1) Ym € N, ¥V non-degenerate interval J C R™, ¥V positive affine
@ R™ — R such that o(J) C I, also f oy is k-1
(iv) Ym, J, @ as before, andVn € Ni* with 0 < |n| < k the function
fopisn-7T
(v) Ym, J, ¢ as before, and Vn € {0,1}" with 0 < |n| < k the
function f oy isn -7,
Corollary 1. Let I C R? and B C R be non-degenerate intervals.

Ifg: I — B and f: B — R are both k -1, then so is f og.

Theorem 2. Let I C R and J C R% be non-degenerate intervals,
f:I —=Randg:J— R, both non-negative and k -1. Then also
f®gisk-1onlxJ, and in case I = J the product f - g is k -1,

too.



Proof. We first apply (ii) of Theorem 1. For 0 # (m,n) € Ngl X NgQ,
(z,y) € I x J, bV e RY, h® € R? we have

AT ey ©0)] (2,9) = (AT £) (1) (Afwg) (0

and for |(m,n)| = |m| + |n| < k both factors on the RHS are non-
negative. Since m = 0 or n = 0 is allowed, only (m,n) # 0 being

required, we need in fact f > 0 and g > 0.

For I = J (with dy = dy = d) let ¢ : R? — R?? be given by
o(x) = (x,z), a positive linear map. Then ¢(I) C I x I, and by
Theorem 1 (iii) (f ® g)op = f - g is also k-71. O

We see that any monomial f(z) =[],z (n; € N)is k-1 on R?

for each k € N. If ¢; €]0, oo[ then Hle 25 is k-1 on RY at least for
¢ >k—-11=1,...,d

Examples 1. (a) For a > 0 the function f(z,y) = (xy —a); is 2-1
on R%, since t — (t —a)y is 2-1 on Ry, by Corollary 1. In [11] on
page 261 it was shown that f is not (2,1) -1 (resp. (1,2)-1), but
it is of course (1,1) -1, and so a bivariate d.f.. The tensor product
glx,y) = (x —a)y - (y—b) is (2,2) -1 Va,b > 0, hence certainly
2 -1, but not 3-1 since z +— (x — a), is not.

Similarly (zyz—a)? is 3-1 on R?, for @ > 0, and of course (zy —a)?

is 3-17 on R2. We'll see later on that zy + zz + yz — 2yz is 2-1 on
[0, 1]*, but not 3 -1

(b) Consider f,(t) =t"/(1+t) for t > 0. It was shown in [6], Lemma
2.4, that f,, is n-1 (it is not (n+1)-1). So for any non-negative n-1

function g on any interval in any dimension, ¢"/(1 + g) is n-1, too.



Approximation by Bernstein polynomials

The proof of our main result relies heavily on these special polyno-
mials, since they inherit the monotonicity properties of interest. To
define them we introduce for r € N, i € {0,1,...,r}

(4

bi,(t) = <r> t1—t)" teR

and for i = (iy,...,iq) € {0717---7T}d

Bi,r = bil,r SRR bidﬂ“'

For any f : [0, 1]Y = R the associated Bernstein polynomials f1), f2) ..

are defined by

fU) = Z f (;) + Bi .
0

d<i<ry
It is perhaps not so well-known, that for each continuity point x of

f we have
flz) = f(x), r— .

In the following the "upper right boundary" of [0, 1]¢ will play a role.
Let for a C [d]

T, ={zxec0,1]|z;<1aical.

Then [0,1]" = U,cTn, Ty = {14} and Ty = [0,1[%. The union
Uag[d] T, is called the upper right boundary of [0, 1]%.

Theorem 3. Let f :[0,1]% — R have the property that each restric-

tion f|T, for ) # « C [d] is continuous. Then
lim f"(z) = f(z) Vael0,1],
r—00

i.e. the Bernstein polynomials converge pointwise to f everywhere.
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For a function f of d variables we’ll use a short notation for its partial
derivatives (if they exist). Let p € N\ {0}, then

olpl
fo= 0

— D1 Pa>
Oxy'...0x,

complemented by fo, = f.
Lemma 2. Let f: [0,1] — R be arbitrary, 0 # p € Ng.
(i) If AV f > 0Vh € RY then (f(’”>)p >0 Vr € N.

(ii) If f is in addition C*°, then fp > 0.

Theorem 4. Let f:[0,1]? — R be a C™-function, n € N?, k € N,
Then

(i) fisn-t< fo>0V0#p<npecN]

(ii) fisk-T & f,>0V0<|p| <k, peNL

Proof. (i) "=": follows from Lemma 2.

"<": Let for m € N o, : R — R be the sum function, o, =

Opy X Opy X -+ X 0y, By [12], Theorem 5 we have
d BE
fisn-T& fooyis 1y -1 onJ::H [O,—] :
o LT

The chain rule gives

(f © 0n>1|n| — fn O 0p = 07

so that for z,x + h € J, h > 0 by Fubini’s theorem
L)

(Ah (fo Un)> () = /[xerh](f o Jn)1|n| A > 0.



Examples 2. (a) f(z,y) = 2°y —az*y*+y*on [0,1]*, 0 < a <
9_

Since f, > 0 for p € {(1,0),(0,1),(1,1),(2,0),(0,2)}, fis

1
5-
T
but f9)(z,y) = —4ax shows that f is neither 3-1 nor (2,2)-1.

(b) f:R2 — R is defined by f(0,0) := 0 and else

flz,y) = +13- (2% +y°) + 3zy

See 8], page 321, where it is given as an example of an ultra-
modular function on R? (which doesn’t automatically include
that it is increasing). However, all partial derivatives f, with
0 < |p| <2are >0, hence fis 2-7 (and not 3-17, BTW).

With the abbreviation z% = []

polynomial of the form

f(x) = Z cax”

aCld]

z; for a C [d), 2% =1, a

1€EQ

is called multilinear. f is affine in each variable, therefore f, =
0 whenever p; > 1 for some ¢. Hence fis k-1 if f, > 0
Vp < 1y with 0 < |p| <k, and n-1iff fis (nA1y)-1. The
example (d = 3)

f(x) = x129 + 2123 + ToT3 — T1T2X3

is thus 2-1 on [0, 1%, but not 3-7, since f1;5) = —1. And f
is (n,n,0)-T Vn.

Theorem 5. Let f : [0,1]Y = R, 2, <n € N¢ 2 <k e N. The
Bernstein polynomials of f are denoted fV, f&) ...

(i) If f is n -7 then so is each fT), and f) — f pointwise.

(i) If f is k-1 then so is each f7), and f) — f pointwise.
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The main results

The proof of Theorem 6 below makes use of a far reaching generaliza-
tion of the usual multivariate chain rule. This admirable result was
shown by Constantine and Savits (|3], Theorem 2.1), and we present

it here, keeping (almost) their notation.

Let d,m € N, let ¢1,...,gn be defined and C* in a neighborhood
of 210 € R? (real-valued), put ¢ == (g1, ..., gm), let f be defined and
C™ in a neighborhood of y*) == ¢(z() € R™.

For u, v € N{ define

) Jul < v
or

p<v &= (i) |p| =yl and g < 1y
or

(iil) |p| = |v|, 1 = va, ooy g = Vi, pier1 < Vir1, 3k € [d — 1]
(implying p # v).

Examples:

(a) (1,3,0,4,1) < (1,3,1,1,3), here k = 2
(b) €l R €1—1 =X+ <€
(c) Ford=1we have uy < v < pu < v.



We need some abbreviations:

D 0" f 0. D' =1d
= U > 5 r =
. (%'fl. .0z or |/

g = (Dézfgz-) (2™, g, = (Ql(})’ o ,glgm>>

fr= (D, f) ")
h=fog, h,:=(Dh)(z")

and, for v € NI A e NI s € N, s < ||

P, \) = (k.o ke lyy o L) Ky > 0,0 <1 < - <l5,2k—)\,§
g j:

where (of course) k; € N and [; € N{. (For some values of s these

sets may be empty.)

The announced formula by Constantine and Savits then reads

V|

= > hep D v H & ()

1<|\<|| s=1 Py(v,\)  j= 1

This formula reduces for d = 1 to the classical one of Faa di Bruno
from 1855, see [3].

One more result is needed, allowing general d.f.s to be "replaced" by

(C° ones:

Lemma 3. (i) Let (Q, A, p) be a finite measure space, ) # B C A
a finite collection of measurable sets. Then there is another

finite measure py on A with finite support such that po|B = p|B.
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(ii) Let F' on R? be the d.f. of some finite measure, ) # B C R?
a finite subset. Then there is a C™ d.f F on R? such that
F|B = F|B.

Theorem 6. Let f : [0, 1" — R, bed-1 (d >2) andlet g1,. .., Gm :
R? — [0,1] be d.f.s of (subprobability) measures on RY. Then also

fo(glv”-agm) is a d.f. on RY.

Proof. Put g == (g1,...,9m) : R = [0,1]™, h = f o g. By Lemma
1 also h is right-continuous, and it remains to show that h is 1;-7,

the crucial property of a d.f. on R%

A consequence of Theorem 5 is that we may assume f to be C*°, and

we first let also g1, ..., g, be C* functions.

Now to the general case: in order to see that h = fogis 1;-T, we

have to show for given € R? and € € Ri
(Agdh) (@) = h(z+ &) F -+ (—1)'h(z) > 0,

(as well as the analogue for some variables fixed, which is shown

similarly).

In Lemma 3 we choose the finite set
{ZU—FZ&BZ"O& C [d]} — B
1EQ
and find C*® d.fs §i,...,Gm such that §;|B = g;| B for each i < m.
Then

0< (AF(f09)) (x) = (AFR) (2)

thus finishing the proof. ]
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Remark 4. If for a given f the conclusion of Theorem 6 holds for
all d.f.s g1,..., gm, then f must be d-1. This follows from Theorem

1(v), since each component of an affine positive function ¢ is of course

1,-1.

Examples 3. (a) We saw before that f(x) = 129+ 1123+ 2223 —
T17973 is 2- 1 on [0,1]°. Hence for arbitrary bivariate d.f.s

g1, 92, g3 also g1go + g193 + 9293 — 919293 is a d.f., while f itself
is not a 3-dimensional d.f..

(b) Put fu(t) = (t —a)y/(1 —a) for t € [0,1] and a € [0, 1],
complemented by f; = 1gy. Then {f}|a € [0,1]} are the
"essential" extreme points for (n+1)-1 functions on [0, 1], and
{fi1 @@ falla € [0,1]9} correspondingly for (n+ 14) -1
functions on [0,1]¢, cf. [11]. In the bivariate case, f, ® fj is
(2,2)-1, in particular 2-1, so that f.o(f,® f3) is 2-1 on [0, 1)%.
For any bivariate d.f.s g1, go we see that

(91 —a)s - (92— b)+
(1—a)-(1-0)

is again a bivariate d.f..

—c| , (a,b,c)€0,1]
+

Another important property of k- 1 functions is their "universal”

compatibility and composebility within their class, made precise in

Theorem 7. Let m,d, k € N, J C R™ and I C R? be non-degenerate
intervals, g = (g1,---,9m) - L — J, f:J =R, each g; and f being
k -1. Then also fogqg isk-T.

Proof. The case k = 1 being obvious, let’s assume £ > 2. Since
any non-degenerate interval is an increasing union of compact non-

degenerate subintervals, we may choose I = [0,1]¢ and J = [0, 1]™.
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By Theorem 1 we have to show that h .= fogis n-1 for any n € N4
such that 0 < |n| < k. Since the variables ¢ with n; = 0 do not
enter, we may and do assume n € N¢ in particular & > d. Then
each g; is n -1, or equivalently, by [12] Theorem 5, g; o oy is Ly -1

on [,y [O, n%] " Theorem 6 above now implies that also

fO(gloan,...,gmoan):hoan

i8 1, -1, which in turn means that / is n-1. ]

An open problem

While n -1 functions on [0, 1]¢, non-negative and normalized, are a
Bauer simplex, with "essentially" {f,, @ ® f,, | a € [0,1]%} as their
extreme points (see Examples 3(b) above), not much so far is known
for k-1 functions. Let’s consider d = k = 2 and

K ={f:[0,1> = [0,1]]| fis 2-1 and f(1,1) = 1}.

K is obviously convex and compact, and also stable under (pointwise)
multiplication. It is easy to see that each f.o (f, ® f;) is an extreme
point of K - but that’s it, for the time being.
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