Functions operating on several multivariate distribution functions

Paul Ressel

Let $I_1, \ldots, I_d \subseteq \mathbb{R}$ be non-degenerate intervals, $I \coloneqq I_1 \times \cdots \times I_d$, and let $f: I \to \mathbb{R}$ be any function. For $s \in I, h \in \mathbb{R}^d_+$ such that also $s + h \in I$, put

$$(E_h f)(s) \coloneqq f(s+h)$$

and $\Delta_h \coloneqq E_h - E_0$, i.e. $(\Delta_h f)(s) \coloneqq f(s+h) - f(s)$. Since $\{E_h \mid h \in \mathbb{R}^d_+\}$ is commutative (where defined), so is also $\{\Delta_h \mid h \in \mathbb{R}^d_+\}$. In particular, with e_1, \ldots, e_d denoting standard unit vectors in \mathbb{R}^d , $\Delta_{h_1 e_1}, \ldots, \Delta_{h_d e_d}$ commute. As usual, $\Delta_h^0 f \coloneqq f$ (also for h = 0, but clearly $\Delta_0 f = 0$). For $\mathbf{n} = (n_1, \ldots, n_d) \in \mathbb{N}^d_0$ and $h = (h_1, \ldots, h_d) \in \mathbb{R}^d_+$ we put

$$\Delta_h^{\mathbf{n}} \coloneqq \Delta_{h_1 e_1}^{n_1} \Delta_{h_2 e_2}^{n_2} \dots \Delta_{h_d e_d}^{n_d},$$

so that $(\Delta_h^{\mathbf{n}} f)(s)$ is defined for $s, s + \sum_{i=1}^d n_i h_i e_i \in I$.

Definition. $f: I \to \mathbb{R}$ is $\mathbf{n} \to \uparrow$ (read " \mathbf{n} -increasing") iff $(\Delta_h^{\mathbf{p}} f)(s) \ge 0 \forall s \in I, h \in \mathbb{R}^d_+, \mathbf{p} \in \mathbb{N}^d_0, 0 \neq \mathbf{p} \le \mathbf{n}$, such that $s_j + p_j h_j \in I_j \forall j \in [d]$.

A specially important case is $\mathbf{n} = \mathbf{1}_d$; being $\mathbf{1}_d \cdot \uparrow$ is the "crucial" property of d.f.s. More precisely: $f: I \to \mathbb{R}_+$ is the d.f. of a (non-negative) measure μ , i.e. $f(s) = \mu \left([-\infty, s] \cap \overline{I} \right) \forall s \in I$, if and only if f is $\mathbf{1}_d \cdot \uparrow$ and right-continuous; c.f. [9], Theorem 7.

Let us for a moment consider the case d = 1. Then $I \subseteq \mathbb{R}$, $\mathbf{n} = n \in \mathbb{N}$, we assume $n \geq 2$, and a famous old result of Boas and Widder ([1], Lemma 1) shows that a continuous function $f : I \to \mathbb{R}$ is $n \to (i.e. \Delta_h^j f \geq 0 \forall j \in [n], \forall h > 0)$ iff

$$\left(\Delta_{h_1}\Delta_{h_2}\dots\Delta_{h_j}f\right)(s)\geq 0$$

 $\forall j \in [n], \forall h_1, \ldots, h_j > 0$ such that $s, s+h_1+\cdots+h_j \in I$. For n = 2, f is 2 - \uparrow iff it is increasing and convex (and BTW automatically continuous on $I \setminus \{\sup I\}$).

The following definition now seems to be natural:

Definition. Let $I_1, \ldots, I_d \subseteq \mathbb{R}$ be non-degenerate intervals, $I = I_1 \times \cdots \times I_d$, $f: I \to \mathbb{R}$, and $k \in \mathbb{N}$. Then f is called *k*-increasing $("k-\uparrow")$ iff $\forall j \in [k], \forall h^{(1)}, \ldots, h^{(j)} \in \mathbb{R}^d_+, \forall s \in I$ such that $s+h^{(1)}+\cdots+h^{(j)} \in I$

 $\left(\Delta_{h^{(1)}}\dots\Delta_{h^{(j)}}f\right)(s)\geq 0.$

(We do not assume f to be continuous.)

We mentioned already that a univariate f is 2- \uparrow iff it is increasing and convex. But also multivariate 2- \uparrow functions are well-known: they are called *ultramodular*, mostly ultramodular aggregation functions, the latter meaning they are also increasing, and defined as functions $f : [0,1]^d \rightarrow [0,1]$ with $f(\mathbf{0}_d) = 0$ and $f(\mathbf{1}_d) = 1$. Some simple properties of $k - \uparrow$ functions are shown first. Lemma 1. Let $f : [0,1]^d \to \mathbb{R}$ be 2 - \uparrow . Then

- (i) f is continuous iff f is continuous in $\mathbf{1}_d$.
- (ii) f is right-continuous and on $[0, 1]^d$ continuous.

Our first theorem will state some equivalent conditions for f to be $k \cdot \uparrow$. An essential ingredient will be positive linear (or affine) mappings: a linear function $\psi : \mathbb{R}^m \to \mathbb{R}^d$ is called *positive* iff $\psi(\mathbb{R}^m_+) \subseteq \mathbb{R}^d_+$; and an affine $\varphi : \mathbb{R}^m \to \mathbb{R}^d$ is positive iff its "linear part" $\varphi - \varphi(0)$ is.

Theorem 1. Let $I \subseteq \mathbb{R}^d$ be a non-degenerate interval, $f : I \rightarrow \mathbb{R}, k, d \in \mathbb{N}$. Then there are equivalent: (i) f is $k \uparrow$

(ii)
$$f$$
 is $\mathbf{n} \to \forall \mathbf{n} \in \mathbb{N}_0^d$ with $0 < |\mathbf{n}| \le k$

- (iii) $\forall m \in \mathbb{N}, \forall \text{ non-degenerate interval } J \subseteq \mathbb{R}^m, \forall \text{ positive affine} \varphi : \mathbb{R}^m \to \mathbb{R}^d \text{ such that } \varphi(J) \subseteq I, \text{ also } f \circ \varphi \text{ is } k \text{ -} \uparrow$
- (iv) $\forall m, J, \varphi$ as before, and $\forall \mathbf{n} \in \mathbb{N}_0^m$ with $0 < |\mathbf{n}| \le k$ the function $f \circ \varphi$ is $\mathbf{n} \cdot \uparrow$
- (v) $\forall m, J, \varphi$ as before, and $\forall \mathbf{n} \in \{0,1\}^m$ with $0 < |\mathbf{n}| \le k$ the function $f \circ \varphi$ is $\mathbf{n} \cdot \uparrow$.

Corollary 1. Let $I \subseteq \mathbb{R}^d$ and $B \subseteq \mathbb{R}$ be non-degenerate intervals. If $g: I \to B$ and $f: B \to \mathbb{R}$ are both $k \to \uparrow$, then so is $f \circ g$.

Theorem 2. Let $I \subseteq \mathbb{R}^{d_1}$ and $J \subseteq \mathbb{R}^{d_2}$ be non-degenerate intervals, $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, both non-negative and $k \cdot \uparrow$. Then also $f \otimes g$ is $k \cdot \uparrow$ on $I \times J$, and in case I = J the product $f \cdot g$ is $k \cdot \uparrow$, too. *Proof.* We first apply (ii) of Theorem 1. For $0 \neq (\mathbf{m}, \mathbf{n}) \in \mathbb{N}_0^{d_1} \times \mathbb{N}_0^{d_2}$, $(x, y) \in I \times J, h^{(1)} \in \mathbb{R}_+^{d_1}, h^{(2)} \in \mathbb{R}_+^{d_2}$ we have

$$\left[\Delta_{(h^{(1)},h^{(2)})}^{\mathbf{m},\mathbf{n}}(f\otimes g)\right](x,y) = \left(\Delta_{h^{(1)}}^{\mathbf{m}}f\right)(x)\cdot\left(\Delta_{h^{(2)}}^{\mathbf{n}}g\right)(y)$$

and for $|(\mathbf{m}, \mathbf{n})| = |\mathbf{m}| + |\mathbf{n}| \le k$ both factors on the RHS are nonnegative. Since $\mathbf{m} = 0$ or $\mathbf{n} = 0$ is allowed, only $(\mathbf{m}, \mathbf{n}) \ne 0$ being required, we need in fact $f \ge 0$ and $g \ge 0$.

For I = J (with $d_1 = d_2 \rightleftharpoons d$) let $\varphi : \mathbb{R}^d \to \mathbb{R}^{2d}$ be given by $\varphi(x) \coloneqq (x, x)$, a positive linear map. Then $\varphi(I) \subseteq I \times I$, and by Theorem 1 (iii) $(f \otimes g) \circ \varphi = f \cdot g$ is also $k \cdot \uparrow$.

We see that any monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k \to \uparrow$ on \mathbb{R}^d_+ for each $k \in \mathbb{N}$. If $c_i \in]0, \infty[$ then $\prod_{i=1}^{d} x_i^{c_i}$ is $k \to \uparrow$ on \mathbb{R}^d_+ at least for $c_i \geq k-1, i = 1, \ldots, d.$

Examples 1. (a) For a > 0 the function $f(x, y) \coloneqq (xy - a)_+$ is $2 \uparrow \uparrow$ on \mathbb{R}^2_+ , since $t \mapsto (t - a)_+$ is $2 \uparrow \uparrow$ on \mathbb{R}_+ , by Corollary 1. In [11] on page 261 it was shown that f is not $(2, 1) \uparrow (\text{resp. } (1, 2) \uparrow)$, but it is of course $(1, 1) \uparrow \uparrow$, and so a bivariate d.f.. The tensor product $g(x, y) \coloneqq (x - a)_+ \cdot (y - b)_+$ is $(2, 2) \uparrow \forall a, b > 0$, hence certainly $2 \uparrow \uparrow$, but not $3 \uparrow \uparrow$ since $x \mapsto (x - a)_+$ is not.

Similarly $(xyz-a)^2_+$ is $3-\uparrow$ on \mathbb{R}^3_+ , for a > 0, and of course $(xy-a)^2_+$ is $3-\uparrow$ on \mathbb{R}^2_+ . We'll see later on that xy + xz + yz - xyz is $2-\uparrow$ on $[0,1]^3$, but not $3-\uparrow$.

(b) Consider $f_n(t) \coloneqq t^n/(1+t)$ for $t \ge 0$. It was shown in [6], Lemma 2.4, that f_n is $n \uparrow ($ it is not $(n+1) \uparrow)$. So for any non-negative $n \uparrow$ function g on any interval in any dimension, $g^n/(1+g)$ is $n \uparrow \uparrow$, too.

Approximation by Bernstein polynomials

The proof of our main result relies heavily on these special polynomials, since they inherit the monotonicity properties of interest. To define them we introduce for $r \in \mathbb{N}$, $i \in \{0, 1, \ldots, r\}$

$$b_{i,r}(t) \coloneqq \begin{pmatrix} r \\ i \end{pmatrix} t^i (1-t)^{r-i}, \quad t \in \mathbb{R}$$

and for $\mathbf{i} = (i_1, \dots, i_d) \in \{0, 1, \dots, r\}^d$

$$B_{\mathbf{i},r} \coloneqq b_{i_1,r} \otimes \cdots \otimes b_{i_d,r}.$$

For any $f: [0,1]^d \to \mathbb{R}$ the associated Bernstein polynomials $f^{(1)}, f^{(2)}, \ldots$ are defined by

$$f^{(r)} \coloneqq \sum_{\mathbf{0}_d \leq \mathbf{i} \leq \mathbf{r}_d} f\left(\frac{\mathbf{i}}{r}\right) \cdot B_{\mathbf{i},r}.$$

It is perhaps not so well-known, that for each continuity point x of f we have

$$f^{(r)}(x) \to f(x), \quad r \to \infty.$$

In the following the "upper right boundary" of $[0, 1]^d$ will play a role. Let for $\alpha \subseteq [d]$

$$T_{\alpha} \coloneqq \{ x \in [0, 1]^d \, | \, x_i < 1 \Leftrightarrow i \in \alpha \}.$$

Then $[0,1]^d = \bigcup_{\alpha \subseteq [d]} T_{\alpha}$, $T_{\emptyset} = \{\mathbf{1}_d\}$ and $T_{[d]} = [0,1[^d]$. The union $\bigcup_{\alpha \subsetneq [d]} T_{\alpha}$ is called the *upper right boundary* of $[0,1]^d$.

Theorem 3. Let $f : [0,1]^d \to \mathbb{R}$ have the property that each restriction $f|T_{\alpha}$ for $\emptyset \neq \alpha \subseteq [d]$ is continuous. Then

$$\lim_{r \to \infty} f^{(r)}(x) = f(x) \quad \forall x \in [0, 1]^d,$$

i.e. the Bernstein polynomials converge pointwise to f everywhere.

For a function f of d variables we'll use a short notation for its partial derivatives (if they exist). Let $\mathbf{p} \in \mathbb{N}_0^d \setminus \{0\}$, then

$$f_{\mathbf{p}} \coloneqq \frac{\partial^{|\mathbf{p}|} f}{\partial x_1^{p_1} \dots \partial x_d^{p_d}},$$

complemented by $f_{\mathbf{0}_d} \coloneqq f$.

Lemma 2. Let $f : [0,1]^d \to \mathbb{R}$ be arbitrary, $0 \neq \mathbf{p} \in \mathbb{N}_0^d$.

- (i) If $\Delta_h^{\mathbf{p}} f \ge 0 \ \forall h \in \mathbb{R}^d_+ \ then \ \left(f^{(r)}\right)_{\mathbf{p}} \ge 0 \ \forall r \in \mathbb{N}.$
- (ii) If f is in addition C^{∞} , then $f_{\mathbf{p}} \geq 0$.

Theorem 4. Let $f : [0,1]^d \to \mathbb{R}$ be a C^{∞} -function, $\mathbf{n} \in \mathbb{N}^d$, $k \in \mathbb{N}$. Then

(i)
$$f \text{ is } \mathbf{n} \uparrow \Leftrightarrow f_{\mathbf{p}} \ge 0 \ \forall 0 \neq \mathbf{p} \le \mathbf{n}, \mathbf{p} \in \mathbb{N}_0^d$$

(ii) $f \text{ is } k \uparrow \Leftrightarrow f_{\mathbf{p}} \ge 0 \ \forall 0 < |\mathbf{p}| \le k, \ \mathbf{p} \in \mathbb{N}_0^d$

Proof. (i) " \Rightarrow ": follows from Lemma 2.

" \Leftarrow ": Let for $m \in \mathbb{N}$ $\sigma_m : \mathbb{R}^m \to \mathbb{R}$ be the sum function, $\sigma_n \coloneqq \sigma_{n_1} \times \sigma_{n_2} \times \cdots \times \sigma_{n_d}$. By [12], Theorem 5 we have

$$f \text{ is } \mathbf{n} \cdot \uparrow \Leftrightarrow f \circ \sigma_{\mathbf{n}} \text{ is } \mathbf{1}_{|\mathbf{n}|} \cdot \uparrow \text{ on } J \coloneqq \prod_{i=1}^{d} \left[0, \frac{1}{n_i} \right]^{n_i}$$

The chain rule gives

$$(f \circ \sigma_{\mathbf{n}})_{\mathbf{1}_{|\mathbf{n}|}} = f_{\mathbf{n}} \circ \sigma_{\mathbf{n}} \ge 0,$$

so that for $x, x + h \in J, h \ge 0$ by Fubini's theorem

$$\left(\Delta_h^{\mathbf{1}_{|\mathbf{n}|}}(f \circ \sigma_{\mathbf{n}})\right)(x) = \int_{[x,x+h]} (f \circ \sigma_{\mathbf{n}})_{\mathbf{1}_{|\mathbf{n}|}} \, d\boldsymbol{\lambda}^{|\mathbf{n}|} \ge 0.$$

- Examples 2. (a) $f(x, y) \coloneqq x^2y ax^2y^2 + y^2$ on $[0, 1]^2$, $0 < a \le \frac{1}{2}$. Since $f_{\mathbf{p}} \ge 0$ for $\mathbf{p} \in \{(1, 0), (0, 1), (1, 1), (2, 0), (0, 2)\}$, f is $2-\uparrow$; but $f_{(1,2)}(x, y) = -4ax$ shows that f is neither $3-\uparrow$ nor $(2, 2)-\uparrow$.
 - (b) $f : \mathbb{R}^2_+ \to \mathbb{R}$ is defined by $f(0,0) \coloneqq 0$ and else

$$f(x,y) \coloneqq \frac{xy(x^2 - y^2)}{x^2 + y^2} + 13 \cdot (x^2 + y^2) + 3xy$$

See [8], page 321, where it is given as an example of an ultramodular function on \mathbb{R}^2_+ (which doesn't automatically include that it is increasing). However, all partial derivatives $f_{\mathbf{p}}$ with $0 < |\mathbf{p}| \le 2$ are ≥ 0 , hence f is 2- \uparrow (and not 3- \uparrow , BTW).

(c) With the abbreviation $x^{\alpha} \coloneqq \prod_{i \in \alpha} x_i$ for $\alpha \subseteq [d], x^{\emptyset} \coloneqq 1$, a polynomial of the form

$$f(x) = \sum_{\alpha \subseteq [d]} c_{\alpha} x^{\alpha}$$

is called *multilinear*. f is affine in each variable, therefore $f_{\mathbf{p}} = 0$ whenever $p_i > 1$ for some i. Hence f is $k - \uparrow$ iff $f_{\mathbf{p}} \ge 0$ $\forall \mathbf{p} \le \mathbf{1}_d$ with $0 < |\mathbf{p}| \le k$, and $\mathbf{n} - \uparrow$ iff f is $(\mathbf{n} \land \mathbf{1}_d) - \uparrow$. The example (d = 3)

$$f(x) \coloneqq x_1 x_2 + x_1 x_3 + x_2 x_3 - x_1 x_2 x_3$$

is thus $2 \uparrow 0n [0, 1]^3$, but not $3 \uparrow 1$, since $f_{(1,1,1)} = -1$. And f is $(n, n, 0) \uparrow \forall n$.

Theorem 5. Let $f : [0,1]^d \to \mathbb{R}$, $\mathbf{2}_d \leq \mathbf{n} \in \mathbb{N}_0^d$, $2 \leq k \in \mathbb{N}$. The Bernstein polynomials of f are denoted $f^{(1)}, f^{(2)}, \ldots$

(i) If f is n -↑ then so is each f^(r), and f^(r) → f pointwise.
(ii) If f is k -↑ then so is each f^(r), and f^(r) → f pointwise.

The main results

The proof of Theorem 6 below makes use of a far reaching generalization of the usual multivariate chain rule. This admirable result was shown by Constantine and Savits ([3], Theorem 2.1), and we present it here, keeping (almost) their notation.

Let $d, m \in \mathbb{N}$, let g_1, \ldots, g_m be defined and C^{∞} in a neighborhood of $x^{(0)} \in \mathbb{R}^d$ (real-valued), put $g \coloneqq (g_1, \ldots, g_m)$, let f be defined and C^{∞} in a neighborhood of $y^{(0)} \coloneqq g(x^{(0)}) \in \mathbb{R}^m$.

For $\mu, \nu \in \mathbb{N}_0^d$ define

(i)
$$|\mu| < |\nu|$$

or
 $\mu \prec \nu$: \Leftrightarrow (ii) $|\mu| = |\nu|$ and $\mu_1 < \nu_1$
or
(iii) $|\mu| = |\nu|, \mu_1 = \nu_1, \dots, \mu_k = \nu_k, \mu_{k+1} < \nu_{k+1}, \exists k \in [d-1]$

(implying $\mu \neq \nu$).

Examples:

(a) $(1,3,0,4,1) \prec (1,3,1,1,3)$, here k = 2(b) $e_d \prec e_{d-1} \prec \cdots \prec e_1$ (c) For d = 1 we have $\mu \prec \nu \Leftrightarrow \mu < \nu$. We need some abbreviations:

$$D_x^{\nu} \coloneqq \frac{\partial^{|\nu|}}{\partial x_1^{\nu_1} \dots \partial x_d^{\nu_d}} \text{ for } |\nu| > 0, \quad D_x^0 \coloneqq \text{ Id}$$
$$x^{\nu} \coloneqq \prod_{i=1}^d x_i^{\nu_i}, \quad \nu! \coloneqq \prod_{i=1}^d \nu_i!, \quad |\nu| \coloneqq \sum_{i=1}^d \nu_i$$
$$g_{\mu}^{(i)} \coloneqq (D_x^{\mu}g_i) (x^{(0)}), \quad g_{\mu} \coloneqq \left(g_{\mu}^{(1)}, \dots, g_{\mu}^{(m)}\right)$$
$$f_{\lambda} \coloneqq \left(D_y^{\lambda}f\right) (y^{(0)})$$
$$h \coloneqq f \circ g, \quad h_{\nu} \coloneqq \left(D_x^{\nu}h\right) (x^{(0)})$$

and, for $\nu \in \mathbb{N}_0^d$, $\lambda \in \mathbb{N}_0^m$, $s \in \mathbb{N}$, $s \le |\nu|$

$$P_s(\nu,\lambda) \coloneqq \left\{ (k_1,\ldots,k_s; l_1,\ldots,l_s) \mid |k_j| > 0, 0 \prec l_1 \prec \cdots \prec l_s, \sum_{j=1}^s k_j = \lambda, \sum_{j=1}^s k_j = \lambda,$$

where (of course) $k_j \in \mathbb{N}_0^m$ and $l_j \in \mathbb{N}_0^d$. (For some values of s these sets may be empty.)

The announced formula by Constantine and Savits then reads

$$h_{\nu} = \sum_{1 \le |\lambda| \le |\nu|} f_{\lambda} \cdot \sum_{s=1}^{|\nu|} \sum_{P_s(\nu,\lambda)} \nu! \cdot \prod_{j=1}^s \frac{(g_{l_j})^{k_j}}{(k_j!) \cdot (l_j!)^{|k_j|}}$$
(**)

This formula reduces for d = 1 to the classical one of Faa di Bruno from 1855, see [3].

One more result is needed, allowing general d.f.s to be "replaced" by C^{∞} ones:

Lemma 3. (i) Let $(\Omega, \mathcal{A}, \rho)$ be a finite measure space, $\emptyset \neq \mathcal{B} \subseteq \mathcal{A}$ a finite collection of measurable sets. Then there is another finite measure ρ_0 on \mathcal{A} with finite support such that $\rho_0 | \mathcal{B} = \rho | \mathcal{B}$. (ii) Let F on \mathbb{R}^d be the d.f. of some finite measure, $\emptyset \neq B \subseteq \mathbb{R}^d$ a finite subset. Then there is a C^{∞} d.f. \tilde{F} on \mathbb{R}^d such that $\tilde{F}|B = F|B$.

Theorem 6. Let $f : [0, 1]^m \to \mathbb{R}_+$ be $d \uparrow (d \ge 2)$ and let $g_1, \ldots, g_m : \mathbb{R}^d \to [0, 1]$ be d.f.s of (subprobability) measures on \mathbb{R}^d . Then also $f \circ (g_1, \ldots, g_m)$ is a d.f. on \mathbb{R}^d .

Proof. Put $g \coloneqq (g_1, \ldots, g_m) : \mathbb{R}^d \to [0, 1]^m$, $h \coloneqq f \circ g$. By Lemma 1 also h is right-continuous, and it remains to show that h is $\mathbf{1}_d \cdot \uparrow$, the crucial property of a d.f. on \mathbb{R}^d .

A consequence of Theorem 5 is that we may assume f to be C^{∞} , and we first let also g_1, \ldots, g_m be C^{∞} functions.

Now to the general case: in order to see that $h = f \circ g$ is $\mathbf{1}_d \uparrow$, we have to show for given $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}^d_+$

$$\left(\Delta_{\xi}^{\mathbf{1}_{d}}h\right)(x) = h(x+\xi) \mp \dots + (-1)^{d}h(x) \ge 0,$$

(as well as the analogue for some variables fixed, which is shown similarly).

In Lemma 3 we choose the finite set

$$\left\{ x + \sum_{i \in \alpha} \xi_i e_i \, | \, \alpha \subseteq [d] \right\} \rightleftharpoons B$$

and find C^{∞} d.f.s $\tilde{g}_1, \ldots, \tilde{g}_m$ such that $\tilde{g}_i | B = g_i | B$ for each $i \leq m$. Then

$$0 \le \left(\Delta_{\xi}^{\mathbf{1}_d}(f \circ \tilde{g})\right)(x) = \left(\Delta_{\xi}^{\mathbf{1}_d}h\right)(x)$$

thus finishing the proof.

Remark 4. If for a given f the conclusion of Theorem 6 holds for all d.f.s g_1, \ldots, g_m , then f must be $d \cdot \uparrow$. This follows from Theorem 1(v), since each component of an affine positive function φ is of course $\mathbf{1}_d \cdot \uparrow$.

- **Examples 3.** (a) We saw before that $f(x) \coloneqq x_1x_2 + x_1x_3 + x_2x_3 x_1x_2x_3$ is $2 \uparrow$ on $[0, 1]^3$. Hence for arbitrary bivariate d.f.s g_1, g_2, g_3 also $g_1g_2 + g_1g_3 + g_2g_3 g_1g_2g_3$ is a d.f., while f itself is not a 3-dimensional d.f..
 - (b) Put $f_a(t) \coloneqq (t-a)_+/(1-a)$ for $t \in [0,1]$ and $a \in [0,1[$, complemented by $f_1 \coloneqq 1_{\{1\}}$. Then $\{f_{\alpha}^n \mid a \in [0,1]\}$ are the "essential" extreme points for (n+1)- \uparrow functions on [0,1], and $\{f_{a_1}^{n_1} \otimes \cdots \otimes f_{a_d}^{n_d} \mid a \in [0,1]^d\}$ correspondingly for $(\mathbf{n} + \mathbf{1}_d) - \uparrow$ functions on $[0,1]^d$, cf. [11]. In the bivariate case, $f_a \otimes f_b$ is (2,2)- \uparrow , in particular 2- \uparrow , so that $f_c \circ (f_a \otimes f_b)$ is 2- \uparrow on $[0,1]^2$. For any bivariate d.f.s g_1, g_2 we see that

$$\left[\frac{(g_1-a)_+ \cdot (g_2-b)_+}{(1-a) \cdot (1-b)} - c\right]_+, \quad (a,b,c) \in [0,1[^3$$

is again a bivariate d.f..

Another important property of $k - \uparrow$ functions is their "universal" compatibility and composebility within their class, made precise in

Theorem 7. Let $m, d, k \in \mathbb{N}$, $J \subseteq \mathbb{R}^m$ and $I \subseteq \mathbb{R}^d$ be non-degenerate intervals, $g = (g_1, \ldots, g_m) : I \to J$, $f : J \to \mathbb{R}$, each g_i and f being $k \to \uparrow$. Then also $f \circ g$ is $k \to \uparrow$.

Proof. The case k = 1 being obvious, let's assume $k \ge 2$. Since any non-degenerate interval is an increasing union of compact nondegenerate subintervals, we may choose $I = [0, 1]^d$ and $J = [0, 1]^m$. By Theorem 1 we have to show that $h \coloneqq f \circ g$ is $\mathbf{n} \cdot \uparrow$ for any $\mathbf{n} \in \mathbb{N}_0^d$ such that $0 < |\mathbf{n}| \le k$. Since the variables *i* with $n_i = 0$ do not enter, we may and do assume $\mathbf{n} \in \mathbb{N}^d$, in particular $k \ge d$. Then each g_i is $\mathbf{n} \cdot \uparrow$, or equivalently, by [12] Theorem 5, $g_i \circ \sigma_{\mathbf{n}}$ is $\mathbf{1}_{|\mathbf{n}|} \cdot \uparrow$ on $\prod_{i \le d} \left[0, \frac{1}{n_i}\right]^{n_i}$. Theorem 6 above now implies that also

$$f \circ (g_1 \circ \sigma_{\mathbf{n}}, \dots, g_m \circ \sigma_{\mathbf{n}}) = h \circ \sigma_{\mathbf{n}}$$

is $\mathbf{1}_{|\mathbf{n}|}$ - \uparrow , which in turn means that h is \mathbf{n} - \uparrow .

An open problem

While $\mathbf{n} \cdot \uparrow$ functions on $[0, 1]^d$, non-negative and normalized, are a Bauer simplex, with "essentially" $\{f_{a_1} \otimes \cdots \otimes f_{a_d} \mid a \in [0, 1]^d\}$ as their extreme points (see Examples 3(b) above), not much so far is known for $k \cdot \uparrow$ functions. Let's consider d = k = 2 and

$$K := \{ f : [0,1]^2 \to [0,1] \mid f \text{ is } 2 \uparrow and f(1,1) = 1 \}.$$

K is obviously convex and compact, and also stable under (pointwise) multiplication. It is easy to see that each $f_c \circ (f_a \otimes f_b)$ is an extreme point of K - but that's it, for the time being.