The Gleason Metric and Fibers of $\mathcal{H}^{\infty}(B_{c_0})$

Yun Sung Choi POSTECH, Pohang, Korea Coauthors : Javier Falcó, Domingo García, Mingu Jung and Manuel Maestre

POSITIVITY 2023

July 10-14, 2023

Yun Sung ChoiPOSTECH, Pohang, KorThe Gleason Metric and Fibers of \mathcal{H}^{∞}

July 10-14, 2023

1 / 13

Given a complex Banach space X, we denote the algebra of all bounded holomorphic functions on the open unit ball B_X of X by $\mathcal{H}^{\infty}(B_X)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Given a complex Banach space X, we denote the algebra of all bounded holomorphic functions on the open unit ball B_X of X by $\mathcal{H}^{\infty}(B_X)$.
- It is well known that when endowed with the supremum norm, $\mathcal{H}^{\infty}(B_X)$ is a commutative Banach algebra with identity.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

- Given a complex Banach space X, we denote the algebra of all bounded holomorphic functions on the open unit ball B_X of X by $\mathcal{H}^{\infty}(B_X)$.
- It is well known that when endowed with the supremum norm, $\mathcal{H}^{\infty}(B_X)$ is a commutative Banach algebra with identity.

We also denote by $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ the spectrum (or maximal ideal space) of $\mathcal{H}^{\infty}(B_X)$ that consists of the set of all non-zero complex valued homomorphisms $\psi : \mathcal{H}^{\infty}(B_X) \mapsto \mathbb{C}$, endowed with the weak-star topology that makes it a compact Hausdorff space.

The Gleason metric ρ on the spectrum $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ is defined so that $\rho(\varphi, \psi)$ is the supremum of $|\psi(f)|$ over all $f \in \mathcal{H}^{\infty}(B_X)$ satisfying $\|f\|_{\infty} := \sup_{x \in B_X} \{|f(x)| : x \in B_X\} \le 1$ and $\varphi(f) = 0$.

The Gleason metric ρ on the spectrum $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ is defined so that $\rho(\varphi, \psi)$ is the supremum of $|\psi(f)|$ over all $f \in \mathcal{H}^{\infty}(B_X)$ satisfying $\|f\|_{\infty} := \sup_{x \in B_X} \{|f(x)| : x \in B_X\} \le 1$ and $\varphi(f) = 0$.

Let us point out that the Gleason metric G on $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ is sometimes defined by the restriction of the dual norm on $\mathcal{H}^{\infty}(B_X)^*$ to $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$, i.e., $G(\varphi, \psi) = \|\varphi - \psi\|^* = \sup\{|\varphi(f) - \psi(f)| : \|f\|_{\infty} \leq 1\}$. We prefer to use the metric ρ , because it allows us to obtain its explicit description.

- ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

The Gleason metric ρ on the spectrum $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ is defined so that $\rho(\varphi, \psi)$ is the supremum of $|\psi(f)|$ over all $f \in \mathcal{H}^{\infty}(B_X)$ satisfying $\|f\|_{\infty} := \sup_{x \in B_X} \{|f(x)| : x \in B_X\} \le 1$ and $\varphi(f) = 0$.

Let us point out that the Gleason metric G on $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ is sometimes defined by the restriction of the dual norm on $\mathcal{H}^{\infty}(B_X)^*$ to $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$, i.e., $G(\varphi, \psi) = \|\varphi - \psi\|^* = \sup\{|\varphi(f) - \psi(f)| : \|f\|_{\infty} \leq 1\}$. We prefer to use the metric ρ , because it allows us to obtain its explicit description.

Both metrics ρ and G are related by the equation $\rho(\varphi, \psi) = \frac{4G(\varphi, \psi)}{4+G(\varphi, \psi)^2}$

ロト (日) (日) (日) (日) (日) (日)

Since X^* , the dual space of X, is a subspace of $\mathcal{H}^{\infty}(B_X)$, we can define a natural surjective mapping $\pi : \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \mapsto \overline{B_{X^{**}}}$ given by $\pi(\psi) := \psi|_{X^*}$, i.e. the restriction of ψ to X^*

<=>> = ∽<</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Since X^* , the dual space of X, is a subspace of $\mathcal{H}^{\infty}(B_X)$, we can define a natural surjective mapping $\pi : \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \mapsto \overline{B_{X^{**}}}$ given by $\pi(\psi) := \psi|_{X^*}$, i.e. the restriction of ψ to X^*

For the case of $X = \mathbb{C}$ this mapping coincides with the classical mapping $\pi(\psi) = \psi(z \rightsquigarrow z)$

- ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

Since X^* , the dual space of X, is a subspace of $\mathcal{H}^{\infty}(B_X)$, we can define a natural surjective mapping $\pi : \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \mapsto \overline{B_{X^{**}}}$ given by $\pi(\psi) := \psi|_{X^*}$, i.e. the restriction of ψ to X^*

For the case of $X = \mathbb{C}$ this mapping coincides with the classical mapping $\pi(\psi) = \psi(z \rightsquigarrow z)$

For $z \in \overline{B_{X^{**}}}$, the *fiber* of the spectrum of $\mathcal{H}^{\infty}(B_X)$ at the point z is defined by $\pi^{-1}(z) = \{\psi \in \mathcal{M}(\mathcal{H}^{\infty}(B_X)) : \pi(\psi) = z\}$. As usual, we denote the fiber $\pi^{-1}(z)$ by $\mathcal{M}_z(\mathcal{H}^{\infty}(B_X))$. By Goldstine's theorem, $\pi(\mathcal{M}(\mathcal{H}^{\infty}(B_X))) = \overline{B_{X^{**}}}$, so every fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_X))$ is nonempty.

- → 同 → → 三 → → 三 → への

Since X^* , the dual space of X, is a subspace of $\mathcal{H}^{\infty}(B_X)$, we can define a natural surjective mapping $\pi : \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \mapsto \overline{B_{X^{**}}}$ given by $\pi(\psi) := \psi|_{X^*}$, i.e. the restriction of ψ to X^*

For the case of $X = \mathbb{C}$ this mapping coincides with the classical mapping $\pi(\psi) = \psi(z \rightsquigarrow z)$

For $z \in \overline{B_{X^{**}}}$, the *fiber* of the spectrum of $\mathcal{H}^{\infty}(B_X)$ at the point z is defined by $\pi^{-1}(z) = \{\psi \in \mathcal{M}(\mathcal{H}^{\infty}(B_X)) : \pi(\psi) = z\}$. As usual, we denote the fiber $\pi^{-1}(z)$ by $\mathcal{M}_z(\mathcal{H}^{\infty}(B_X))$. By Goldstine's theorem, $\pi(\mathcal{M}(\mathcal{H}^{\infty}(B_X))) = \overline{B_{X^{**}}}$, so every fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_X))$ is nonempty.

If $z \in B_{X^{**}}$, then we define $\tilde{\delta}_z(f) := AB(f)(z)$, where AB(f) denotes the Aron-Berner extension of f. Since $\tilde{\delta}_z \in \mathcal{M}_z(\mathcal{H}^\infty(B_X))$, we can consider $B_{X^{**}}$ to be contained in $\mathcal{M}(\mathcal{H}^\infty(B_X))$. Canonically, we will identify z with $\tilde{\delta}_z$.

ロト (日) (日) (日) (日) (日) (0)

We are interested in studying algebras of holomorphic functions. We say that a vector-valued function $\phi : B_X \mapsto Z$ is holomorphic, if ϕ is Fréchet differentiable. In particular, if $Z = Y^*$ for a Banach space Y, then this is equivalent to say that ϕ is w^* -holomorphic, that is, $y \circ \phi : B_X \mapsto \mathbb{C}$ is holomorphic for all $y \in Y$.

(日) (型) (王) (王) (王) (1)

We are interested in studying algebras of holomorphic functions. We say that a vector-valued function $\phi : B_X \mapsto Z$ is holomorphic, if ϕ is Fréchet differentiable. In particular, if $Z = Y^*$ for a Banach space Y, then this is equivalent to say that ϕ is w^* -holomorphic, that is, $y \circ \phi : B_X \mapsto \mathbb{C}$ is holomorphic for all $y \in Y$.

We concentrate on the algebra $\mathcal{H}^{\infty}(B_X)$, $X = c_0$, and our main interest is the structure of the fibres $\pi^{-1}(z)$ for $z \in \overline{B_{\ell_{\infty}}}$.

We are interested in studying algebras of holomorphic functions. We say that a vector-valued function $\phi : B_X \mapsto Z$ is holomorphic, if ϕ is Fréchet differentiable. In particular, if $Z = Y^*$ for a Banach space Y, then this is equivalent to say that ϕ is w^* -holomorphic, that is, $y \circ \phi : B_X \mapsto \mathbb{C}$ is holomorphic for all $y \in Y$.

We concentrate on the algebra $\mathcal{H}^{\infty}(B_X)$, $X = c_0$, and our main interest is the structure of the fibres $\pi^{-1}(z)$ for $z \in \overline{B_{\ell_{\infty}}}$.

Theorem (Cole, Gamelin and Johnson, Michigan Math. J., 1992)

For every point $z \in B_{\ell_{\infty}}$ there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$, which is also an isometry from the Gleason metric G of $B_{\ell_{\infty}}$ to the Gleason metric G of $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

-

San

白牙 不同子 不同子 不同子

Theorem (Aron, Falcó, García, and Maestre, Studia Math., 2018)

For every distinguished boundary point z of $\overline{B_{\ell_{\infty}}}$ there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$, which is also a homeomorphism on its image.

Theorem (Aron, Falcó, García, and Maestre, Studia Math., 2018)

For every distinguished boundary point z of $\overline{B_{\ell_{\infty}}}$ there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$, which is also a homeomorphism on its image.

Question : Is it true for any point in the unit sphere $S_{\ell_{\infty}}$.

Theorem (Aron, Falcó, García, and Maestre, Studia Math., 2018)

For every distinguished boundary point z of $\overline{B_{\ell_{\infty}}}$ there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$, which is also a homeomorphism on its image.

Question : Is it true for any point in the unit sphere $S_{\ell_{\infty}}$.

THEOREM (MAIN THEOREM, CFGJM)

For every $z \in \overline{B_{\ell_{\infty}}}$ there is an analytic injection of the ball $B_{\ell_{\infty}}$ into the fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$ which is an isometry from the Gleason metric of $B_{\ell_{\infty}}$ to the Gleason metric of $\mathcal{M}(H^{\infty}(B_{c_0}))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

THEOREM (CFGJM)

If $z = (z_n) \in \overline{B_{\ell_{\infty}}}$ and there exists a subsequence $(z_{j_n})_{n \in \mathbb{N}}$ such that $|z_{j_n}| < 1$ for every $n \in \mathbb{N}$ and $(|z_{j_n}|)_{n \in \mathbb{N}}$ is a strictly increasing sequence converging to 1, then there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into the fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$, which is an isometry for the Gleason metric of $B_{\ell_{\infty}}$ to the Gleason metric of $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

7 / 13

THEOREM (CFGJM)

If $z = (z_n) \in \overline{B_{\ell_{\infty}}}$ and there exists a subsequence $(z_{j_n})_{n \in \mathbb{N}}$ such that $|z_{j_n}| < 1$ for every $n \in \mathbb{N}$ and $(|z_{j_n}|)_{n \in \mathbb{N}}$ is a strictly increasing sequence converging to 1, then there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into the fiber $\mathcal{M}_z(\mathcal{H}^{\infty}(B_{c_0}))$, which is an isometry for the Gleason metric of $B_{\ell_{\infty}}$ to the Gleason metric of $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

Sketch of Proof :

We denote by $\mathbb{N}_1 = \{j_n : n \in \mathbb{N}\}\$ and $\mathbb{N}_2 = \mathbb{N} \setminus \mathbb{N}_1 = \{i_l : l = 1, \dots, N\}$, where N is the cardinality of the set N_2 , possibly 0 or ∞

<日 > < E > < E > E の Q の July 10-14, 2023 7 / 13

Sketch of Proof

We write each element $\lambda \in \ell_{\infty}$ as $(\mu, \eta) \in \ell_{\infty} \times \ell_{\infty}^{N}$, where $\mu_{n} = \lambda_{j_{n}}$ $(n \in \mathbb{N})$ and $\eta_{l} = \lambda_{i_{l}}$ (l = 1, ..., N). Following this notation, we write z = (u, v).

◆ロト ◆冊 ▶ ◆臣 ▶ ◆臣 ▶ ◆ ● ●

We write each element $\lambda \in \ell_{\infty}$ as $(\mu, \eta) \in \ell_{\infty} \times \ell_{\infty}^{N}$, where $\mu_{n} = \lambda_{j_{n}}$ $(n \in \mathbb{N})$ and $\eta_{l} = \lambda_{i_{l}}$ (l = 1, ..., N). Following this notation, we write z = (u, v).

For each $k, m \in \mathbb{N}$ choose an integer m_k and $0 < r_m < 1$ so that $m_{k+1} > m_k + k$ and $\{r_m\}$ increases strictly to 1. Choose $0 < \alpha_k < 1$ so that $\{\alpha_k\}$ increases strictly to 1 very rapidly and

$$1 - \alpha_k \le \frac{1}{2^k} (1 - |u_{m_{k+1}}|) \tag{1}$$

for every $k \in \mathbb{N}$.

A E A E AQA

Sketch of Proof

We define the holomorphic mapping

$$\Psi_k^m: B_{\ell_\infty} \to B_{\ell_\infty}$$

by

$$\Psi_k^m(\lambda) = (\Phi_k^m(\lambda), r_m v)$$

for every $\lambda=(\lambda_n)_{n\in\mathbb{N}}\in B_{\ell_\infty}$, where

 $\Phi_k^m:B_{\ell_\infty} o B_{c_0}$ is the mapping defined by

$$\Phi_k^m(\lambda) = \left(r_m u_1, \ldots, r_m u_{m_k}, \frac{\alpha_k - \lambda_1}{1 - \alpha_k \lambda_1}, \ldots, \frac{\alpha_k - \lambda_k}{1 - \alpha_k \lambda_k}, 0, 0, \ldots\right)$$

for all $\lambda = (\lambda_n)_{n=1}^{\infty} \in B_{\ell_{\infty}}$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ●

 Φ_k^m is weakly holomorphic; hence Φ_k^m is also holomorphic.

Given $\eta \in B_{\ell_{\infty}}$ we identify η with the point evaluation homomorphism $\tilde{\delta}_{\eta} \in \mathcal{M}(\mathcal{H}^{\infty}(\mathcal{B}_{c_0}))'$

◆ロト ◆冊 ▶ ◆臣 ▶ ◆臣 ▶ ◆ ● ●

 Φ_k^m is weakly holomorphic; hence Φ_k^m is also holomorphic.

Given $\eta \in B_{\ell_{\infty}}$ we identify η with the point evaluation homomorphism $\tilde{\delta}_{\eta} \in \mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))'$

We have

 $\tilde{\Phi}_k^m, \tilde{\Psi}_k^m : B_{\ell_{\infty}} \mapsto \mathcal{M}(\mathcal{H}^{\infty}(B_{c_0})) \subset \mathcal{H}^{\infty}(B_{c_0})^*$ defined as $\tilde{\Phi}_k^m(\eta)(f) = f(\Phi_k^m(\eta))$ and $\tilde{\Psi}_k^m(\eta)(f) = AB(f)(\Psi_k^m(\eta))$ respectively.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● □ ● ● ● ●

 Φ^m_{μ} is weakly holomorphic; hence Φ^m_{μ} is also holomorphic.

Given $\eta \in B_{\ell_{\infty}}$ we identify η with the point evaluation homomorphism $\tilde{\delta}_n \in \mathcal{M}(\mathcal{H}^\infty(B_{c_0}))'$

We have

d r

$$\widetilde{\Phi}_{k}^{m}, \widetilde{\Psi}_{k}^{m} : B_{\ell_{\infty}} \mapsto \mathcal{M}(\mathcal{H}^{\infty}(B_{c_{0}})) \subset \mathcal{H}^{\infty}(B_{c_{0}})^{*}$$
lefined as $\widetilde{\Phi}_{k}^{m}(\eta)(f) = f(\Phi_{k}^{m}(\eta))$ and $\widetilde{\Psi}_{k}^{m}(\eta)(f) = AB(f)(\Psi_{k}^{m}(\eta))$
espectively.

To simplify the notation we will identify $\tilde{\Phi}^m_{k}$ and $\tilde{\Psi}^m_{\nu}$ with Φ^m_{ν} and Ψ^m_{ν} , respectively.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Sketch of Proof

Now, the mappings Φ_k^m and Ψ_k^m can be now considered as holomorphic mappings from $B_{\ell_{\infty}}$ to $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

◆ロト ◆冊 ▶ ◆臣 ▶ ◆臣 ▶ ◆ ● ●

Now, the mappings Φ_k^m and Ψ_k^m can be now considered as holomorphic mappings from $B_{\ell_{\infty}}$ to $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

By Ascoli theorem, there exist holomorphic mappings $\Phi^m, \Psi^m : B_{\ell_{\infty}} \to \mathcal{M}(H^{\infty}(B_{c_0}))$, which are accumulation points of $(\Psi^m_k)_{k \in \mathbb{N}}$ and $(\Psi^m_k)_{k \in \mathbb{N}}$, respectively.

→ □ → → 三 → → 三 → りへで

Now, the mappings Φ_k^m and Ψ_k^m can be now considered as holomorphic mappings from $B_{\ell_{\infty}}$ to $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

By Ascoli theorem, there exist holomorphic mappings $\Phi^m, \Psi^m : B_{\ell_{\infty}} \to \mathcal{M}(H^{\infty}(B_{c_0}))$, which are accumulation points of $(\Psi^m_k)_{k \in \mathbb{N}}$ and $(\Psi^m_k)_{k \in \mathbb{N}}$, respectively.

We can check that

$$\Psi^m(\lambda) = (\Phi^m(\lambda), r_m v)$$

and

$$\Psi^{m}(\lambda)(f) = \Phi^{m}(\lambda) \left(\mu \in B_{\ell_{\infty}} \mapsto AB(f)(\mu, r_{m}v) \right),$$

for every $\lambda = (\lambda_n)_{n \in \mathbb{N}} \in B_{\ell_\infty}$ and every $f \in \mathcal{H}^\infty(B_{c_0})$.

By Ascoli theorem again, we can find holomorphic mappings $\Phi, \Psi : B_{\ell_{\infty}} \to \mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$, which are accumulation points of $\{\Phi^m\}_{m \in \mathbb{N}}$ and $\{\Psi^m\}_{m \in \mathbb{N}}$ respectively in the compact-open topology.

↓ ∃ ▶ ∃ • ∩ < ()</p>

By Ascoli theorem again, we can find holomorphic mappings $\Phi, \Psi : B_{\ell_{\infty}} \to \mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$, which are accumulation points of $\{\Phi^m\}_{m \in \mathbb{N}}$ and $\{\Psi^m\}_{m \in \mathbb{N}}$ respectively in the compact-open topology.

We can check that $\Psi(\lambda) \in \mathcal{M}_z(\mathcal{H}^\infty(B_{c_0}))$ for every $\lambda \in B_{\ell_\infty}$.

We can show that Ψ is an analytic injection of the ball $B_{\ell_{\infty}}$ into $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$, which is an isometry from the Gleason metric of $B_{\ell_{\infty}}$ to the Gleason metric of $\mathcal{M}(\mathcal{H}^{\infty}(B_{c_0}))$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● □ ● ● ● ●

THEOREM

Suppose that X is a Banach space with a normalized shrinking basis $\{e_j\}_{j\in\mathbb{N}}$ and there exists a positive integer N satisfying

$$\sum_{j=1}^\infty |e_j^*(x)|^N < \infty$$

for all $x = \sum_{j=1}^{\infty} e_j^*(x)e_j$ in X. Then for any $z \in B_X$, there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into the fiber $\mathcal{M}_z(\mathcal{A}_u(B_X))$.

THEOREM

Suppose that X is a Banach space with a normalized shrinking basis $\{e_j\}_{j\in\mathbb{N}}$ and there exists a positive integer N satisfying

$$\sum_{j=1}^\infty |e_j^*(x)|^N < \infty$$

JULY 10-14, 2023

13 / 13

for all $x = \sum_{j=1}^{\infty} e_j^*(x)e_j$ in X. Then for any $z \in B_X$, there exists an analytic injection of the ball $B_{\ell_{\infty}}$ into the fiber $\mathcal{M}_z(\mathcal{A}_u(B_X))$.

THANK YOU FOR YOUR ATTENTION!